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Optimization: the problem

min
x∈Rn

f(x)

subject to

h(x) = 0

g(x) ≤ 0

x ∈ X ⊆ R
n

Modeling elements:

1. Decision variables: x

2. Objective function: f : Rn → R (n > 0)

3. Constraints:

• equality: h : R → R
m (m ≥ 0)

• inequality: g : Rn → R
p (p ≥ 0)

• X is a convex set
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The problem

• xi, i = 1, . . . , n, are continuous variables

• f , g and h are sufficiently differentiable

• Y = {x ∈ R
n|h(x) = 0, g(x) ≤ 0 and x ∈ X} is non empty

Local minimum x∗ ∈ Y is a local minimum of the above problem if
there exists ε > 0 such that

f(x∗) ≤ f(x) ∀x ∈ Y such that ‖x− x∗‖ < ε.

Global minimum x∗ ∈ Y is a global minimum of the above problem if

f(x∗) ≤ f(x) ∀x ∈ Y.
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Lagrangian

• Assume X = R
n in the above problem

• Consider λ ∈ R
m

• Consider µ ∈ R
p

The function L : Rn+m+p → R defined as

L(x, λ, µ) = f(x) + λTh(x) + µT g(x)

= f(x) +
∑m

i=1 λihi(x) +
∑p

j=1 µjgj(x)

is called the lagrangian function.
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Dual function

• The function q : Rm+p → R defined as

q(λ, µ) = min
x∈Rn

L(x, λ, µ)

is called the dual function of the optimization problem.

• Parameters λ and µ are called dual variables. x are called
primal variables.

• If x∗ is a global minimum of the optimization problem, then, for
any λ ∈ R

m and any µ ∈ R, µ ≥ 0, we have

q(λ, µ) ≤ f(x∗).
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Dual problem

Let Xq ⊆ R
m+p be the domain of q, that is

Xq = {λ, µ|q(λ, µ) > −∞}

The optimization problem

max
λ,µ

q(λ, µ)

subject to

µ ≥ 0

and

(λ, µ) ∈ Xq

is called the dual problem of the original problem, which is called the
primal problem in this context.
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Duality results

Weak duality theorem Let x∗ be a global minimum of the primal
problem, and (λ∗, µ∗) a global maximum of the dual problem.
Then,

q(λ∗, µ∗) ≤ f(x∗).

Convexity-concavity of the dual problem

• The objective function of the dual problem is concave.

• The feasible set of the dual problem is convex.
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Outline

• Feasible directions, constraint qualification

• Optimality conditions

• Convex constraints

• Lagrange multipliers: necessary conditions

• Lagrange multipliers: sufficient conditions

• Algorithms

• Constrained Newton

• Interior point

• Augmented lagrangian

• Sequential quadratic programming
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Feasible directions

Definitions:

• x ∈ R
n is a feasible point if it verifies the constraints

• Given x feasible, d is a feasible direction in x if there is η > 0
such that

x+ αd

is feasible for any 0 ≤ α ≤ η.

Convex constraints:

• Let X ⊆ R
n be a convex set, and x, y ∈ X, x 6= y.

• The direction

d = y − x

is feasible in x.

• Moreover, for each 0 ≤ α ≤ 1, αx+ (1− α)y is feasible.
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Feasible directions

Corollary:

• Let X ⊆ R
n

• Let x be an interior point, that is there exists ε > 0 such that

‖x− z‖ ≤ ε =⇒ z ∈ X.

• Then, any direction d is feasible in x.
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Feasible sequences

• Consider the generic optimization problem

• Let x+ ∈ R
n be a feasible point

• The sequence (xk)k is said to be feasible in x+ if

• limk→∞ xk = x+,

• ∃k0 such that xk is feasible if k ≥ k0,

• xk 6= x+ for all k.
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Feasible sequence: example

• One equality constraint

h(x) = x2
1 − x2 = 0,

• Feasible point: x+ = (0, 0)T

• Feasible sequence:

xk =

(

1
k
1
k2

)
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Feasible sequence: example

-1 -0.5 0 0.5 1

x
2

x1

h(x) = x2
1 − x2 = 0

x+ = 0

•

•

•
•••••••••••••••••
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Feasible limiting direction

Idea: consider the sequence of directions

dk =
xk − x+

‖xk − x+‖
,

and take the limit.

• Directions dk are not necessarily feasible

• The sequence may not always converge

• Subsequences must then be considered
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Feasible limiting direction: example
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Feasible limiting direction: example

• Constraint: h(x) = x2
1 − x2 = 0

• Feasible point: x+ = (0, 0)T

• Feasible sequence:

xk =

(

(−1)k

k
1
k2

)

• Sequence of directions:

dk =

(

(−1)kk√
k2+1
1√

k2+1
,

)

• Two limiting directions
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Feasible limiting direction: example

-1 -0.5 0 0.5 1
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h(x) = x2
1 − x2 = 0

x+ = 0

•

•

•
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Feasible limiting direction

• Consider the generic optimization problem

• Let x+ ∈ R
n be feasible

• Let (xk)k be a feasible sequence in x+

• Then, d 6= 0 is a feasible limiting direction in x+ for the
sequence (xk)k if there exists a subsequence (xki

)i such that

d

‖d‖
= lim

i→∞

xki
− x+

‖xki
− x+‖

.

Notes:

• It is sometimes called a tangent direction.

• Any feasible direction d is also a limiting feasible direction, for
the sequence

xk = x+ +
1

k
d
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Cone of directions

• Consider the generic optimization problem

• Let x+ ∈ R
n be feasible

• The set of directions d such that

dT∇gi(x
+) ≤ 0, ∀i = 1, . . . , p such that gi(x

+) = 0,

and

dT∇hi(x
+) = 0, i = 1, . . . ,m,

as well as their multiples αd, α > 0, is the cone of directions at

x+.
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Cone of directions

-1 -0.5 0 0.5 1

x
2

x1

h(x) = x2
1 − x2 = 0

x+ = 0
d′d′′

∇h(x+)
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Cone of directions

Theorem:

• Consider the generic optimization problem

• Let x+ ∈ R
n be feasible

• If d is a limiting feasible direction at x+

• Then d belongs to the cone of directions at x+
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Constraint qualification

Definition:

• Consider the generic optimization problem

• Let x+ ∈ R
n be feasible

• The constraint qualification condition is verified if every

direction in the cone of directions at x+ is a feasible limiting

direction at x+.

This is verified in particular

• if the constraints are linear, or

• if the gradients of the constraints active at x+ are linearly
independent.
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Optimality conditions

Necessary condition for the generic problem:

• Let x∗ be a local minimum of the generic problem

• Then

∇f(x∗)T d ≥ 0

for each direction d which is feasible limiting at x∗.

Intuition: no “feasible” direction is a descent direction
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Optimality conditions: convex problem (I)

Consider the problem

min
x

f(x)

subject to

x ∈ X ⊆ R
n

where X is convex and not empty.

• If x∗ is a local minimum of this problem

• Then, for any x ∈ X,

∇f(x∗)T (x− x∗) ≥ 0.
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Optimality conditions: convex problem (II)

• Assume now that X is convex and closed.

• For any y ∈ R
n, we note by [y]P the projection of y on X.

• If x∗ is a local minimum, then

x∗ = [x∗ − α∇f(x∗)]P ∀α > 0.

• Moreover, if f is convex, the condition is sufficient.

Note: useful when the projection is easy to compute (e.g. bound
constraints)
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Optimality conditions: Karush-Kuhn-Tucker

The problem:

min
x∈Rn

f(x)

subject to

h(x) = 0 [h : Rn → R
m]

g(x) ≤ 0 [g : Rn → R
p]

x ∈ X = R
n

• Let x∗ be a local minimum

• Let L be the Lagrangian

L(x, λ, µ) = f(x) + λTh(x) + µT g(x).

• Assume that the constraint qualification condition is verified.

• Then...
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Optimality conditions: Karush-Kuhn-Tucker

... there exists a unique λ∗ ∈ R
m and a unique µ∗ ∈ R

p such that

∇xL(x
∗, λ∗, µ∗) = ∇f(x∗) + (λ∗)T∇h(x∗) + (µ∗)T∇g(x∗) = 0,

µ∗
j ≥ 0 j = 1, . . . , p,

and

µ∗
jgj(x

∗) = 0 j = 1, . . . , p.

If f , g and h are twice differentiable, we also have

yT∇2
xxL(x

∗, λ∗, µ∗)y ≥ 0 ∀y 6= 0 such that

yT∇hi(x
∗) = 0 i = 1, . . . ,m

yT∇gi(x
∗) = 0 i = 1, . . . , p such that gi(x

∗) = 0.
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KKT: sufficient conditions

Let x∗ ∈ R
n, λ∗ ∈ R

m and µ∗ ∈ R
p be such that

∇xL(x
∗, λ∗, µ∗) = 0

h(x∗) = 0, g(x∗) ≤ 0

µ∗ ≥ 0,

µ∗
jgj(x

∗) = 0 ∀j, µ∗
j > 0 ∀j such that gi(x

∗) = 0.

yT∇2
xxL(x

∗, λ∗, µ∗)y > 0 ∀y 6= 0 such that

yT∇hi(x
∗) = 0 i = 1, . . . ,m

yT∇gi(x
∗) = 0 i = 1, . . . , p such that gi(x

∗) = 0.

Then x∗ is a strict local minimum of the problem.
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Algorithms

• Constrained Newton

• Interior point

• Augmented lagrangian

• Sequential quadratic programming

Here: we give the main ideas.
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Constrained Newton

Context:

• Problem with a convex constraint set.

• Assumption: it is easy to project on the set.

• Examples: bound constraints, linear constraints.

Main idea:

• In the unconstrained case, Newton = preconditioned steepest
descent

• Consider first the projected gradient method

• Precondition it.
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Projected gradient method
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Condition number

• Consider ∇2f(x) positive definite.

• Let λ1 be the largest eigenvalue, and λn the smallest.

• The condition number is equal to λ1/λn.

• Geometrically, it is the ratio between the largest and the
smallest curvature.

• The closest it is to one, the better.
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Condition number
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Preconditioning

Preconditioning = appropriate change of variables.

• Let M ∈ R
n×n be invertible.

• Change of variables = linear application x′ = Mx.

Consider a function f : Rn → R.

f̃(x′) = f(M−1x′)

∇f̃(x′) = M−T∇f(M−1x′) = M−T∇f(x)

∇2f̃(x′) = M−T∇2f(M−1x′)M−1

= M−T∇2f(x)M−1.

Now, consider ∇2f(x) = LLT , and x′ = LTx. Then,

∇2f̃(x′) = L−1∇2f(x)L−T

= L−1LLTL−T

= I.
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Readings

• Bierlaire (2006) Chapter 18.

• Bertsekas (1999) Section 2.3.
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Algorithms

• Constrained Newton

• Interior point

• Augmented lagrangian

• Sequential quadratic programming

Optimization and Simulation – p. 36/56



Interior point methods

Motivation:

• At an interior point, every direction is feasible.

• It gives more freedom to the algorithm.

Main ideas:

• Focus first on being feasible.

• Then try to become optimal.
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Barrier functions

• Let X ⊂ R
n be a closed set.

• Let g : Rn → R
m a convex function.

• Let S be the set of interior points for g:

S = {x ∈ R
n|x ∈ X, g(x) < 0}.

• A function barrier B : S → R is continuous and such that

lim
x∈S,g(x)→0

B(x) = +∞.

• Examples:

B(x) = −

m
∑

j=1

ln(−gj(x))

B(x) = −

m
∑

j=1

1

gj(x)
.
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Barrier functions: example (logarithmic)

1 ≤ x ≤ 3 =⇒ B(x) = − ln(x− 1)− ln(3− x).
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Barrier methods

• Define a sequence of parameters (εk)k such that

• 0 < εk+1 < εk, k = 0, 1, . . .

• limk εk = 0.

• At each iteration, solve

xk = argminx∈S f(x) + εkB(x).

Issues:

• The subproblem should be easy to solve.

• In particular, we should rely on unconstrained optimization. A
descent method should not go outside the constraints, thanks
to the barrier.

• The speed of convergence of (εk)k is critical.

Typical applications: linear programming, convex programming
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Readings

• Bierlaire (2006) Chapter 19.

• Bertsekas (1999) Section 4.1.

See also: Wright, S. J. (1997) Primal-Dual Interior-Point Methods,
SIAM
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Algorithms

• Constrained Newton

• Interior point

• Augmented lagrangian

• Sequential quadratic programming

Optimization and Simulation – p. 42/56



Augmented Lagrangian

Main ideas:

• Focus first on reducing the objective function, even if
constraints are violated.

• Then recover feasibility.

• Inspired by the optimality conditions.

We assume that the problem has only equality constraints

min
x∈Rn

f(x)

subject to

h(x) = 0 [h : Rn → R
m]
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Augmented Lagrangian

• Solve a sequence of unconstrained optimization problems.

• Penalize the constraint violation using

• a lagrangian relaxation, and

• a quadratic penalty function.

Augmented lagrangian

Lc(x, λ) = f(x) + λTh(x) +
c

2
‖h(x)‖2.
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Augmented Lagrangian: lagrangian relaxation

• If λ∗ is known (see optimality conditions).

• Then the solution is given by solving the unconstrained problem

min
x∈Rn

Lc(x, λ
∗) = f(x) + (λ∗)Th(x) +

c

2
‖h(x)‖2.

with c sufficiently large.

• Unfortunately, λ∗ is not known by default.

• But we will be able to approximate it.
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Augmented Lagrangian: quadratic penalty

• If c becomes large enough, any non feasible point will be non
optimal for

min
x∈Rn

Lc(x, λ) = f(x) + λTh(x) +
c

2
‖h(x)‖2,

for any λ.

• Consider a sequence (ck)k such that

lim
ck→∞

= +∞.

• Then, for a given λ, the sequence

xk = argminx∈Rn Lck(x, λ)

converges to a solution of the constrained problem.

Optimization and Simulation – p. 46/56



Augmented Lagrangian: quadratic penalty

Main issue:

• If ck is large, Lck(x, λ) is ill-conditioned.

• Methods for unconstrained optimization become slow, or may
even fail to converge.

• But... if λ is close to λ∗, no need for large values of ck.

Theoretical result:

• Under relatively general conditions, the sequence

lim
k

λk + ckh(xk)

converges to λ∗.
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Augmented Lagrangian: algorithm

1. Use an unconstrained optimization algorithm to solve

xk+1 = argminx∈Rn Lck(x, λk)

to a given precision εk.

2. If xk+1 is close to feasibility:

• update the estimate of the multipliers: λk+1 = λk + ckh(xk)

• keep ck = ck+1,

• require more precision: εk+1 = εk/ck.

3. If xk+1 is far from feasibility:

• keep λk+1 = λk

• increase ck,

• relax the precision: εk+1 = ε0/ck+1.
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Readings

• Bierlaire (2006) Chapter 20.

• Bertsekas (1999) Section 4.2.
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Sequential quadratic programming

Main ideas:

• Apply Newton’s method to solve the necessary optimality
conditions

∇L(x∗, λ∗) = 0.

• One iteration amounts to solve a quadratic problem.

• Enforce global convergence with a merit function.

We assume that the problem has only equality constraints

min
x∈Rn

f(x)

subject to

h(x) = 0 [h : Rn → R
m]
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Sequential quadratic programming

Lagrangian and derivatives:

L(x, λ) = f(x) + λTh(x).

∇L(x, λ) =

(

∇xL(x, λ)

h(x)

)

,

∇2L(x, λ) =

(

∇2
xxL(x, λ) ∇h(x)

∇h(x)T 0

)

.

Newton’s method: at each iteration, find d such that

∇2L(xk, λk)d = −∇L(xk, λk),
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Sequential quadratic programming

It can be shown that it is equivalent to solving the following quadratic
problem

min
d

∇f(xk)
T d+

1

2
dT∇2

xxL(xk, λk)d

subject to

∇h(xk)
T d+ h(xk) = 0.

• An analytical solution can be derived for this problem.

• In practice, dedicated iterative algorithms are used.
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Sequential quadratic programming

• Newton’s method is not globally convergent.

• The same applies to the SQP method described above.

• Idea: apply similar globalization techniques than for
unconstrained optimization (line search, trust region).

• Main concept: reject a candidate if it is not sufficiently better
than the current one.

• But what does “better” mean?

• Two (potentially) conflicting objectives:

• decrease f(x)

• bring h(x) close to 0.
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Sequential quadratic programming

• Solution: combine them into a merit function

φc(x) = f(x) + c‖h(x)‖1 = f(x) + c

m
∑

i=1

|hi(x)|.

• For instance, use Wolfe’s conditions on the merit function. But...

• technical difficulties: need to

• guarantee that d is a descent direction for φc,

• deal with the non differentiability of φc.
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Sequential quadratic programming

Notes:

• Differentiable merit functions could also be used.

• They may involve singularities.
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Readings

• Bierlaire (2006) Chapter 21.

• Bertsekas (1999) Section 4.3.
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