
Optimization and Simulation

Unconstrained optimization

Michel Bierlaire

michel.bierlaire@epfl.ch

Transport and Mobility Laboratory

Optimization and Simulation – p. 1/41



Optimality conditions

min
x∈Rn

f(x).

Necessary optimality conditions:

• Let x∗ be a local minimum of f : Rn → R.

• (first order condition) If f is differentiable in an open
neighborhood of x∗, then

∇f(x∗) = 0.

• (second order condition) If f is twice differentiable in an open
neighborhood of x∗, then

∇2f(x∗) ≥ 0,

meaning that ∇2f(x∗) is positive semidefinite.

Optimization and Simulation – p. 2/41



Optimality conditions

Sufficient optimality conditions

• Let f : Rn → R be twice differentiable in an open set V ⊆ R
n .

• Let x∗ ∈ V such that

• (first order condition)

∇f(x∗) = 0.

• (second order condition)

∇2f(x∗) > 0,

meaning that ∇2f(x∗) is positive definite.

• Then x∗ is a local minimum of f .

Optimization and Simulation – p. 3/41



Optimality conditions

Sufficient conditions for global optimality

• Let f : Rn → R be a continuous function

• Let x∗ ∈ R
n be a local minimum of f

• If f is convex, then x∗ is a global minimum of f .

• If f is strictly convex, then x∗ is the unique global minimum of f .

Optimization and Simulation – p. 4/41



Optimality conditions

Consider the quadratic problem:

min
x∈Rn

f(x) =
1

2
xTQx+ gTx+ c

where Q ∈ R
n×n is symmetric.

1. If Q is not positive semidefinite, then the problem has no
solution, meaning that there is no x∗ ∈ R

n which is a local
minimum.

2. If Q is positive definite, then

x∗ = −Q−1g

is the unique global minimum.

Optimization and Simulation – p. 5/41



Algorithms

• Solving systems of equations: ∇f(x) = 0

• Newton

• Quasi-Newton

• Unconstrained optimization

• Quadratic problems

• Local Newton

• Linesearch

• Quasi-Newton

Optimization and Simulation – p. 6/41



Solving systems of equations

The problem: find x∗ such F (x∗) = 0, where F : Rn → R
n.

Newton’s method:

• Start at an arbitrary iterate x0 ∈ R
n

• At each iteration k, linearize F around xk

• Find the root of the linear system and defines it as the next
iterate

Key object: the gradient matrix, or the Jacobian matrix.

• For a function F : Rn → R
m, the gradient and the Jacobian

matrices are defined as follows.

• Note: for systems of equations, n = m.

Optimization and Simulation – p. 7/41



Solving systems of equations

Gradient matrix

∇F (x) =






∇F1(x) · · · ∇Fm(x)







=







∂F1

∂x1

∂F2

∂x1

· · · ∂Fm

∂x1

...
...

...
...

∂F1

∂xn

∂F2

∂xn
· · · ∂Fm

∂xn






.

Optimization and Simulation – p. 8/41



Solving systems of equations

Jacobian matrix

J(x) = ∇F (x)T =







∇F1(x)
T

...

∇Fm(x)T






.

Algorithm: Newton’s method

Optimization and Simulation – p. 9/41



Newton’s method

Objective

Find (an approximation of) a solution of the systems of
equations:

F (x) = 0. (1)

Inputs

• The function F : Rn → R
n;

• The Jacobian matrix: J : Rn → R
n×n;

• A first approximation of the solution: x0 ∈ R
n;

• The requested precision: ε ∈ R, ε > 0.

Output

An approximation of the solution x∗ ∈ R
n.

Initialization

k = 0.

Optimization and Simulation – p. 10/41



Newton’s method (ctd)

Iterations

1. Compute dk+1 solution of

J(xk)dk+1 = −F (xk).

2. xk+1 = xk + dk+1.

3. k = k + 1.

Stopping criterion

If ‖F (xk)‖ ≤ ε, then x∗ = xk.

Optimization and Simulation – p. 11/41



Convergence

Consider

• X ⊆ R
n an open convex set

• F : X → R
n a function

• x∗ a solution, that is F (x∗) = 0,

• B(x∗, r) ⊂ X a ball of radius r

• ρ > 0 a constant.

If

• J(x∗) is invertible

• ‖J(x∗)−1‖ ≤ 1/ρ

• J is Lipschitz continuous on B(x∗, r), that is ∀x, y ∈ B(x∗, r),
∃M > 0 such that

‖J(x)− J(y)‖ ≤ M‖x− y‖.

Optimization and Simulation – p. 12/41



Convergence

Then, ∃η > 0 such that, if

x0 ∈ B(x∗, η),

then the sequence (xk)k defined by

xk+1 = xk − J(xk)
−1F (xk) k = 0, 1, . . .

is well defined and converges to x∗. Moreover,

‖xk+1 − x∗‖ ≤
M

ρ
‖xk − x∗‖2.

(quadratic convergence)

Optimization and Simulation – p. 13/41



Secant method

• Secant, Broyden, or quasi-Newton method.

• Idea: replace the derivative by a secant approximation.

• Trivial in one dimension, more complex in n dimensions.

• Advantages:

• does not require J anymore,

• keep good convergence properties (superlinear).

Optimization and Simulation – p. 14/41



Secant method

Objective

Find (an approximation of) the solution of the system

F (x) = 0. (2)

Inputs

• F : Rn → R
n

• A first approximation of the solution x0 ∈ R
n;

• A first approximation of the Jacobian matrix A0 (by default
A0 = I);

• Required precision ε ∈ R, ε > 0.

Optimization and Simulation – p. 15/41



Secant method (ctd)

Output

An approximation of the solution x∗ ∈ R
n.

Initialization

1. x1 = x0 −A−1

0 f(x0).

2. d0 = x1 − x0.

3. y0 = f(x1)− f(x0).

4. k = 1.

Optimization and Simulation – p. 16/41



Secant method (ctd)

Iterations

1. Broyden’s update:

Ak = Ak−1 +
(yk−1 −Ak−1dk−1)d

T

k−1

dT
k−1

dk−1

.

2. Compute dk solution of Akdk = −F (xk).

3. xk+1 = xk + dk.

4. Compute yk = F (xk+1)− F (xk).

5. k = k + 1.

Stopping criterion

If ‖F (xk)‖ ≤ ε, then x∗ = xk.

Optimization and Simulation – p. 17/41



Unconstrained optimization

Quadratic problem:

min
x∈Rn

f(x) =
1

2
xTQx+ bTx

where Q ∈ Rn× n is symmetric positive definite.
Optimum: solution of the linear system

Qx = −b.

Optimization and Simulation – p. 18/41



Quadratic problem: direct method

Objective

Find the global minimum of the quadratic problem

Input

• Q ∈ R
n×n symmetric positive definite.

• b ∈ R
n.

Output

The solution x∗ ∈ R
n.

Solving

1. Compute the Cholesky factor: Q = LLT .

2. Compute y∗ solution of the lower triangular system Ly = −b.

3. Compute x∗ solution of the upper triangular system

LTx = y∗.

Optimization and Simulation – p. 19/41



Quadratic problem: iterative method

Conjugate gradients method

• Performs n one-dimensional optimizations

• The n directions are chosen to guarantee that the entire space
is spanned

• Allows to solve large-scale problems as the matrix is not
needed as such

Optimization and Simulation – p. 20/41



Unconstrained optimization

min
x∈Rn

f(x)

Local Newton method: apply Newton’s method to solve ∇f(x∗) = 0

F (x) → ∇f(x)

J(x) → ∇2f(x)

Advantage: fast
Problems:

•• not guaranteed to converge

• ∇2f(xk)
−1 may not exist

• may converge to a point which is not a minimum

Optimization and Simulation – p. 21/41



Local Newton: geometric interpretation

Quadratic approximation of f

mxk
(x) = f(xk) + (x− xk)

T∇f(xk) +
1

2
(x− xk)

T∇2f(xk)(x− xk).

Example: f(x) = −x4 + 12x3 − 47x2 + 60x

1. xk = 3. Quadratic model: m3(x) = 7x2 − 48x+ 81

2. xk = 4. Quadratic model: m4(x) = x2 − 4x

3. xk = 5. Quadratic model: m5(x) = −17x2 + 160x− 375.

Optimization and Simulation – p. 22/41



Local Newton: geometric interpretation

m3(x) = 7x2 − 48x+ 81

-15

-10

-5

0

5

10

15

20

25

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5

x

• •
f(xk)f(xk+1)

f(x)
m3(x)

Optimization and Simulation – p. 23/41



Local Newton: geometric interpretation

m3(x) = 7x2 − 48x+ 81

-2

-1

0

1

2

3

4

5

2.6 2.8 3 3.2 3.4 3.6 3.8 4

x

•

•

f(xk)

f(xk+1)

f(x)
m3(x)

Optimization and Simulation – p. 24/41



Local Newton: geometric interpretation

m4(x) = x2 − 4x: bad predictor

-15

-10

-5

0

5

10

15

20

25

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5

x

•

•

f(xk)

f(xk+1)

f(x)
m4(x)

Optimization and Simulation – p. 25/41



Local Newton: geometric interpretation

m4(x) = x2 − 4x: bad predictor (zoom)

-4

-2

0

2

4

6

8

10

12

14

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5

x

•

•

f(xk)

f(xk+1) f(x)
m4(x)

Optimization and Simulation – p. 26/41



Local Newton: geometric interpretation

m5(x) = −17x2 + 160x− 375: concave

-15

-10

-5

0

5

10

15

20

25

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5

x

•
•
f(xk)

f(xk+1)

f(x)
m5(x)

Optimization and Simulation – p. 27/41



Local Newton: geometric interpretation

m5(x) = −17x2 + 160x− 375: concave (zoom)

-12

-10

-8

-6

-4

-2

0

2

4 4.2 4.4 4.6 4.8 5 5.2 5.4

x

•

•
f(xk)

f(xk+1) f(x)
m5(x)

Optimization and Simulation – p. 28/41



Descent methods

Typical iteration:

• Find a descent direction dk such that ∇f(xk)
T dk < 0.

• Find a step αk such that f(xk + αkdk) < f(xk)

• Compute xk+1 = xk + αkdk.

Optimization and Simulation – p. 29/41



Descent methods: find a direction

• Basic idea: steepest descent

dk = −∇f(xk)

• exhibits slow to very slow convergence

• Solution: precondition (change the metric)

dk = −Dk∇f(xk)

where Dk is positive definite.

• Newton:

dk = −(∇2f(xk) + λI)−1∇f(xk)

where λ is such that ∇f(xk) + λI is positive definite

Optimization and Simulation – p. 30/41



Descent methods: find a step

• Finding the optimal step is not cost effective

• Wolfe’s conditions characterize steps guaranteeing
convergence

• Use steps that verify these conditions

Wolfe 1: sufficient decrease. Consider

• Function f : Rn → R

• Iterate xk ∈ R
n

• Direction dk ∈ R
n such that ∇f(xk)

T dk < 0

• Step αk ∈ R, αk > 0

f decreases sufficiently at xk + αkdk compared to xk if

f(xk + αkdk) ≤ f(xk) + αkβ1∇f(xk)
T dk,

where 0 < β1 < 1.

Optimization and Simulation – p. 31/41



Descent methods: find a step

Wolfe 2: sufficient progress. Consider

• Function f : Rn → R

• Iterate xk ∈ R
n

• Direction dk ∈ R
n such that ∇f(xk)

T dk < 0

• Step αk ∈ R, αk > 0

xk + αkdk brings sufficient progress compared to xk if

∇f(xk + αkdk)
T dk ≥ β2∇f(xk)

T dk,

with 0 < β2 < 1, β2 > β1.

Optimization and Simulation – p. 32/41



Descent methods: find a step

Objective

Find a step α∗ such that both Wolfe’s conditions are verified

Input

• Function: f : Rn → R continuously differentiable;

• Gradient: ∇f : Rn → R
n;

• Iterate: x ∈ R
n;

• Descent direction d such that ∇f(x)T d < 0;

• First approximation α0 > 0;

• Parameters β1, β2 such that 0 < β1 < β2 < 1 (typical

example: β1 = 10−4 and β2 = 0.99);

• Parameter λ > 1.

Output

A step α∗ verifying both Wolfe’s conditions.

Optimization and Simulation – p. 33/41



Descent methods: find a step

Initialization

i = 0, αℓ = 0, αr = +∞.

Iterations

1. If αi verify both conditions, then α∗ = αi. STOP.

2. If αi violates Wolfe 1, then the step is too long and

αr = αi

αi+1 = αℓ+αr

2
.

3. If αi verifies Wolfe 1 and violates Wolfe 2, then the step is
too short and

αℓ = αi

αi+1 =

{

αℓ+αr

2
if αr < +∞

λαi otherwise.

4. i = i+1.
Optimization and Simulation – p. 34/41



Newton’s method with linesearch

Objective

Find (an approximation of) a local minimum of

min
x∈Rn

f(x). (3)

Input

• Function f : Rn → R continuously differentiable;

• Gradient ∇f : Rn → R
n;

• Hessian ∇2f : Rn → R
n×n;

• First approximation x0 ∈ R
n;

• Required precision ε ∈ R, ε > 0.

Output

An approximation of the solution x∗ ∈ R.

Initialization

k = 0.

Optimization and Simulation – p. 35/41



Newton’s method with linesearch

Iterations

1. Compute a lower triangular matrix and a real parameter
τ ≥ 0 such that

LkL
T

k = ∇2f(xk) + τI,

using a modified Cholesky factorization.

2. Find zk by solving the triangular system Lkzk = ∇f(xk).

3. Find dk by solving the triangular system LT

k
dk = −zk.

4. Find αk with line search starting with α0 = 1.

5. xk+1 = xk + αkdk.

6. k = k + 1.

Stopping criterion

If ‖∇f(xk)‖ ≤ ε, then x∗ = xk.

Optimization and Simulation – p. 36/41



Quasi-Newton

Ideas:

• Adapt Broyden’s (secant) method to optimization

• Additional constraint: the approximated matrix must be

• symmetric

• positive definite

• Update formula: BFGS (C. G. Broyden, R. Fletcher, D. Goldfarb
and D. F. Shanno

Optimization and Simulation – p. 37/41



Quasi-Newton

Objective

Find (an approximation of ) a local minimum of

min
x∈Rn

f(x).

Input

• Function f : Rn → R

• Gradient ∇f : Rn → R
n;

• First approximation of the solution x0 ∈ R
n;

• First approximation of the inverse of the hessian

H−1

0 ∈ R
n×n symmetric positive definite. Typically, H−1

0 = I.

• Required precision: ε ∈ R, ε > 0.

Output

An approximation of the solution x∗ ∈ R.

Optimization and Simulation – p. 38/41



Quasi-Newton

Initialization

k = 0.

Iterations

1. Compute dk = −H−1

k
∇f(xk).

2. Find αk with linesearch starting with α0 = 1.

3. xk+1 = xk + αkdk.

4. k = k + 1.

5. Update H−1

k

H−1

k
=

(

I −
d̄k−1y

T

k−1

d̄T
k−1

yk−1

)

H−1

k−1

(

I −
ȳk−1d

T

k−1

d̄T
k−1

yk−1

)

+
d̄k−1d̄

T

k−1

d̄T
k−1

yk−1

with d̄k−1 = αk−1dk−1 = xk − xk−1 and
yk−1 = ∇f(xk)−∇f(xk−1).

Optimization and Simulation – p. 39/41



Quasi-Newton

Stopping criterion

If ‖∇f(xk)‖ ≤ ε, then x∗ = xk.

Optimization and Simulation – p. 40/41



Summary

• Solving systems of equations: ∇f(x) = 0

• Newton

• Quasi-Newton

• Unconstrained optimization

• Quadratic problems

• Local Newton

• Linesearch

• Quasi-Newton

Optimization and Simulation – p. 41/41


	Optimality conditions
	Optimality conditions
	Optimality conditions
	Optimality conditions
	Algorithms
	Solving systems of equations
	Solving systems of equations
	Solving systems of equations
	Newton's method
	Newton's method (ctd)
	Convergence
	Convergence
	Secant method
	Secant method
	Secant method (ctd)
	Secant method (ctd)
	Unconstrained optimization
	Quadratic problem: direct method
	Quadratic problem: iterative method
	Unconstrained optimization
	Local Newton: geometric interpretation
	Local Newton: geometric interpretation
	Local Newton: geometric interpretation
	Local Newton: geometric interpretation
	Local Newton: geometric interpretation
	Local Newton: geometric interpretation
	Local Newton: geometric interpretation
	Descent methods
	Descent methods: find a direction
	Descent methods: find a step
	Descent methods: find a step
	Descent methods: find a step
	Descent methods: find a step
	Newton's method with linesearch
	Newton's method with linesearch
	Quasi-Newton
	Quasi-Newton
	Quasi-Newton
	Quasi-Newton
	Summary

