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Goals

MCMC:
@ Understand how to draw from a complex distribution

@ Use Markov Chain Monte Carlo methods

Implementation:
@ Markov Chain
@ Metropolis-Hastings algorithm
© Gibbs sampling
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Markov Chain

© Markov Chain
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Markov Chain

Exercise:

@ Implement a Markov chain model representing the "machine”
example introduced in the lecture.

Codes:
@ MarkovChain.m: to code a function
@ MarkovChainTest.m: to test the function

TODO:

@ Play with different state space, initial state and transition matrix.
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Metropolis-Hastings algorithm

© Metropolis-Hastings algorithm
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Metropolis-Hastings algorithm

Context:

@ Professor B. sees that the students in his course are extremely
emotional.

@ He records their emotional states, which change every hour.
@ In the total duration of the course, he records the following statistics:

e Sad: 15 hours,
e So-so: 20 hours,
e Happy: 31 hours.
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Metropolis-Hastings algorithm

Exercise:

@ Implement a Metropolis Hastings to represent the emotional state of
students.

Codes:
@ MetropolisHastings.m: to code a function

@ MetropolisHastingsTest.m: to test the function
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Gibbs sampling
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Gibbs sampling

Exercise:

@ Use the Gibbs sampling algorithm to draw from the bivariate normal
distribution introduced in the lecture.

Codes:
© GibbsSamplingBN.m: to code a function
@ GibbsSamplingBNTest.m: to test the function

Note:

@ You can use a library randn() to draw a normal distributed random
number.

Oyama, Y.(TRANSP-OR) Optimization and Simulation March 5, 2019 9 /13



My results

@ My results
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Markov Chain Monte Carlo sampling
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Metropolis-Hastings
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o Accept: [2064 2768 4168]

@ Reject: [942 524 0]

e Simulated: [0.2293 0.3076 0.4631]
o Target: [0.2273 0.3030 0.4697]
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Gibbs sampling
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