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Optimality conditions

min
x∈Rn

f(x).

Necessary optimality conditions:

• Let x∗ be a local minimum of f : Rn → R.

• (first order condition) If f is differentiable in an open
neighborhood of x∗, then

∇f(x∗) = 0.

• (second order condition) If f is twice differentiable in an open
neighborhood of x∗, then

∇2f(x∗) ≥ 0,

meaning that ∇2f(x∗) is positive semidefinite.
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Optimality conditions

Sufficient optimality conditions

• Let f : Rn → R be twice differentiable in an open set V ⊆ R
n .

• Let x∗ ∈ V such that

• (first order condition)

∇f(x∗) = 0.

• (second order condition)

∇2f(x∗) > 0,

meaning that ∇2f(x∗) is positive definite.

• Then x∗ is a local minimum of f .
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Optimality conditions

Sufficient conditions for global optimality

• Let f : Rn → R be a continuous function

• Let x∗ ∈ R
n be a local minimum of f

• If f is convex, then x∗ is a global minimum of f .

• If f is strictly convex, then x∗ is the unique global minimum of f .
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Optimality conditions

Consider the quadratic problem:

min
x∈Rn

f(x) =
1

2
xTQx+ gTx+ c

where Q ∈ R
n×n is symmetric.

1. If Q is not positive semidefinite, then the problem has no
solution, meaning that there is no x∗ ∈ R

n which is a local
minimum.

2. If Q is positive definite, then

x∗ = −Q−1g

is the unique global minimum.
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Algorithms

• Solving systems of equations: ∇f(x) = 0

• Newton

• Quasi-Newton

• Unconstrained optimization

• Quadratic problems

• Local Newton

• Linesearch

• Quasi-Newton
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Solving systems of equations

The problem: find x∗ such F (x∗) = 0, where F : Rn → R
n.

Newton’s method:

• Start at an arbitrary iterate x0 ∈ R
n

• At each iteration k, linearize F around xk

• Find the root of the linear system and defines it as the next
iterate

Key object: the gradient matrix, or the Jacobian matrix.

• For a function F : Rn → R
m, the gradient and the Jacobian

matrices are defined as follows.

• Note: for systems of equations, n = m.
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Solving systems of equations

Gradient matrix

∇F (x) =






∇F1(x) · · · ∇Fm(x)







=







∂F1

∂x1

∂F2

∂x1

· · · ∂Fm

∂x1

...
...

...
...

∂F1

∂xn

∂F2

∂xn
· · · ∂Fm

∂xn






.
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Solving systems of equations

Jacobian matrix

J(x) = ∇F (x)T =







∇F1(x)
T

...

∇Fm(x)T






.

Algorithm: Newton’s method
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Newton’s method

Objective

Find (an approximation of) a solution of the systems of
equations:

F (x) = 0. (1)

Inputs

• The function F : Rn → R
n;

• The Jacobian matrix: J : Rn → R
n×n;

• A first approximation of the solution: x0 ∈ R
n;

• The requested precision: ε ∈ R, ε > 0.

Output

An approximation of the solution x∗ ∈ R
n.

Initialization

k = 0.
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Newton’s method (ctd)

Iterations

1. Compute dk+1 solution of

J(xk)dk+1 = −F (xk).

2. xk+1 = xk + dk+1.

3. k = k + 1.

Stopping criterion

If ‖F (xk)‖ ≤ ε, then x∗ = xk.
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Convergence

Consider

• X ⊆ R
n an open convex set

• F : X → R
n a function

• x∗ a solution, that is F (x∗) = 0,

• B(x∗, r) ⊂ X a ball of radius r

• ρ > 0 a constant.

If

• J(x∗) is invertible

• ‖J(x∗)−1‖ ≤ 1/ρ

• J is Lipschitz continuous on B(x∗, r), that is ∀x, y ∈ B(x∗, r),
∃M > 0 such that

‖J(x)− J(y)‖ ≤ M‖x− y‖.
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Convergence

Then, ∃η > 0 such that, if

x0 ∈ B(x∗, η),

then the sequence (xk)k defined by

xk+1 = xk − J(xk)
−1F (xk) k = 0, 1, . . .

is well defined and converges to x∗. Moreover,

‖xk+1 − x∗‖ ≤
M

ρ
‖xk − x∗‖2.

(quadratic convergence)
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Secant method

• Secant, Broyden, or quasi-Newton method.

• Idea: replace the derivative by a secant approximation.

• Trivial in one dimension, more complex in n dimensions.

• Advantages:

• does not require J anymore,

• keep good convergence properties (superlinear).
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Secant method

Objective

Find (an approximation of) the solution of the system

F (x) = 0. (2)

Inputs

• F : Rn → R
n

• A first approximation of the solution x0 ∈ R
n;

• A first approximation of the Jacobian matrix A0 (by default
A0 = I);

• Required precision ε ∈ R, ε > 0.
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Secant method (ctd)

Output

An approximation of the solution x∗ ∈ R
n.

Initialization

1. x1 = x0 −A−1

0 f(x0).

2. d0 = x1 − x0.

3. y0 = f(x1)− f(x0).

4. k = 1.
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Secant method (ctd)

Iterations

1. Broyden’s update:

Ak = Ak−1 +
(yk−1 −Ak−1dk−1)d

T

k−1

dT
k−1

dk−1

.

2. Compute dk solution of Akdk = −F (xk).

3. xk+1 = xk + dk.

4. Compute yk = F (xk+1)− F (xk).

5. k = k + 1.

Stopping criterion

If ‖F (xk)‖ ≤ ε, then x∗ = xk.
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Unconstrained optimization

Quadratic problem:

min
x∈Rn

f(x) =
1

2
xTQx+ bTx

where Q ∈ Rn× n is symmetric positive definite.
Optimum: solution of the linear system

Qx = −b.

Optimization and Simulation – p. 18/41



Quadratic problem: direct method

Objective

Find the global minimum of the quadratic problem

Input

• Q ∈ R
n×n symmetric positive definite.

• b ∈ R
n.

Output

The solution x∗ ∈ R
n.

Solving

1. Compute the Cholesky factor: Q = LLT .

2. Compute y∗ solution of the lower triangular system Ly = −b.

3. Compute x∗ solution of the upper triangular system

LTx = y∗.
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Quadratic problem: iterative method

Conjugate gradients method

• Performs n one-dimensional optimizations

• The n directions are chosen to guarantee that the entire space
is spanned

• Allows to solve large-scale problems as the matrix is not
needed as such
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Unconstrained optimization

min
x∈Rn

f(x)

Local Newton method: apply Newton’s method to solve ∇f(x∗) = 0

F (x) → ∇f(x)

J(x) → ∇2f(x)

Advantage: fast
Problems:

•• not guaranteed to converge

• ∇2f(xk)
−1 may not exist

• may converge to a point which is not a minimum
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Local Newton: geometric interpretation

Quadratic approximation of f

mxk
(x) = f(xk) + (x− xk)

T∇f(xk) +
1

2
(x− xk)

T∇2f(xk)(x− xk).

Example: f(x) = −x4 + 12x3 − 47x2 + 60x

1. xk = 3. Quadratic model: m3(x) = 7x2 − 48x+ 81

2. xk = 4. Quadratic model: m4(x) = x2 − 4x

3. xk = 5. Quadratic model: m5(x) = −17x2 + 160x− 375.
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Local Newton: geometric interpretation

m3(x) = 7x2 − 48x+ 81
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Local Newton: geometric interpretation

m3(x) = 7x2 − 48x+ 81
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Local Newton: geometric interpretation

m4(x) = x2 − 4x: bad predictor
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Local Newton: geometric interpretation

m4(x) = x2 − 4x: bad predictor (zoom)
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Local Newton: geometric interpretation

m5(x) = −17x2 + 160x− 375: concave
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Local Newton: geometric interpretation

m5(x) = −17x2 + 160x− 375: concave (zoom)
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Descent methods

Typical iteration:

• Find a descent direction dk such that ∇f(xk)
T dk < 0.

• Find a step αk such that f(xk + αkdk) < f(xk)

• Compute xk+1 = xk + αkdk.

Optimization and Simulation – p. 29/41



Descent methods: find a direction

• Basic idea: steepest descent

dk = −∇f(xk)

• exhibits slow to very slow convergence

• Solution: precondition (change the metric)

dk = −Dk∇f(xk)

where Dk is positive definite.

• Newton:

dk = −(∇2f(xk) + λI)−1∇f(xk)

where λ is such that ∇f(xk) + λI is positive definite
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Descent methods: find a step

• Finding the optimal step is not cost effective

• Wolfe’s conditions characterize steps guaranteeing
convergence

• Use steps that verify these conditions

Wolfe 1: sufficient decrease. Consider

• Function f : Rn → R

• Iterate xk ∈ R
n

• Direction dk ∈ R
n such that ∇f(xk)

T dk < 0

• Step αk ∈ R, αk > 0

f decreases sufficiently at xk + αkdk compared to xk if

f(xk + αkdk) ≤ f(xk) + αkβ1∇f(xk)
T dk,

where 0 < β1 < 1.
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Descent methods: find a step

Wolfe 2: sufficient progress. Consider

• Function f : Rn → R

• Iterate xk ∈ R
n

• Direction dk ∈ R
n such that ∇f(xk)

T dk < 0

• Step αk ∈ R, αk > 0

xk + αkdk brings sufficient progress compared to xk if

∇f(xk + αkdk)
T dk ≥ β2∇f(xk)

T dk,

with 0 < β2 < 1, β2 > β1.
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Descent methods: find a step

Objective

Find a step α∗ such that both Wolfe’s conditions are verified

Input

• Function: f : Rn → R continuously differentiable;

• Gradient: ∇f : Rn → R
n;

• Iterate: x ∈ R
n;

• Descent direction d such that ∇f(x)T d < 0;

• First approximation α0 > 0;

• Parameters β1, β2 such that 0 < β1 < β2 < 1 (typical

example: β1 = 10−4 and β2 = 0.99);

• Parameter λ > 1.

Output

A step α∗ verifying both Wolfe’s conditions.
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Descent methods: find a step

Initialization

i = 0, αℓ = 0, αr = +∞.

Iterations

1. If αi verify both conditions, then α∗ = αi. STOP.

2. If αi violates Wolfe 1, then the step is too long and

αr = αi

αi+1 = αℓ+αr

2
.

3. If αi verifies Wolfe 1 and violates Wolfe 2, then the step is
too short and

αℓ = αi

αi+1 =

{

αℓ+αr

2
if αr < +∞

λαi otherwise.

4. i = i+1.
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Newton’s method with linesearch

Objective

Find (an approximation of) a local minimum of

min
x∈Rn

f(x). (3)

Input

• Function f : Rn → R continuously differentiable;

• Gradient ∇f : Rn → R
n;

• Hessian ∇2f : Rn → R
n×n;

• First approximation x0 ∈ R
n;

• Required precision ε ∈ R, ε > 0.

Output

An approximation of the solution x∗ ∈ R.

Initialization

k = 0.
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Newton’s method with linesearch

Iterations

1. Compute a lower triangular matrix and a real parameter
τ ≥ 0 such that

LkL
T

k = ∇2f(xk) + τI,

using a modified Cholesky factorization.

2. Find zk by solving the triangular system Lkzk = ∇f(xk).

3. Find dk by solving the triangular system LT

k
dk = −zk.

4. Find αk with line search starting with α0 = 1.

5. xk+1 = xk + αkdk.

6. k = k + 1.

Stopping criterion

If ‖∇f(xk)‖ ≤ ε, then x∗ = xk.
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Quasi-Newton

Ideas:

• Adapt Broyden’s (secant) method to optimization

• Additional constraint: the approximated matrix must be

• symmetric

• positive definite

• Update formula: BFGS (C. G. Broyden, R. Fletcher, D. Goldfarb
and D. F. Shanno
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Quasi-Newton

Objective

Find (an approximation of ) a local minimum of

min
x∈Rn

f(x).

Input

• Function f : Rn → R

• Gradient ∇f : Rn → R
n;

• First approximation of the solution x0 ∈ R
n;

• First approximation of the inverse of the hessian

H−1

0 ∈ R
n×n symmetric positive definite. Typically, H−1

0 = I.

• Required precision: ε ∈ R, ε > 0.

Output

An approximation of the solution x∗ ∈ R.
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Quasi-Newton

Initialization

k = 0.

Iterations

1. Compute dk = −H−1

k
∇f(xk).

2. Find αk with linesearch starting with α0 = 1.

3. xk+1 = xk + αkdk.

4. k = k + 1.

5. Update H−1

k

H−1

k
=

(

I −
d̄k−1y

T

k−1

d̄T
k−1

yk−1

)

H−1

k−1

(

I −
ȳk−1d

T

k−1

d̄T
k−1

yk−1

)

+
d̄k−1d̄

T

k−1

d̄T
k−1

yk−1

with d̄k−1 = αk−1dk−1 = xk − xk−1 and
yk−1 = ∇f(xk)−∇f(xk−1).

Optimization and Simulation – p. 39/41



Quasi-Newton

Stopping criterion

If ‖∇f(xk)‖ ≤ ε, then x∗ = xk.
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Summary

• Solving systems of equations: ∇f(x) = 0

• Newton

• Quasi-Newton

• Unconstrained optimization

• Quadratic problems

• Local Newton

• Linesearch

• Quasi-Newton
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