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The Vehicle Routing Problem (VRP) is a
combinatorial optimization and integer
programming problem that seeks to find
the most efficient utilization and routing
of a vehicle fleet to service a set of
customers subject to constraints.

It was introduced by Dantzig and Ramser
(1959), and is one of the most practically
relevant and widely studied problems in
Operations Research.

It has numerous applications in the
distribution and collection of goods and
the transportation of people.
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MILP Formulation

The capacitated VRP

Three-index directed vehicle-flow formulation (Golden et al., 1977):

Sets:

K is a set of identical vehicles
N is a set of all nodes, where the depot is duplicated as o (origin) and
d (destination)

Parameters:

Q is the vehicle capacity
qi is the demand at node i
cij is the travel cost from node i to j

Variables:

xijk = 1 iff vehicle k moves from node i to j ; 0 otherwise
yik = 1 iff vehicle k visits node i ; 0 otherwise
uik is the cumulated demand serviced by vehicle k when arriving at
node i
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MILP Formulation

The capacitated VRP

Objective: minimize total travel cost

minimize
∑
k∈K

∑
i∈N

∑
j∈N

cijxijk

A customer is visited by exactly one vehicle

s.t.
∑
k∈K

yik = 1, ∀i ∈ N \ {o, d}

Path-flow

s.t.
∑

j∈N\{i}

xijk −
∑

j∈N\{i}

xjik = 0, ∀i ∈ N \ {o, d}, k ∈ K

s.t.
∑

j∈N\{o}

xojk −
∑

j∈N\{o}

xjok = 1, ∀k ∈ K
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MILP Formulation

The capacitated VRP

Coupling

s.t. yik =
∑

j∈N\{i}

xijk , ∀i ∈ N \ {d}, k ∈ K

s.t. ydk =
∑

i∈N\{d}

xidk , ∀k ∈ K

Domain

s.t. xijk ∈ {0, 1}, ∀i , j ∈ N , k ∈ K
s.t. yik ∈ {0, 1}, ∀i ∈ N , k ∈ K
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MILP Formulation

We are missing something...

depot c11

c10
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Look at the solution depicted here.

The cycles c6 −→ c7 −→ c8 −→ c6 and
c3 −→ c4 −→ c3 are referred to as
subtours.

Subtours are part of the vehicles’ tours
that are disconnected from the depot.

Apparently a solution like this should not
exist.

However, is it feasible for the model
defined above!
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MILP Formulation

Subtour elimination constraints

The constraints we are missing are called subtour elimination
constraints (SEC).

Their role is to eliminate the possibility of subtours and to enforce the
vehicle capacity constraints.

SEC can be formulated in different ways, with an impact on the
number of SEC and the integrality gap, and they represent the
main difficulty in solving the VRP.

One classical example of a SEC formulation, the so-called
MTZ-formulation, is due to Miller et al. (1960). It has O(n2)
variables and constraints but produces a weak linear relaxation of the
model.
s.t. uik + qj ≤ ujk + Q(1− xijk), ∀i , j ∈ N , k ∈ K
s.t. qi ≤ uik ≤ Q, ∀i ∈ N , k ∈ K
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MILP Formulation

Complete model

min
∑
k∈K

∑
i∈N

∑
j∈N

cijxijk

s.t.
∑
k∈K

yik = 1, ∀i ∈ N \ {o, d}

∑
j∈N\{i}

xijk −
∑

j∈N\{i}
xjik = 0, ∀i ∈ N \ {o, d}, k ∈ K

∑
j∈N\{o}

xojk −
∑

j∈N\{o}
xjok = 1, ∀k ∈ K

yik =
∑

j∈N\{i}
xijk , ∀i ∈ N \ {d}, k ∈ K

ydk =
∑

i∈N\{d}
xidk , ∀k ∈ K

uik + qj ≤ ujk + Q(1− xijk ), ∀i , j ∈ N , k ∈ K
qi ≤ uik ≤ Q, ∀i ∈ N , k ∈ K
xijk ∈ {0, 1}, ∀i , j ∈ N , k ∈ K
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The Vehicle Routing Problem with Time Windows (VRPTW)

Adding time windows (VRPTW)

Time windows are constraints that appear very often in practice.

They introduce a time dimension to the problem and restrict the
start-of-service time at node i between ai and bi .

Let tij (parameter) denote the travel time from node i to node j and
Tik (decision variable) denote the start-of-service time for vehicle k at
node i . Then:
s.t. ai ≤ Tik ≤ bi ∀i ∈ N , k ∈ K
s.t. Tik + tij ≤ Tij + M(1− xijk) ∀i ∈ N , k ∈ K
If a vehicle arrives at node i before ai , it waits until the time window
opens to start service. However, it cannot arrive after bi .

Based on our policy, we may want to change the objective function to
include a duration aspect.
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Solving the VRPTW

Solving the VRPTW

Solution methods for the VRP in general and the VRPTW in
particular can broadly be classified into exact, heuristic and hybrid.

There are two main categories of exact methods: branch-and-cut and
branch-and-price, both with many variations.

Heuristic methods for the VRP started with construction and
improvement procedures, and later evolved into more complex
metaheuristics such as tabu search, genetic algorithms, variable
neighborhood search, adaptive large neighborhood search, etc.

They are often combined with exact methods for subproblems.
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Exercise

Exercise for the first lab

Solomon (1987) designed the first systematic procedures for building
good quality initial VRPTW solutions. His paper is available here.

He also built a testbed of instances which is now one of the classical
VRP benchmark sets.

Your task consists of:

Reading the paper (very short).
Implementing the first insertion heuristic (Section 1.3).
Testing it on Solomon’s benchmark instances, which you can find on
the website. There is also a help file explaining the structure of the
instance files.
Comparing your results to Solomon’s.
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Exercise
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