
Laboratory 6

Optimization

Nikola Obrenović

Transport and Mobility Laboratory TRANSP-OR
École Polytechnique Fédérale de Lausanne EPFL 

Optimization and Simulation



Goals

• Understand the limitation of full enumeration
• Understand and apply optimization algorithms:

• Greedy algorithm
• Local search
• Variable neighborhood search
• Simulated annealing



Overview

Travelling salesman problem
Implementation functions

6.1 Full enumeration
6.2 Greedy algorithm
6.3 Local search
6.4 Variable neighborhood search
6.5 Simulated annealing



Travelling Salesman Problem



Travelling Salesman Problem

A salesman has to visit ! cities
• She starts and ends the trip at her home city
• Assume cost of travel to be total trip length

What sequence of cities minimizes the travel cost?



Travelling Salesman Problem

Cities are consecutively numbered: 1, 2, … , %
We encode solutions as & = (&1 &2 … &) … &%) where
• &) is the index of )+ℎ city visited along the way
• &% is the last city visited before returning home
• Every city must be visited exactly once



Implementation functions



Solution proposal function

Function to implement (.m)
GenerateNewCitySequence

Test the function (.m) 
GenerateNewCitySequenceTest

Implementation functions

1 2 3 4 5 6 7 8 9 10
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

Ten histograms from left to right
Each one showing the distribution of the cities in that position



Objective Function

Function to implement (.m)
EvaluateCitySequence

Test the function (.m) 
EvaluateCitySequenceTest
• Prove that the distance traveled is well 

calculated

Implementation functions



6.1 Full enumeration



Exercise

Function to implement (.m)
GenerateNewCitySequence
FullEnumeration

Test the function (.m) 
OptimizationTSPTest

Calculate the computational time limitations of the full 
enumeration.
What is the maximum problem size (number of cities) that 
you could solve with this approach?

Full enumeration



6.2 Greedy algorithm



Exercise

Function to implement (.m)
GenerateNewCitySequence
GreedyAlgorithm

Test the function (.m) 
OptimizationTSPTest

Greedy algorithm



6.3 Local search



Exercise

Function to implement (.m)
GenerateNewCitySequence
LocalSearch

Test the function (.m) 
OptimizationTSPTest

Local search



6.4 Variable neighborhood search



Exercise

Function to implement (.m)
GenerateNewCitySequence
GenerateNewCitySequence_...
GenerateNewCitySequence_k
VariableNeighborhoodSearch

Test the function (.m) 
OptimizationTSPTest

Variable neighborhood search



6.5 Simulated annealing



Exercise

Function to implement (.m)
GenerateNewCitySequence
SimulatedAnnealing

Test the function (.m) 
OptimizationTSPTest

• Investigate the effect of different parameters

Simulated Annealing



IMPORTANT!

The suggested framework is only a suggestion!

Feel free to organize the code in the manner you find the 
most appropriate!



My results



RandomizeCitySequence

My results

1 2 3 4 5 6 7 8 9 10
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

Ten histograms from left to right
Each one showing the distribution of the cities in that position



An initial solution

My results



A final solution

My results



Simulated Annealing

My results



Simulated Annealing

My results



Knapsack Problem

• A salesman is planning his visit to the market and wants to 
select items he will try to sell.

• Each item ! is characterized by its price "# and weight $#, 
which are given on the next slide

• There are 60 items in total.
• Logically, he would like to take as many items as possible 

but his van has a weight limitation of max. 1500 kilograms.

The set of which items will maximize the profit?



Knapsack Problem

• Price !" and weight #" for each item $:
$ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

!" 80 31 48 17 27 84 34 39 46 58 23 67 62 79 38 44 31 50 72 71

#" 84 27 47 22 21 96 42 46 54 53 32 78 64 82 33 49 28 56 77 69

$ 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

!" 73 32 49 21 25 91 36 19 8 74 56 41 62 89 48 54 11 41 52 54

#" 79 29 51 19 23 94 39 16 8 69 61 38 59 92 43 59 18 44 58 67

$ 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

!" 9 21 58 26 57 65 54 48 36 49 34 75 59 86 24 51 41 63 72 45

#" 14 26 57 33 51 72 62 52 44 55 43 83 70 93 23 56 40 66 75 49



Tasks

• Try to solve the problem with the full enumeration
• Test the following optimization algorithms:

• Variable neighborhood search (VNS), by 
implementing at least 3 neighborhood structures, and

• Simulated annealing (SA)
• Use the full enumeration solution as a benchmark, if 

obtained.



Problem Encoding

• Let us label each item with an integer: 1, 2, … , %
• We encode solutions as & = (&1 &2 … &) … &%) where
• &) is the 0-1 variable denoting if the item ) is selected 

into the knapsack



Results presentation

• Average number of appearances of each item in the 
knapsack

• Solutions achieved with all three algorithms
• Trend of the objective function value and temperatures in 

the case of SA


