Optimization and Simulation

Unconstrained optimization

Michel Bierlaire
michel.bierlaire@epfl.ch
Transport and Mobility Laboratory

Optimality conditions

$$
\min _{x \in \mathbb{R}^{n}} f(x)
$$

Necessary optimality conditions:

- Let x^{*} be a local minimum of $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$.
- (first order condition) If f is differentiable in an open neighborhood of x^{*}, then

$$
\nabla f\left(x^{*}\right)=0 .
$$

- (second order condition) If f is twice differentiable in an open neighborhood of x^{*}, then

$$
\nabla^{2} f\left(x^{*}\right) \geq 0,
$$

meaning that $\nabla^{2} f\left(x^{*}\right)$ is positive semidefinite.

Optimality conditions

Sufficient optimality conditions

- Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be twice differentiable in an open set $V \subseteq \mathbb{R}^{n}$.
- Let $x^{*} \in V$ such that
- (first order condition)

$$
\nabla f\left(x^{*}\right)=0 .
$$

- (second order condition)

$$
\nabla^{2} f\left(x^{*}\right)>0,
$$

meaning that $\nabla^{2} f\left(x^{*}\right)$ is positive definite.

- Then x^{*} is a local minimum of f.

Optimality conditions

Sufficient conditions for global optimality

- Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a continuous function
- Let $x^{*} \in \mathbb{R}^{n}$ be a local minimum of f
- If f is convex, then x^{*} is a global minimum of f.
- If f is strictly convex, then x^{*} is the unique global minimum of f.

Optimality conditions

Consider the quadratic problem:

$$
\min _{x \in \mathbb{R}^{n}} f(x)=\frac{1}{2} x^{T} Q x+g^{T} x+c
$$

where $Q \in \mathbb{R}^{n \times n}$ is symmetric.

1. If Q is not positive semidefinite, then the problem has no solution, meaning that there is no $x^{*} \in \mathbb{R}^{n}$ which is a local minimum.
2. If Q is positive definite, then

$$
x^{*}=-Q^{-1} g
$$

is the unique global minimum.

Algorithms

- Solving systems of equations: $\nabla f(x)=0$
- Newton
- Quasi-Newton
- Unconstrained optimization
- Quadratic problems
- Local Newton
- Linesearch
- Quasi-Newton

Solving systems of equations

The problem: find x^{*} such $F\left(x^{*}\right)=0$, where $F: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$.
Newton's method:

- Start at an arbitrary iterate $x_{0} \in \mathbb{R}^{n}$
- At each iteration k, linearize F around x_{k}
- Find the root of the linear system and defines it as the next iterate

Key object: the gradient matrix, or the Jacobian matrix.

- For a function $F: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$, the gradient and the Jacobian matrices are defined as follows.
- Note: for systems of equations, $n=m$.

Solving systems of equations

Gradient matrix

$$
\begin{aligned}
\nabla F(x) & =\left(\begin{array}{cccc}
\mid & & \mid \\
\nabla F_{1}(x) & \cdots & \nabla F_{m}(x) \\
\mid & & \mid
\end{array}\right) \\
& =\left(\begin{array}{cccc}
\frac{\partial F_{1}}{\partial x_{1}} & \frac{\partial F_{2}}{\partial x_{1}} & \cdots & \frac{\partial F_{m}}{\partial x_{1}} \\
\vdots & \vdots & \vdots & \vdots \\
\frac{\partial F_{1}}{\partial x_{n}} & \frac{\partial F_{2}}{\partial x_{n}} & \cdots & \frac{\partial F_{m}}{\partial x_{n}}
\end{array}\right) .
\end{aligned}
$$

Solving systems of equations

Jacobian matrix

$$
J(x)=\nabla F(x)^{T}=\left(\begin{array}{ccl}
\square & \nabla F_{1}(x)^{T} & - \\
\vdots \\
& \nabla F_{m}(x)^{T} & \square
\end{array}\right)
$$

Algorithm: Newton's method

Newton's method

Objective

Find (an approximation of) a solution of the systems of equations:

$$
\begin{equation*}
F(x)=0 . \tag{1}
\end{equation*}
$$

Inputs

- The function $F: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$;
- The Jacobian matrix: $J: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n \times n}$;
- A first approximation of the solution: $x_{0} \in \mathbb{R}^{n}$;
- The requested precision: $\varepsilon \in \mathbb{R}, \varepsilon>0$.

Output
An approximation of the solution $x^{*} \in \mathbb{R}^{n}$.
Initialization

$$
k=0
$$

Newton's method (ctd)

Iterations

1. Compute d_{k+1} solution of

$$
J\left(x_{k}\right) d_{k+1}=-F\left(x_{k}\right)
$$

2. $x_{k+1}=x_{k}+d_{k+1}$.
3. $k=k+1$.

Stopping criterion

If $\left\|F\left(x_{k}\right)\right\| \leq \varepsilon$, then $x^{*}=x_{k}$.

Convergence

Consider

- $X \subseteq \mathbb{R}^{n}$ an open convex set
- $F: X \rightarrow \mathbb{R}^{n}$ a function
- x^{*} a solution, that is $F\left(x^{*}\right)=0$,
- $B\left(x^{*}, r\right) \subset X$ a ball of radius r
- $\rho>0$ a constant.

If

- $J\left(x^{*}\right)$ is invertible
- $\left\|J\left(x^{*}\right)^{-1}\right\| \leq 1 / \rho$
- J is Lipschitz continuous on $B\left(x^{*}, r\right)$, that is $\forall x, y \in B\left(x^{*}, r\right)$, $\exists M>0$ such that

$$
\|J(x)-J(y)\| \leq M\|x-y\| .
$$

Convergence

Then, $\exists \eta>0$ such that, if

$$
x_{0} \in B\left(x^{*}, \eta\right)
$$

then the sequence $\left(x_{k}\right)_{k}$ defined by

$$
x_{k+1}=x_{k}-J\left(x_{k}\right)^{-1} F\left(x_{k}\right) \quad k=0,1, \ldots
$$

is well defined and converges to x^{*}. Moreover,

$$
\left\|x_{k+1}-x^{*}\right\| \leq \frac{M}{\rho}\left\|x_{k}-x^{*}\right\|^{2}
$$

(quadratic convergence)

Secant method

- Secant, Broyden, or quasi-Newton method.
- Idea: replace the derivative by a secant approximation.
- Trivial in one dimension, more complex in n dimensions.
- Advantages:
- does not require J anymore,
- keep good convergence properties (superlinear).

Secant method

Objective

Find (an approximation of) the solution of the system

$$
\begin{equation*}
F(x)=0 . \tag{2}
\end{equation*}
$$

Inputs

- $F: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$
- A first approximation of the solution $x_{0} \in \mathbb{R}^{n}$;
- A first approximation of the Jacobian matrix A_{0} (by default $A_{0}=I$);
- Required precision $\varepsilon \in \mathbb{R}, \varepsilon>0$.

Secant method (ctd)

Output

An approximation of the solution $x^{*} \in \mathbb{R}^{n}$.

Initialization

1. $x_{1}=x_{0}-A_{0}^{-1} f\left(x_{0}\right)$.
2. $d_{0}=x_{1}-x_{0}$.
3. $y_{0}=f\left(x_{1}\right)-f\left(x_{0}\right)$.
4. $k=1$.

Secant method (ctd)

Iterations

1. Broyden's update:

$$
A_{k}=A_{k-1}+\frac{\left(y_{k-1}-A_{k-1} d_{k-1}\right) d_{k-1}^{T}}{d_{k-1}^{T} d_{k-1}} .
$$

2. Compute d_{k} solution of $A_{k} d_{k}=-F\left(x_{k}\right)$.
3. $x_{k+1}=x_{k}+d_{k}$.
4. Compute $y_{k}=F\left(x_{k+1}\right)-F\left(x_{k}\right)$.
5. $k=k+1$.

Stopping criterion
If $\left\|F\left(x_{k}\right)\right\| \leq \varepsilon$, then $x^{*}=x_{k}$.

Unconstrained optimization

Quadratic problem:

$$
\min _{x \in \mathbb{R}^{n}} f(x)=\frac{1}{2} x^{T} Q x+b^{T} x
$$

where $Q \in \mathbb{R} n \times n$ is symmetric positive definite.
Optimum: solution of the linear system

$$
Q x=-b .
$$

Quadratic problem: direct method

Objective
Find the global minimum of the quadratic problem
Input

- $Q \in \mathbb{R}^{n \times n}$ symmetric positive definite.
- $b \in \mathbb{R}^{n}$.

Output
The solution $x^{*} \in \mathbb{R}^{n}$.
Solving

1. Compute the Cholesky factor: $Q=L L^{T}$.
2. Compute y^{*} solution of the lower triangular system $L y=-b$.
3. Compute x^{*} solution of the upper triangular system $L^{T} x=y^{*}$.

Quadratic problem: iterative method

Conjugate gradients method

- Performs n one-dimensional optimizations
- The n directions are chosen to guarantee that the entire space is spanned
- Allows to solve large-scale problems as the matrix is not needed as such

Unconstrained optimization

$$
\min _{x \in \mathbb{R}^{n}} f(x)
$$

Local Newton method: apply Newton's method to solve $\nabla f\left(x^{*}\right)=0$

$$
\begin{aligned}
& F(x) \rightarrow \\
& J(x) \rightarrow \\
& \nabla^{2} f(x)
\end{aligned}
$$

Advantage: fast
Problems:

- not guaranteed to converge
- $\nabla^{2} f\left(x_{k}\right)^{-1}$ may not exist
- may converge to a point which is not a minimum

Local Newton: geometric interpretation

Quadratic approximation of f

$$
m_{x_{k}}(x)=f\left(x_{k}\right)+\left(x-x_{k}\right)^{T} \nabla f\left(x_{k}\right)+\frac{1}{2}\left(x-x_{k}\right)^{T} \nabla^{2} f\left(x_{k}\right)\left(x-x_{k}\right)
$$

Example: $f(x)=-x^{4}+12 x^{3}-47 x^{2}+60 x$

1. $x_{k}=3$. Quadratic model: $m_{3}(x)=7 x^{2}-48 x+81$
2. $x_{k}=4$. Quadratic model: $m_{4}(x)=x^{2}-4 x$
3. $x_{k}=5$. Quadratic model: $m_{5}(x)=-17 x^{2}+160 x-375$.

Local Newton: geometric interpretation

$$
m_{3}(x)=7 x^{2}-48 x+81
$$

Local Newton: geometric interpretation

$$
m_{3}(x)=7 x^{2}-48 x+81
$$

Local Newton: geometric interpretation

$m_{4}(x)=x^{2}-4 x$: bad predictor

Local Newton: geometric interpretation

$m_{4}(x)=x^{2}-4 x$: bad predictor (zoom)

Local Newton: geometric interpretation

$$
m_{5}(x)=-17 x^{2}+160 x-375: \text { concave }
$$

Local Newton: geometric interpretation

$$
m_{5}(x)=-17 x^{2}+160 x-375: \text { concave (zoom) }
$$

Descent methods

Typical iteration:

- Find a descent direction d_{k} such that $\nabla f\left(x_{k}\right)^{T} d_{k}<0$.
- Find a step α_{k} such that $f\left(x_{k}+\alpha_{k} d_{k}\right)<f\left(x_{k}\right)$
- Compute $x_{k+1}=x_{k}+\alpha_{k} d_{k}$.

Descent methods: find a direction

- Basic idea: steepest descent

$$
d_{k}=-\nabla f\left(x_{k}\right)
$$

- exhibits slow to very slow convergence
- Solution: precondition (change the metric)

$$
d_{k}=-D_{k} \nabla f\left(x_{k}\right)
$$

where D_{k} is positive definite.

- Newton:

$$
d_{k}=-\left(\nabla^{2} f\left(x_{k}\right)+\lambda I\right)^{-1} \nabla f\left(x_{k}\right)
$$

where λ is such that $\nabla f\left(x_{k}\right)+\lambda I$ is positive definite

Descent methods: find a step

- Finding the optimal step is not cost effective
- Wolfe's conditions characterize steps guaranteeing convergence
- Use steps that verify these conditions

Wolfe 1: sufficient decrease. Consider

- Function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$
- Iterate $x_{k} \in \mathbb{R}^{n}$
- Direction $d_{k} \in \mathbb{R}^{n}$ such that $\nabla f\left(x_{k}\right)^{T} d_{k}<0$
- Step $\alpha_{k} \in \mathbb{R}, \alpha_{k}>0$
f decreases sufficiently at $x_{k}+\alpha_{k} d_{k}$ compared to x_{k} if

$$
f\left(x_{k}+\alpha_{k} d_{k}\right) \leq f\left(x_{k}\right)+\alpha_{k} \beta_{1} \nabla f\left(x_{k}\right)^{T} d_{k},
$$

where $0<\beta_{1}<1$.
\geqslant TRANSP-DR

Descent methods: find a step

Wolfe 2: sufficient progress. Consider

- Function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$
- Iterate $x_{k} \in \mathbb{R}^{n}$
- Direction $d_{k} \in \mathbb{R}^{n}$ such that $\nabla f\left(x_{k}\right)^{T} d_{k}<0$
- Step $\alpha_{k} \in \mathbb{R}, \alpha_{k}>0$
$x_{k}+\alpha_{k} d_{k}$ brings sufficient progress compared to x_{k} if

$$
\nabla f\left(x_{k}+\alpha_{k} d_{k}\right)^{T} d_{k} \geq \beta_{2} \nabla f\left(x_{k}\right)^{T} d_{k},
$$

with $0<\beta_{2}<1, \beta_{2}>\beta_{1}$.

Descent methods: find a step

Objective

Find a step α^{*} such that both Wolfe's conditions are verified Input

- Function: $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ continuously differentiable;
- Gradient: $\nabla f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$;
- Iterate: $x \in \mathbb{R}^{n}$;
- Descent direction d such that $\nabla f(x)^{T} d<0$;
- First approximation $\alpha_{0}>0$;
- Parameters β_{1}, β_{2} such that $0<\beta_{1}<\beta_{2}<1$ (typical example: $\beta_{1}=10^{-4}$ and $\beta_{2}=0.99$);
- Parameter $\lambda>1$.

Output
A step α^{*} verifying both Wolfe's conditions.

Descent methods: find a step

Initialization

$$
i=0, \alpha_{\ell}=0, \alpha_{r}=+\infty
$$

Iterations

1. If α_{i} verify both conditions, then $\alpha^{*}=\alpha_{i}$. STOP.
2. If α_{i} violates Wolfe 1 , then the step is too long and

$$
\begin{aligned}
\alpha_{r} & =\alpha_{i} \\
\alpha_{i+1} & =\frac{\alpha_{\ell}+\alpha_{r}}{2}
\end{aligned}
$$

3. If α_{i} verifies Wolfe 1 and violates Wolfe 2 , then the step is too short and

$$
\begin{aligned}
\alpha_{\ell} & =\alpha_{i} \\
\alpha_{i+1} & = \begin{cases}\frac{\alpha_{\ell}+\alpha_{r}}{2} & \text { if } \alpha_{r}<+\infty \\
\lambda \alpha_{i} & \text { otherwise }\end{cases}
\end{aligned}
$$

Newton's method with linesearch

Objective

Find (an approximation of) a local minimum of

$$
\begin{equation*}
\min _{x \in \mathbb{R}^{n}} f(x) \tag{3}
\end{equation*}
$$

Input

- Function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ continuously differentiable;
- Gradient $\nabla f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$;
- Hessian $\nabla^{2} f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n \times n}$;
- First approximation $x_{0} \in \mathbb{R}^{n}$;
- Required precision $\varepsilon \in \mathbb{R}, \varepsilon>0$.

Output
An approximation of the solution $x^{*} \in \mathbb{R}$.
Initialization
$\zeta_{\text {TRANSP-OR }}^{k}=0$.

Newton's method with linesearch

Iterations

1. Compute a lower triangular matrix and a real parameter $\tau \geq 0$ such that

$$
L_{k} L_{k}^{T}=\nabla^{2} f\left(x_{k}\right)+\tau I
$$

using a modified Cholesky factorization.
2. Find z_{k} by solving the triangular system $L_{k} z_{k}=\nabla f\left(x_{k}\right)$.
3. Find d_{k} by solving the triangular system $L_{k}^{T} d_{k}=-z_{k}$.
4. Find α_{k} with line search starting with $\alpha_{0}=1$.
5. $x_{k+1}=x_{k}+\alpha_{k} d_{k}$.
6. $k=k+1$.

Stopping criterion
If $\left\|\nabla f\left(x_{k}\right)\right\| \leq \varepsilon$, then $x^{*}=x_{k}$.

Quasi-Newton

Ideas:

- Adapt Broyden's (secant) method to optimization
- Additional constraint: the approximated matrix must be
- symmetric
- positive definite
- Update formula: BFGS (C. G. Broyden, R. Fletcher, D. Goldfarb and D. F. Shanno

Quasi-Newton

Objective

Find (an approximation of) a local minimum of

$$
\min _{x \in \mathbb{R}^{n}} f(x) .
$$

Input

- Function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$
- Gradient $\nabla f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$;
- First approximation of the solution $x_{0} \in \mathbb{R}^{n}$;
- First approximation of the inverse of the hessian $H_{0}^{-1} \in \mathbb{R}^{n \times n}$ symmetric positive definite. Typically, $H_{0}^{-1}=I$.
- Required precision: $\varepsilon \in \mathbb{R}, \varepsilon>0$.

Output
An approximation of the solution $x^{*} \in \mathbb{R}$.

ECOLE POLYTICHNIQUE

Quasi-Newton

Initialization

$$
k=0
$$

Iterations

1. Compute $d_{k}=-H_{k}^{-1} \nabla f\left(x_{k}\right)$.
2. Find α_{k} with linesearch starting with $\alpha_{0}=1$.
3. $x_{k+1}=x_{k}+\alpha_{k} d_{k}$.
4. $k=k+1$.
5. Update H_{k}^{-1}

$$
\begin{aligned}
& H_{k}^{-1}=\left(I-\frac{\bar{d}_{k-1} y_{k-1}^{T}}{\bar{d}_{k-1}^{T} y_{k-1}}\right) H_{k-1}^{-1}\left(I-\frac{\bar{y}_{k-1} d_{k-1}^{T}}{\bar{d}_{k-1}^{T} y_{k-1}}\right)+\frac{\bar{d}_{k-1} \bar{d}_{k-1}^{T}}{\bar{d}_{k-1}^{T} y_{k-1}} \\
& \text { with } \bar{d}_{k-1}=\alpha_{k-1} d_{k-1}=x_{k}-x_{k-1} \text { and } \\
& y_{k-1}=\nabla f\left(x_{k}\right)-\nabla f\left(x_{k-1}\right) .
\end{aligned}
$$

Quasi-Newton

Stopping criterion

If $\left\|\nabla f\left(x_{k}\right)\right\| \leq \varepsilon$, then $x^{*}=x_{k}$.

Summary

- Solving systems of equations: $\nabla f(x)=0$
- Newton
- Quasi-Newton
- Unconstrained optimization
- Quadratic problems
- Local Newton
- Linesearch
- Quasi-Newton

