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Optimization: the problem

min f(x)

subject to

=

2

m 1A |
o O

Modeling elements:
1. Decision variables: z
2. Objective function: f : R™ — R (n > 0)
3. Constraints:
e equality: h: R — R™ (m > 0)
e inequality: g : R* — R? (p > 0)
e X Is aconvex set
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The problem

e 2;,i=1,...,n, are continuous variables
e f, g and h are sufficiently differentiable
e Y ={xeR"h(x)=0,9(x) <0and z € X} is non empty

Local minimum z* € Y is a local minimum of the above problem if
there exists ¢ > 0 such that

f(x*) < f(x) VxeY suchthat|z—z*| <e.
Global minimum z* € Y is a global minimum of the above problem if

fla®) < f(z) Ve ey
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Lagrangian

e Assume X = R"™ in the above problem
e Consider A € R™
e Consider € RP

The function L : R**™m+P s R defined as

Lz, \p) = f(@)+\Th(z)+ pTg(z)
= fl@)+ 30 Nhi() + 30 pyg5(x)

is called the lagrangian function.
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Dual function

e The function ¢ : R™*? — R defined as

q(A, p) = min L(z, A, 1)
rER™

Is called the dual function of the optimization problem.

e Parameters X and . are called dual variables. = are called
primal variables.

e If x* is a global minimum of the optimization problem, then, for
any A € R™ and any u € R, u > 0, we have

q(A, 1) < f(x¥).
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Dual problem

Let X, C R™*? be the domain of ¢, that is

Xq =A{A plg(A, p) > —oo}

The optimization problem

max g(A, p1)
A1
subject to
p =0
and
()‘7 :u) = Xq

is called the dual problem of the original problem, which is called the
primal problem in this context.
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Duality results

Weak duality theorem Let z* be a global minimum of the primal
problem, and (\*, ©*) a global maximum of the dual problem.
Then,

q(A", 1) < f(27).
Convexity-concavity of the dual problem
e The objective function of the dual problem is concave.
e The feasible set of the dual problem is convex.
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Outline

e Feasible directions, constraint qualification

e Optimality conditions
e Convex constraints
e Lagrange multipliers: necessary conditions
e Lagrange multipliers: sufficient conditions

e Algorithms
e Constrained Newton
e Interior point
e Augmented lagrangian
e Sequential quadratic programming
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Feasible directions

Definitions:
e r € R" is a feasible point if it verifies the constraints

e Given x feasible, d is a feasible direction in x if thereis n > 0
such that

T + ad
Is feasible for any 0 < a < .
Convex constraints:

e Let X CR"beaconvexset,and x,y € X, x #v.
e The direction
d=y—=x
Is feasible in z.
e Moreover, foreach 0 < a <1, ar + (1 — a)y Is feasible.

= TRANSP-OR — I

ECOLE POLYTECHMN IGLE
FEDIRALE DE LAUSAMNE

Optimization and Simulation — o. 9/66



Feasible directions

Corollary:
o Let X CR"
e Let z be an interior point, that is there exists £ > 0 such that

|z —z|| <e =z € X.

e Then, any direction d is feasible in .
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Feasible sequences

e Consider the generic optimization problem

o Let 2z € R™ be a feasible point

e The sequence () is said to be feasible in z* if
o lim; .ooxr=2aT,
e ko such that =, is feasible if &k > kg,
o 1, # x forall k.
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Feasible sequence: example

e One equality constraint
h(z) = x] — 29 =0,

e Feasible point: ™ = (0,0)7

1
Lk — If
k2

e Feasible sequence:
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Feasible sequence: example

1, 0.5 0 0.5 N (0
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Feasible limiting direction

ldea: consider the sequence of directions

T — T

dj, =
lze — 2|

and take the limit.
e Directions d; are not necessarily feasible
e The sequence may not always converge
e Subsequences must then be considered
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Feasible limiting direction: example

dq
& h(z) =23 — 20 =0
do
d3
// d>
xT™ =0
1 -0.5 0) 0.5 1 .ﬂ]ﬂ.
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Feasible limiting direction: example

e Constraint: h(z) = 2% — 25 =0
e Feasible point: 2™ = (0,0)%
e Feasible sequence:

8
>
I
R
/N
?E|'_‘?T\|*—/‘
oy
~__—

e Sequence of directions:

(="K
dk_< @ )

e Two limiting directions
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Feasible limiting direction: example

dy
3
d2
ds
dy
- ’_
g, -0.5 0 0.5 1 )
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Feasible limiting direction

e Consider the generic optimization problem
o Let z™ € R™ be feasible
e Let (z)x be a feasible sequence in z™

e Then, d # 0 is a feasible limiting direction in z* for the
sequence (zy )y If there exists a subsequence (xy, ); such that

Notes:

e It is sometimes called a tangent direction.

e Any feasible direction d is also a limiting feasible direction, for
the sequence

1
T =x7 + =d
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Cone of directions

e Consider the generic optimization problem

e Let T € R” be feasible
e [he set of directions d such that

d'Vgi(zT) <0, Vi=1,...,psuchthatg(z") =0,

and
d'Vhi(zt) =0, i=1,...,m,

as well as their multiples ad, o > 0, is the cone of directions at

xt.
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Cone of directions

1 -0.5
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Cone of directions

Theorem:

e Consider the generic optimization problem

o Letz™ € R” be feasible

o If dis a limiting feasible direction at =™

e Then d belongs to the cone of directions at =™
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Constraint qualification

Definition:
e Consider the generic optimization problem
o Let z™ € R™ be feasible

e The constraint qualification condition is verified if every
direction in the cone of directions at =™ is a feasible limiting

direction at ™.
This is verified in particular
e if the constraints are linear, or

e if the gradients of the constraints active at x* are linearly
iIndependent.
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Optimality conditions

Necessary condition for the generic problem:

e Let x* be a local minimum of the generic problem

e [hen
Vix)'d>0

for each direction d which is feasible limiting at z*.

Intuition: no “feasible” direction is a descent direction
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Optimality conditions: convex problem (I)

Consider the problem
min f(x)

X

subject to
re X CR"

where X Is convex and not empty.

e If 2* is a local minimum of this problem
e Then, forany z € X,

Vi) (z—2*) >0.
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Optimality conditions: convex problem (II)

e Assume now that X is convex and closed.
e Forany y € R", we note by [y]* the projection of y on X.
e |f z* Is a local minimum, then

¥ = [z* —aVf(z")]" Va > 0.
e Moreover, if f is convex, the condition is sufficient.

Note: useful when the projection is easy to compute (e.g. bound
constraints)
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Optimality conditions: Karush-Kuhn-Tucker

The problem:
min f(z)
subject to
h(z) = 0 [h:R® — R™]
g(x) < 0 [g:R"™— RP|
r € X =R"

e Let x* be a local minimum
e Let L be the Lagrangian

L(z, A\ p) = f(z) + M h(z) + p' g(a).

e Assume that the constraint qualification condition is verified.
e Then...

J: (L
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Optimality conditions: Karush-Kuhn-Tucker

... there exists a unique \* € R™ and a unique p* € R? such that
Vo L(z*, N, p%) = V(") + (A) Vh(z®) + (1) Vg(a™) = 0,

W20 j=1,..p,
and
pigi(x™) =0 j=1,...,p.

If f, g and h are twice differentiable, we also have

yI'V2 L(x*, \*, u*)y >0 Vy # 0 such that
yI'Vhi(z*)=0 i=1,...,m
yI'Vg;(z*)=0 i=1,...,psuchthat g;(z*) = 0.
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KKT: sufficient conditions

Let z* € R™, \* € R™ and p* € R? be such that
VeL(x®, X, u") =0
h(z*) =0, g(z*) <0
p =0,

pigi(x*) =0 Vj, p;>0 Vjsuchthatg(z*)=0.

yI'V2 L(x*, \*, u*)y >0 Vy # 0 such that
yI'Vhi(z*) =0 i=1,...,m
yI'Vgi(z*)=0 i=1,...,psuchthat g;(z*) = 0.

Then z* is a strict local minimum of the problem.
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Algorithms

e Constrained Newton

e Interior point

e Augmented lagrangian

e Sequential quadratic programming

Here: we give the main ideas.
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Constrained Newton

Context:
e Problem with a convex constraint set.

e Assumption: it is easy to project on the set.
e Examples: bound constraints, linear constraints.

Main idea:

e In the unconstrained case, Newton = preconditioned steepest
descent

e Consider first the projected gradient method
e Precondition it.
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Projected gradient method

Lt | | /|/ | | | |
05 1 15 2 25 3 35 4 45 5
X1
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Condition number

e Consider V?f(x) positive definite.
e Let \; be the largest eigenvalue, and \,, the smallest.
e The condition number is equal to \;/\,,.

e Geometrically, it is the ratio between the largest and the
smallest curvature.

e [he closest it is to one, the better.
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Condition number

Cond = 9/2 Cond =1
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Preconditioning

Preconditioning = appropriate change of variables.

e Let M € R™™" be invertible.
e Change of variables = linear application «/ = Mux.

Consider a function f : R™ — R.

fa) = fMa)
Vi) = M IVfM~1t2')=M"1Vf(x)
Vif(x') = M-TV2f(M 'z )M~!

= M IV2f(x)M—1.
Now, consider V2 f(x) = LL', and 2’ = L1 z. Then,

V2f(z)) = L 'V2f(x)L~ T
L=t ="1
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Readings

e Bierlaire (2006) Chapter 18.
e Bertsekas (1999) Section 2.3.
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Algorithms

e Constrained Newton

e Interior point

e Augmented lagrangian

e Sequential quadratic programming
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Interior point methods

Motivation:

e At an interior point, every direction is feasible.

e |t gives more freedom to the algorithm.
Main ideas:

e Focus first on being feasible.

e Then try to become optimal.
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Barrier functions

e Let X C R"” be a closed set.
e Let g: R™ — R™ a convex function.
e Let S be the set of interior points for g:

S={recR"ze X, g(xr) <0}
e A function barrier B : S — R is continuous and such that

lim  B(z) = +oc.

x€S,g(x)—0
e Examples:
B(z) =~ In(—g;(x))
j=1

R |
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Barrier functions: example (logarithmic)

1<x<3 = B(zx)=—In(x—1) —In(3 — x).

| _—4-/’—//
2 2.9 3
X
oo )
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Barrier methods

e Define a sequence of parameters (e), such that
00<8k+1<8k,k20,1,...
°® limk Ek — 0.

e At each iteration, solve
rp = argmin, s f(x) + e, B(x).

Issues:
e The subproblem should be easy to solve.

e In particular, we should rely on unconstrained optimization. A
descent method should not go outside the constraints, thanks
to the barrier.

e The speed of convergence of () is critical.
Typical applications: linear programming, convex programming
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Readings

e Bierlaire (2006) Chapter 19.
e Bertsekas (1999) Section 4.1.

See also: Wright, S. J. (1997) Primal-Dual Interior-Point Methods,
SIAM
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Algorithms

e Constrained Newton

e Interior point

e Augmented lagrangian

e Sequential quadratic programming
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Augmented Lagrangian

Main ideas:

e Focus first on reducing the objective function, even if
constraints are violated.

e Then recover feasibility.
e Inspired by the optimality conditions.
We assume that the problem has only equality constraints

min f(z)

subject to
h(z) =0 [h:R" = R™]
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Augmented Lagrangian

e Solve a sequence of unconstrained optimization problems.

e Penalize the constraint violation using
e alagrangian relaxation, and
e a quadratic penalty function.
Augmented lagrangian

Le(w,3) = f(@) + AT h(z) + 5 ||A()]*
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Augmented Lagrangian: lagrangian relaxation

e If \* is known (see optimality conditions).
e Then the solution is given by solving the unconstrained problem

min Le(a, %) = f(2) + (A) h(z) + Zlla@)|P”

with ¢ sufficiently large.
e Unfortunately, A* is not known by default.
e But we will be able to approximate it.
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Augmented Lagrangian: quadratic penalty

e If c becomes large enough, any non feasible point will be non
optimal for

min Lo(z,\) = f(z) + ATh(z) + = ||h(x)]?,
rER™ 2

for any \.
e Consider a sequence (cg), such that

lim = 4+o0.
Cl—> 00

e Then, for a given A, the sequence
T = argming gn L, (T, A)

converges to a solution of the constrained problem.
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Augmented Lagrangian: quadratic penalty

Main issue:
o If ¢y islarge, L., (z, \) is ill-conditioned.

e Methods for unconstrained optimization become slow, or may
even fail to converge.

e But... if A is close to A*, no need for large values of ¢;.
Theoretical result:
e Under relatively general conditions, the sequence

lilgn A+ Ckh(llj‘k)

converges to \*.
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Augmented Lagrangian: algorithm

1. Use an unconstrained optimization algorithm to solve
Tp+1 = argming cpn Le, (7, Ag)

to a given precision ¢y.
2. If z;, Is close to feasibility:
e update the estimate of the multipliers: \y11 = A\ + cxh(xk)
e keep ci = cxa1,
e require more precision: ;11 = € /ck.
3. If x4 i1s far from feasibility:
o keep A\py1 = i
e INncrease c,
e relax the precision: cx11 = o/cka1.
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Readings

e Bierlaire (2006) Chapter 20.
e Bertsekas (1999) Section 4.2.

E . (|

. T RANSP'D E ECOLE POLYTECHMN IGLE

FEDIRALE DE LAUSAMNE

Optimization and Simulation — p. 49/56



Sequential quadratic programming

Main ideas:

e Apply Newton’s method to solve the necessary optimality
conditions

VL(z*,\*) =0.
e One iteration amounts to solve a quadratic problem.
e Enforce global convergence with a merit function.
We assume that the problem has only equality constraints

min f(z)

subject to
h(z) =0 [h:R" = R™]
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Sequential quadratic programming

Lagrangian and derivatives:

L(z,)\) = f(z) + M'h(x).
VL(x,\) = ( me((;), g > :

Vh(z)t 0

VL) — ( V2, L(z,\) Vh(z) > |

Newton’s method: at each iteration, find d such that

VQL(CI}k, )\k)d = —VL(ﬂjk, )\k),

(L
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Sequential quadratic programming

It can be shown that it is equivalent to solving the following quadratic
problem

1
mC}Il Vf(.ilik)Td + idTvixL(xkv )\k)d

subject to
Vh(zi)'d + h(zy) = 0.

e An analytical solution can be derived for this problem.
e In practice, dedicated iterative algorithms are used.
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Sequential quadratic programming

e Newton’s method is not globally convergent.
e The same applies to the SQP method described above.

e Idea: apply similar globalization techniques than for
unconstrained optimization (line search, trust region).

e Main concept: reject a candidate if it is not sufficiently better
than the current one.

e But what does “better” mean?

e Two (potentially) conflicting objectives:
e decrease f(x)
e bring h(z) close to 0.
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Sequential quadratic programming

e Solution: combine them into a merit function
¢c(x) = f(x) +cllh(z)|1 = +cZIh

e For instance, use Wolfe’s conditions on the merit function. But...

e technical difficulties: need to
e guarantee that d is a descent direction for ¢..,
e deal with the non differentiability of ¢..
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Sequential quadratic programming

Notes:
e Differentiable merit functions could also be used.
e They may involve singularities.
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Readings

e Bierlaire (2006) Chapter 21.
e Bertsekas (1999) Section 4.3.
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