SIMULATION AND OPTIMIZATION Lab 1

Chen Jiang Hang, Tomas Robenek, Marija Nikolic

Transport and Mobility Laboratory

February 25, 2014

Project Groups

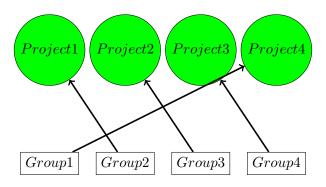
Projects

Project	Optimization algorithm Matlab coding
1	Preconditioned Projected Gradient Method
2	Interior Point Method
3	Augmented Lagrangian Method
4	Sequential Quadratic Programming Method

Groups

Group	Members
1	Milosavljevic Predrag,martand singhal,Almeida Samora Irene,Chiappino Pepe Anush
2	Stepanova Lidia, Markov Iliya Dimitrov, Perez Saez Francisco Javier, Fernandez Antolin Anna
3	Saeedmanesh Mohammadreze,kyriaki goulouti,Pisaroni Michele,Cuendet Gabriel Louis
4	stefano moret, Wallerand Anna Sophia, stephane bungener, Rujeerapaiboon Napat

Assignment



Grading

- 80% will be based on your Matlab coding and presentation on your assigned project;
- 20% will be based on your peer review (questions and challenges) on other groups' presentations.

Some tips for Matlab coding

Some tips

- Matrix multiplication: y = (AB)x = A(Bx), which way is better?
- To solve the linear equation system Ax = b where A is square, in Matlab, $x = A \backslash b$ is more efficient than x = inv(A) * b
- Matlab discriminates in favor of upper-right triangular matrices for inversion! If your matrix is lower-left triangular, first transpose it, invert the result, and transport back.
- Use built-in functions of Matlab as frequently as possible!

Exercises today

Line search

- Objective: find a step α^* such that both Wolfe's conditions are verified.
- Input:
 - **1** Function $f: \mathbb{R}^n \to \mathbb{R}$, continuously differentiable
 - ② Gradient $\nabla f: \mathcal{R}^n \to \mathcal{R}^n$
 - **3** Vector $x \in \mathbb{R}^n$
 - **4** Descent direction d such that $\nabla f(x)^T d < 0$
 - **5** First approximation of the solution $\alpha_0 > 0$
 - Parameters β_1 and β_2 such that $0 < \beta_1 < \beta_2 < 1$ (e.g., $\beta_1 = 10^{-4}$ and $\beta_2 = 0.99$)
 - **1** Parameter $\lambda > 1$

Line search

- Initialization: $i = 0, \alpha_l = 0, \alpha_r = +\infty$
- Iterations:
 - **1** If α_i verify both conditions, then $\alpha^* = \alpha_i$. STOP.
 - 2 If α_i violates Wolfe 1, then the step is too long and

$$\alpha_r = \alpha_i$$

$$\alpha_{i+1} = \frac{\alpha_l + \alpha_r}{2}$$

 $oldsymbol{\circ}$ If α_i verifies Wolfe 1 and violate Wolfe 2, then the step is too short and

$$\alpha_l = \alpha_i$$

$$\alpha_{i+1} = \left\{ \begin{array}{l} \frac{\alpha_l + \alpha_r}{2}, & \text{if } \alpha_r < +\infty; \\ \lambda \alpha_i, & \text{otherwise.} \end{array} \right.$$

0 i = i + 1

Line search

Try your code for the following example:

$$f(x_1, x_2) = x_1^2 + x_2^2$$

- Starting point: (1,1)
- d = (-0.5, -1)

Modified Cholesky Factorization

- Objective: Modify a matrix in order to make it positive-definite
- Input: Symmetric matrix $A \in \mathbb{R}^{n \times n}$
- Output: A lower triangular matrix L and $\tau>=0$ such that $A+\tau I=LL^T$ is positive-definite

Modified Cholesky Factorization

Frobenius Norm of a matrix:

$$||A||_F = \sqrt{\sum_{i=1}^m \sum_{j=1}^n |a_{ij}|^2}$$

- Initialization: k=0; if $\min_i a_{ii}>0$, then $\tau_k=0$, otherwise $\tau_k=\frac{1}{2}\|A\|_F$
- Iterations:
 - $\textbf{ 0} \ \, \text{Compute the Cholesky factorization} \,\, LL^T \,\, \text{of} \,\, A + \tau_k I \\$
 - If the factorization is successful, STOP.
 - **3** Else $\tau_{k+1} = \max\{2\tau_k, \frac{1}{2}||A||_F\}$
 - **4** k = k + 1

Matlab Hint:

- norm(A,'fro')
- chol
- try...catch...end

Modified Cholesky Factorization

Try your Matlab code on the following matrix:

$$A = \left[\begin{array}{cccc} 6 & 3 & 4 & 8 \\ 3 & 6 & 5 & 1 \\ 4 & 5 & 10 & 7 \\ 8 & 1 & 7 & 5 \end{array} \right]$$