Introduction to simulation

Michel Bierlaire

michel.bierlaire@epfl.ch

Transport and Mobility Laboratory

Introduction to simulation -p, 1/10

• A system can be seen as a black box, modeled by

y = h(x, u)

- Example: a car
- x captures the state of the system (e.g. speed, position of other vehicles)
- *u* captures possible human controls on the system (e.g. acceleration/deceleration)
- *y* represents indicators of performance (e.g. oil consumption).

- The model *h* is usually decomposed to reflect the interactions of the subsystems
- For example,
 - a car-following model captures the target speed of the driver,
 - an engine model derives the actual consumption as a function of the acceleration.
- In practice, such a model is never representing accurately the reality.

• Uncertainty is captured by random variables

 $Y = h(X, U, \varepsilon)$

where X, U, ε and Y are random variables.

- We are interested in the distribution of *Y*.
- When *h* is complex (that is, a combination of many models),
 - the distribution of *Y* is complex,
 - even if the distributions of X, U and ε are simple.

- Assume for the sake of simplicity that all r.v. are continuous
- Denote Z the random vector (X, U, ε) and f_Z its pdf
- Let f_Y be the pdf of Y:

$$f_Y(y) = \int_z f_Y(y|Z=z) f_Z(z) dz.$$

- In general, no analytical formula is available for f_Y
- When the dimension of Z is large, numerical integration is not an option.
- Solution: Monte-Carlo integration

Monte-Carlo integration

Compute

$$I = \int_0^1 f(x) dx$$

If $\varepsilon \sim U(0,1),$ then

$$I = E[f(\varepsilon)]$$

If r_1, \ldots, r_k are k independent draws from ε , then

$$I = \lim_{k \to \infty} \frac{1}{k} \sum_{i=1}^{k} f(r_i).$$

Requires only to evaluate f.

Monte-Carlo integration

Intuitive example: estimation of $\boldsymbol{\pi}$

$$f_Y(y) = \int_z f_Y(y|Z=z) f_Z(z) dz.$$

- Idea of simulation:
 - Draw R realizations of Z: z_1, \ldots, z_R .
 - Approximate:

$$f_Y(y) = \int_z f_Y(y|Z=z) f_Z(z) dz \approx \frac{1}{R} \sum_{r=1}^R 1(h(z_r)=y).$$

Challenges

- How to generate draws from *Z*?
- How to represent complex systems? (specification of *h*)
- How large *R* should be?
- How good is the approximation of the integral?

Introduction to simulation -p. 8/10

Pseudo-random numbers

- Deterministic sequence of numbers
- which have the appearance of draws from a U(0,1) distribution

Typical sequence:

 $x_n = a x_{n-1} \mod m$

- This has a period of the order of \boldsymbol{m}
- So, m should be a large prime number
- For instance: $m = 2^{31} 1$ and $a = 7^5$
- x_n/m lies in the [0, 1[interval

Outline

- Drawing from distributions
- Discrete event simulation
- Data analysis
- Variance reduction
- Markov Chain Monte Carlo

