Preconditioned Projected Gradient Method

Assigned to: Stepanova Lidia, Markov Iliya Dimitrov, Perez Saez Francisco Javier, Fernandez Antolin Anna

February 26, 2014

General description of the algorithm

Objective

Find (an approximation of) a local minimum of the following problem:

$$\min_{x \in X \subseteq \mathcal{R}^n} f(x)$$

where X is closed, convex and not empty.

Input

- Function $f: \mathbb{R}^n \to \mathbb{R}$, differentiable
- Gradient $\nabla f: \mathcal{R}^n \to \mathcal{R}^n$
- Projection operator on X, $[\cdot]^P$
- First approximation of the solution $x_0 \in \mathbb{R}^n$
- Parameter $\gamma > 0$ (for example, $\gamma = 1$)
- Precision $\epsilon \in \mathcal{R}, \, \epsilon > 0$

Output

An approximation of the solution $x^* \in \mathbb{R}^n$

Iterations

- 1. $y_k = [x_k \gamma \nabla f(x_k)]^P$
- $2. \ d_k = y_k x_k$
- 3. determine α_k by applying linesearch with $\alpha_0 = 1$
- $4. \ x_{k+1} = x_k + \alpha_k d_k$
- 5. k = k + 1

Stopping criterion

If
$$||d_k|| \le \epsilon$$
, then $x^* = x_k$

Algorithm testing & analysis

The sutdents will implement and apply the above algorithm to the following non-linear problem:

$$\min_{x \in X} x_1^2 - 12x_1 + 10\cos(\frac{\pi}{2}x_1) + 8\sin(5\pi x_1) - \frac{\exp(-(x_2 - \frac{1}{2})^2/2)}{\sqrt{5}}$$

Please consider the following two cases:

1.
$$X = \{(x_1, x_2) \mid -30 \le x_1 \le 30, -10 \le x_2 \le 10\}$$

2.
$$X = \{(x_1, x_2) \mid -x_1 + 2x_2 = -20\}$$

It is encouraged that the students to change the value of the step γ (e.g., $\gamma = 0.1, 1, 10$) as well as to test different starting points x_0 . Besides, please compare the performance of the algorithm with and without preconditioning.