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Multi-objective optimization

Concept
@ Need for minimizing several objective functions.
@ In many practical applications, the objectives are conflicting.

@ Improving one objective may deteriorate several others.

Examples
@ Transportation: maximize level of service, minimize costs.
@ Finance: maximize return, minimize risk.

@ Survey: maximize information, minimize number of questions
(burden).
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Multi-objective optimization

fi(x)
min F(x) = _
fp(x)
subject to
x € F CR",
where
F:R" — RP.
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Outline

@ Definitions
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Dominance

Dominance
Consider x1,x2 € R". xy is dominating xo if

@ x1 is no worse in any objective
Vi€ {17 R p}a fi(Xl) < ﬁ(X2)7
© Xxj is strictly better in at least one objective

Jie{l,...,p}, fi(x1) < fi(x2).

Notation
x1 dominates xo: F(x1) < F(x2).
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Dominance
Properties
@ Not reflexive: x £ x
@ Not symmetric: x <y # y < x
@ Instead: x <y =y £ x
@ Transitive: x <yandy <z =x <z
@ Not complete: dx,y: x Ay and y 4 x
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Dominance: example

f .

S IS SRS %2

2+ F(X3) =< F(X2)
F(X3) =< F(Xl)

s % Fia) # F(x)
F(xa) #A F(x)

0 % % % T
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Optimality

Pareto optimality

The vector x* € F is Pareto optimal if it is not dominated by any feasible

solution:
Bx € F such that F(x) < F(x*).

Intuition

x is Pareto optimal if no objective can be improved without degrading at
least one of the others.
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Optimality

Weak Pareto optimality

The vector x* € F is weakly Pareto optimal if there is no x € F such that
Vi=1,...,p,

fi(x) < fi(x%),

Pareto optimality
@ P*: set of Pareto optimal solutions

o WP*: set of weakly Pareto optimal solutions
o P*C WP*C F
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Dominance: example

fa :
34 e S :..){2.
27 @ x3: Pareto optimal.
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' ' optimal.
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Pareto frontier

Pareto optimal set

P* = {x* € F|Bx € F: F(x) < F(x*)}

Pareto frontier

PF* = {F(x")|x € P*}
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Pareto frontier
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Transformations into single-objective
Outline

© Transformations into single-objective
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Weighted sum

Weights

Foreach i=1,...,p, w; > 0 is the weight of objective i.

Optimization

p

)r(rg]n__z w;fi(x). (1)

i=1

Comments
@ Weights may be difficult to interpret in practice.
@ Generates a Pareto optimal solution.

@ In the convex case, if x* is Pareto optimal, there exists a set of
weights such that x* is the solution of (1)
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Transformations into single-objective

Weighted sum: example

Train service
@ fi: minimize travel time
@ f>: minimize number of trains

@ f3: maximize number of passengers

Definition of the weights
@ Transform each objective into monetary costs.
@ Travel time: use value-of-time.
@ Number of trains: estimate the cost of running a train.

@ Number of passengers: estimate the revenues generated by the
passengers.
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Transformations into single-objective

Goal programming

Goals

Foreach i=1,...,p, g; is the “ideal” or “target” objective function
defined by the modeler.

Optimization
P
: _ ¢ . .
min [|F(x) — glle = | Y |Fi(x) —&il’
xeF ;
i=1
v
Issue
Not really optimizing the objectives
v
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Outline

© Lexicographic rules
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Lexicographic rules

Lexicographic optimization

Sorted objective

Assume that the objectives are sorted from the most important (i = 1) to

the least important (i = p).

First problem

fi = minfi(x)

lth problem

f," = min fy(x)

subject to
x eF
filx) =f*i=1,...,0—-1
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Lexicographic rules

e-lexicographic optimization

Sorted objective and tolerances
@ Assume that the objectives are sorted from the most important
(i = 1) to the least important (i = p).
@ Foreachi=1,...,p, ¢; > 0 is a tolerance on the objective f;.

First problem

¥ = min f;
= min fi(x)

fth problem
f," = min fy(x)

subject to
x €F
filx) <f*+¢e,i=1...,0—1
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Outline

@ Constrained optimization
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Constrained optimization

e-constraints formulation

Reference objective and upper bounds
@ Select a reference objective ¢ € {1,...,p}.

@ Impose an upper bound ¢; on each other objective.

Constrained optimization

in f,
i )
subject to
ﬁ(X) < Eiy 175 l.
Property

If a solution exists, it is weakly Pareto optimal.
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Constrained optimization

Conclusion

Problem definition
@ Need for trade-offs.

@ Concept of Pareto frontier.

Algorithms

@ Heuristics.

@ Most of time driven by problem knowledge.
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