Optimization and Simulation
Markov Chain Monte Carlo Methods

Michel Bierlaire

Transport and Mobility Laboratory
School of Architecture, Civil and Environmental Engineering
Ecole Polytechnique Fédérale de Lausanne

CPr

=7 TRANSP-OR T o rouceau

FEDERALE DE LAUSANNE

M. Bierlaire (TRANSP-OR ENAC EPFL) Optimization and Simulation 1/45



Outline

@ Introduction to Markov chains
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Markov Chains

Andrey Markov, 18561922, Russian mathematician.
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Markov Chains: glossary

Stochastic process

X:, t=0,1,...,, collection of r.v. with same support, or states space
{1,...,0,...,J}.

Markov process: (short memory)

Pr(Xt = I|X0, c. 7Xt—1) = Pr(Xt = i|Xt_1)

Homogeneous Markov process

Pr(Xt :_j’Xt_]_ = I) = Pr(Xt+k :_j’Xt—l—i-k == I) == PI_I YVt > 1, k > 0.

v
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Markov Chains

Transition matrix

P e R,

Properties:
J

ZPU:]" i:l,...,J, PUEO, \V/I',_j',
j=1

Ergodicity
@ If state j can be reached from state / with non zero probability, and /
from j, we say that i communicates with j.
@ Two states that communicate belong to the same class.
@ A Markov chain is irreducible or ergodic if it contains only one class.

@ With an ergodic chain, it is possible to go to every state from any
state.
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Markov Chains

Aperiodic

e © ¢ ¢

P,-j- is the probability that the process reaches state j from i after t

steps.

Consider all t such that P, > 0. The largest common divisor d is
called the period of state i.

A state with period 1 is aperiodic.
If P; > 0, state i is aperiodic.
The period is the same for all states in the same class.

Therefore, if the chain is irreducible, if one state is aperiodic, they all
are.
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A periodic chain
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PL >0 for t =3,6,9,12,15...
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Introduction to Markov chains

Another periodic chain

7
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Optimization and Simulation 8/ 45



Introduction to Markov chains

An aperiodic chain
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Optimization and Simulation 0 /a5



Outline

© Stationary distributions
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Markov Chains

Stationary probabilities
J
Pr(j) = Pr(jli) Pr(i)
i=1
@ Stationary probabilities: unique solution of the system

J
mp=Y Pymi, Vj=1,...,J. (1)
i=1

J
Zﬂ'j: 1.

j=t

@ Solution exists for any irreducible chain.
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Stationary distributions

Example

@ A machine can be in 4 states with respect to wear
perfect condition,

partially damaged,

seriously damaged,

completely useless.

©

¢ & ©

@ The degradation process can be modeled by an irreducible aperiodic
homogeneous Markov process, with the following transition matrix:

0.95 0.04 0.01 0.0
0.0 090 0.05 0.05
0.0 00 0.80 0.20
1.0 00 00 0.0

P =
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Example

Stationary distribution: ( '35

[ee][¢)]

)

D=
i

)

0.95 0.04 0.01 0.0

51 3 1 00 090 005 005 | (51 3 1

( 4 ) 0.0 0.0 080 0.20 ( )
10 00 00 0.0

@ Machine in perfect condition 5 days out of 8, in average.

@ Repair occurs in average every 32 days

From now on: Markov process = irreducible aperiodic homogeneous
Markov process
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Markov Chains

Detailed balance equations

Consider the following system of equations:

J
X,':D,'J':X_,':Dj,'7 i7'éj7 ZX,':]. (2)
i=1

We sum over i:
J J
> xiPj=xy_ Pji=x.
i=1 i=1

If (2) has a solution, it is also a solution of (1). As 7 is the unique solution
of (1) then x = 7.
TPy = miPji, i #j

The chain is said time reversible
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Stationary distributions

Stationary distributions

Property

ﬂj:tlLrgoPr(Xt:j) Jj=1,...,J.

Ergodicity
@ Let f be any function on the state space.
@ Then, with probability 1,

T J
.1 :
Jim — ; f(Xe) = Z; i (j)-
= J:

@ Computing the expectation of a function of the stationary states is
the same as to take the average of the values along a trajectory of the
process.

v
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Example: T =100
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Example: T = 1000
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Example: 7 = 10000
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Outline

© Metropolis-Hastings
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Metropolis-Hastings

Simulation

Motivation

@ Sample from very large discrete sets (e.g. sample paths between an
origin and a destination).

@ Full enumeration of the set is infeasible.

Procedure

@ We want to simulate a r.v. X with pmf
Pr(X =j) = p;

@ We generate a Markov process with limiting probabilities p; (how?)

@ We simulate the evolution of the process.

pj=7j= lim Pr(X; =j) j=1,...,J.

t—00
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Metropolis-Hastings

Simulation

Assume that we are interested in simulating

J
E[F(X)] =) _f(i)p;-

Jj=1

We use ergodicity to estimate it with

1 T
;; F(Xe).

Drop early states (see above example)

Better estimate:

1 T+k
— f(Xe)
t .
=
t=1+k
.
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Metropolis-Hastings

Metropolis-Hastings

Nicholas Metropolis
1915 - 1999

W. Keith Hastings

1930 -

Optimization and Simulation
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Metropolis-Hastings

Context
o Let b, j=1,...,J be positive numbers.
o Let B=}_;b;. If Jis huge, B cannot be computed.
@ Let i = bj/B.

@ We want to simulate a r.v. with pmf =;.

Explore the set

o Consider a Markov process on {1, ..., J} with transition probability
Q.
@ Designed to explore the space {1,...,J} efficiently

@ Not too fast (and miss important points to sample)

@ Not too slowly (and take forever to reach important points)
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Metropolis-Hastings

Define another Markov process

(]

Based on the exact same states {1,...,J} as the previous ones
@ Assume the process is in state /, that is X; = i.

@ Simulate the (candidate) next state j according to Q.

@ Define

Xoii — J with probability o
#17 i with probability 1 — ajj
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Metropolis-Hastings

Transition probability P

Pj = Qjoy if i)
Pi = Qicii+ 34 Qie(l — i) otherwise

Must verify the property

1=2P; = Pit+2 4P

Qiicvii + D gz Qie(1 — aie) + 324 Qi
Qiicvii + D g i Qie — D0z Qiecvie + 324 Qi
= Qiaii + Dy Qie

As Zj Qj =1, we have aj; = 1.
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Metropolis-Hastings

Time reversibility

TPy =miPji, i #]
that is

Qo = Qi i F#j

It is satisfied if

7 Qi
iji= S andaj;=1
7TiQij
or
i Qjj
=oajand aj; =1
Qi Ji ij
J i
v

26 / 45



Metropolis-Hastings

As «jj is a probability

. (7 Qji )
Qajj = min ,1
/ (ﬂ'iQU
Simplification

Remember: 7; = b;/B. Therefore

. [ b;BQji . [ bQji
ij = ) 1) = ) 1
ajj = min <biBQij ) min (biQij

The normalization constant B does not play a role in the computation of
OéU
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Metropolis-Hastings

Metropolis-Hastings

In summary
@ Given Q and b;
@ defining « as above
@ creates a Markov process characterized by P

@ with stationary distribution 7.
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Metropolis-Hastings

Algorithm
© Choose a Markov process characterized by Q.
@ Initialize the chain with a state i: t =0, Xo = /.
© Simulate the (candidate) next state j based on Q.
© Let r be a draw from UJ0, 1].

© Compare r with ajj = min (Zflgfu’, 1). If

b; Qji

r<
b; Qj

then Xi41 =, else Xeyp1 = 1.
O Increase t by one.
@ Goto step 3.
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Metropolis-Hastings

Example

b =(20,8,3,1)
(51 3 1

™ =(3.2:33:3)
101011

S O G

Q=1 1 1 1
4 4 4 4

S G G

i 4 4 %

Run MH for 10000 iterations. Collect statistics after 1000.
@ Accept: [2488, 1532, 801, 283]
@ Reject: [0, 952, 1705, 2239]
@ Simulated: [0.627, 0.250, 0.095, 0.028]
o Target: [0.625, 0.250, 0.09375, 0.03125]
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Outline

@ Gibbs sampling
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Gibbs sampling
Motivation

@ Draw from multivariate distributions.

@ Main difficulty: deal with correlations.

Metropolis-Hastings
o Let X = (X1, X2,...,X") be a random vector with pmf (or pdf)
p(x).
@ Assume we can draw from the marginals:

PrX'| X/ =xI, j#i),i=1,...,n.

@ Markov process. Assume current state is x.

@ Draw randomly (equal probability) a coordinate i.
o Draw r from the ith marginal.

o New state: y = (x1,...,x""L r x™ .0 x").
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Gibbs sampling

Transition probability

Qxy—*Pl’( I’lXJ_XJ _j;é ) nPr(XJp_();)J J?é )

@ The denominator is independent of X;.

@ So Qyy is proportional to p(y).

Metropolis-Hastings

The candidate state is always accepted.

M. Bierlaire (TRANSP-OR ENAC EPFL) Optimization and Simulation 33 /45



Gibbs sampling

Example: bivariate normal distribution

) 2
Y Hy POXTY Oy

Marginal distribution:

YI(X = x) ~ N (w Y o — i) (1 p2>azy)
ox

Apply Gibbs sampling to draw from:

v((0) (as 1))

Note: just for illustration. Should use Cholesky factor.
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Example: pdf

A =100

0.4
0.35
0.3
0.25
0.2
0.15
0.1
0.05
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Gibbs sampling

Example: draws from Gibbs sampling

4 T T T T T T T
Draws from Gibbs samplirlg e i
1 vt Y
C e
2+ Ty ]
+ ¥4
1t i
0+ i
1L i
_2 - + o+ i
.
-3+ + " .
—4 1 1 1 1 1 1 1
—4 -3 -2 -1 0 1 2 3 4
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© Simulated annealing
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Simulated annealing

Simulated annealing

Combinatorial optimization

min f(x)

where the feasible set F is a large finite set of vectors.

Set of optimal solutions

X' ={xe Flf(x) < f(y), Yy € F} and f(x*) =", Vx* € X™".

Probability mass function on F

e—)\f(x)

p)\(X) = W, A > 0.
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Simulated annealing

Simulated annealing

e—)\f(x)

pa(x) = 42}/6? M)

@ Equivalently
M —=f(x))

P)\(X) = Zye]_- e/\(f*ff(y))

@ As f* — f(x) <0, when A — oo, we have

: I(x € X*)
[ = 7
Jim_ () EX
where
1 ifxeXx*

5(x € &%) :{
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Simulated annealing

Example

F=1{1,2,3} f(F) ={0,1,0}

)= —

px(1) P re
A
e

2) =

PA(2) 24 e

3)= ——

px(3) P re
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Simulated annealing

Example
1 T T T

0.8 i

0.6 - i

0.4 4

0.2 i
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Simulated annealing

If X\ is large,
we generate a Markov chain with stationary distribution py(x).
The mass is concentrated on optimal solutions.

As the normalizing constant is not needed, only e*(f"=f(x)) js ysed.

e © 6 6 ¢

Construction of the Markov process through the concept of
neighborhood.

@ A neighbor y of x is obtained by simple modifications of x.
@ The Markov process will proceed from neighbors to neighbors.

@ The neighborhood structure must be designed such that the chain is
irreducible, that is the whole space F must be covered.

@ It must be designed also such that the size of the neighborhood is
reasonably small.
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Neighborhood

Metropolis-Hastings
@ Denote N(x) the set of neighbors of x.

@ Define a Markov process where the next state is a randomly drawn
neighbor.

@ Transition probability:

@ Metropolis Hastings:

0y = min <p<y>oyx 1) - (me 1)

M. Bierlaire (TRANSP-OR ENAC EPFL) Optimization and Simulation 43 / 45



Neighborhood

Notes

@ The neighborhood structure can always be arranged so that each
vector has the same number of neighbors. In this case,

. ef)‘f(}’) 1
Qxy = min | ———
xy e M(x)’
@ If y is better than x, the next state is automatically accepted.

@ Otherwise, it is accepted with a probability that depends on .
@ If X\ is high, the probability is small.

@ When X is small, it is easy to escape from local optima.
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Simulated annealing

Heuristic

Issue

@ The number of iterations needed to reach a stationary state and draw
an optimal solution may exceed the number of feasible solutions in
the set.

@ The acceptance probability is very small.

@ Therefore, a complete enumeration works better.

@ The method is used as a heuristic.
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