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Markov Chains

Andrey Markov, 1856–1922, Russian mathematician.
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Markov Chains

Glossary:

• Stochastic process: Xt, t = 0, 1, . . . ,, collection of r.v. with same
support, or states space {1, . . . , i, . . . , J}.

• Markov process: (short memory)

Pr(Xt = i|X0, . . . , Xt−1) = Pr(Xt = i|Xt−1)

• Homogeneous Markov process:

Pr(Xt = j|Xt−1 = i) = Pr(Xt+k = j|Xt−1+k = i) = Pij ∀t ≥ 1, k ≥ 0.

• Transition matrix: P ∈ R
J×J .

• Properties:

J
∑

j=1

Pij = 1, i = 1, . . . , J, Pij ≥ 0, ∀i, j,

Markov Chain Monte Carlo Methods – p. 3/36



Markov Chains

• If state j can be reached from state i with non zero probability,
we say that i communicates with j.

• Two states that communicate belong to the same class.

• A Markov chain is irreducible or ergodic if it contains only one
class.

• With an ergodic chain, it is possible to go to every state from
any state.
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Markov Chains

• P t
ij is the probability that the process reaches state j from i

after t steps.

• Consider all t such that P t
ii > 0. The largest common divisor d

is called the period of state i.

• A state with period 1 is aperiodic.

• If Pii > 0, state i is aperiodic.

• The period is the same for all states in the same class.

• Therefore, if the chain is irreducible, if one state is aperiodic,
they all are.

Markov Chain Monte Carlo Methods – p. 5/36



A periodic chain
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, d = 3.
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Markov Chains

Pr(j) =

J
∑

i=1

Pr(j|i) Pr(i)

• Stationary probabilities: unique solution of the system

πj =

J
∑

i=1

Pijπi, ∀j = 1, . . . , J. (1)

J
∑

j=1

πj = 1.

• Solution exists for any irreducible chain.
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Markov Chains

• Consider the following system of equations:

xiPij = xjPji, i 6= j,

J
∑

i=1

xi = 1 (2)

• We sum over i:

J
∑

i=1

xiPij = xj

J
∑

i=1

Pji = xj .

• If (2) has a solution, it is also a solution of (1). As π is the
unique solution of (1) then x = π.

πiPij = πjPji, i 6= j

• The chain is said time reversible
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Example

• A machine can be in 4 states with respect to wear
• perfect condition,
• partially damaged,
• seriously damaged,
• completely useless.

• The degradation process can be modeled by an irreducible
aperiodic homogeneous Markov process, with the following
transition matrix:

P =











0.95 0.04 0.01 0.0

0.0 0.90 0.05 0.05

0.0 0.0 0.80 0.20

1.0 0.0 0.0 0.0










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Example

Stationary distribution:
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

=

(

5

8
,
1

4
,
3

32
,
1

32

)

• Machine in perfect condition 5 days out of 8, in average.

• Repair occurs in average every 32 days

From now on: Markov process = irreducible aperiodic homogeneous
Markov process
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Stationary distributions

• Property:
πj = lim

t→∞
Pr(Xt = j) j = 1, . . . , J.

• Ergodicity:
• Let f be any function on the state space.
• Then, with probability 1,

lim
T→∞

1

T

T
∑

t=1

f(Xt) =

J
∑

j=1

πjf(j).

• Computing the expectation of a function of the stationary
states is the same as to take the average of the values
along a trajectory of the process.
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Simulation

• We want to simulate a r.v. X with pmf

Pr(X = j) = pj .

• We generate a Markov process with limiting probabilities pj
(how?)

• We simulate the evolution of the process.

pj = πj = lim
t→∞

Pr(Xt = j) j = 1, . . . , J.
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Example: T = 100
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Example: T = 1000
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Example: T = 10000
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Simulation

• Assume that we are interested in simulating

E[f(X)] =

J
∑

j=1

f(j)pj .

• We use ergodicity to estimate it with

1

T

T
∑

t=1

f(Xt).

• We should drop early states (see above example). Better
estimate:

1

T

T+k
∑

t=1+k

f(Xt).
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Metropolis-Hastings

Nicholas Metropolis W. Keith Hastings
1915 – 1999 1930 –
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Metropolis-Hastings

• Let bj , j = 1, . . . , J be positive numbers.

• Let B =
∑

j
bj .

• Let πj = bj/B.

• We want to simulate a r.v. with pmf πj .

• Consider a Markov process on {1, . . . , J} with transition
probability Q.

• Define another Markov process with the same states in the
following way:
• Assume the process is in state i, that is Xt = i,
• Simulate the (candidate) next state j according to Q.
• Define

Xt+1 =

{

j with probability αij

i with probability 1− αij
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Metropolis-Hastings

• Transition probability P :

Pij = Qijαij if i 6= j

Pii = Qiiαii +
∑

ℓ6=i
Qiℓ(1− αiℓ) otherwise

• Must verify the property:

1 =
∑

j
Pij = Pii +

∑

j 6=i
Pij

= Qiiαii +
∑

ℓ6=i
Qiℓ(1− αiℓ) +

∑

j 6=i
Qijαij

= Qiiαii +
∑

ℓ6=i
Qiℓ −

∑

ℓ6=i
Qiℓαiℓ +

∑

j 6=i
Qijαij

= Qiiαii +
∑

ℓ6=i
Qiℓ

As
∑

j
Qij = 1, we have αii = 1.
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Metropolis-Hastings

• Stationary distribution and time reversibility:

πiPij = πjPji, i 6= j

• that is
πiQijαij = πjQjiαji, i 6= j

• It is satisfied if

αij =
πjQji

πiQij

and αji = 1

or
πiQij

πjQji

= αji and αij = 1
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Metropolis-Hastings

• Therefore

αij = min

(

πjQji

πiQij

, 1

)

• Remember: πj = bj/B. Therefore

αij = min

(

bjBQji

biBQij

, 1

)

= min

(

bjQji

biQij

, 1

)

• The normalization constant B does not play a role in the
computation of αij .

• In summary:
• Given Q and bj

• defining α as above
• creates a Markov process characterized by P

• with stationary distribution π.
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Metropolis-Hastings

Algorithm:

1. Choose a Markov process characterized by Q.

2. Initialize the chain with a state i: t = 0,
X0 = i.

3. Simulate the (candidate) next state j based on
Q.

4. Let r be a draw from U [0, 1[.

5. Compare r with αij = min
(

bjQji

biQij
, 1
)

. If

r <
bjQji

biQij

then Xt+1 = j, else Xt+1 = i.

6. Increase t by one.

7. Goto step 3.
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Example
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

Run MH for 10000 iterations. Collect statistics after 1000.

• Accept: [2488, 1532, 801, 283]

• Reject: [0, 952, 1705, 2239]

• Simulated: [0.627, 0.250, 0.095, 0.028]

• Target: [0.625, 0.250, 0.09375, 0.03125]

Markov Chain Monte Carlo Methods – p. 23/36



Gibbs sampling

• Let X = (X1, X2, . . . , Xn) be a random vector with pmf (or pdf)
p(x).

• Assume we can draw from the marginals:

Pr(Xi|Xj = xj , j 6= i), i = 1, . . . , n.

• Markov process. Assume current state is x.
• Draw randomly (equal probability) a coordinate i.
• Draw r from the ith marginal.

• New state: y = (x1, . . . , xi−1, r, xi+1, . . . , xn).
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Gibbs sampling

• Transition probability:

Qxy =
1

n
Pr(Xi = r|Xj = xj , j 6= i) =

p(y)

nPr(Xj = xj , j 6= i)

• The denominator is independent of Xi.

• So Qxy is proportional to p(y).

• Metropolis-Hastings:

αxy = min

(

p(y)Qyx

p(x)Qxy

, 1

)

= min

(

p(y)p(x)

p(x)p(y)
, 1

)

= 1

• The candidate state is always accepted.
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Example: bivariate normal distribution

(

X

Y

)

∼ N

((

µX

µY

)

,

(

σ2
X ρσXσY

ρσXσY σ2
Y

))

Marginal distribution:

Y |(X = x) ∼ N

(

µY +
σY

σX

ρ(x− µX), (1− ρ2)σ2
Y

)

Apply Gibbs sampling to draw from:

N

((

0

0

)

,

(

1 0.9

0.9 1

))

Note: just for illustration. Should use Cholesky factor.
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Example: pdf
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Example: draws from Gibbs sampling
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Simulated annealing

• Application of the Metropolis-Hastings algorithm to optimization.

• Name comes from analogy with annealing in metallurgy,
involving heating and controlled cooling of a material to reduce
its defects.

• Optimization problem:
min
x∈F

f(x)

where the feasible set F is a finite set of vectors.

• Let X ∗ be the set of optimal solutions, that is

X ∗ = {x ∈ F|f(x) ≤ f(y), ∀y ∈ F} and f(x∗) = f∗, ∀x∗ ∈ X ∗.

• Consider the pmf on F

pλ(x) =
e−λf(x)

∑

y∈F e−λf(y)
, λ > 0.
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Simulated annealing

pλ(x) =
e−λf(x)

∑

y∈F e−λf(y)

• Equivalently

pλ(x) =
eλ(f

∗−f(x))

∑

y∈F eλ(f∗−f(y))

• As f∗ − f(x) ≤ 0, when λ → ∞, we have

lim
λ→∞

pλ(x) =
δ(x ∈ X ∗)

|X ∗|
,

where

δ(x ∈ X ∗) =

{

1 if x ∈ X ∗

0 otherwise.
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Example

F = {1, 2, 3} f(F) = {0, 1, 0}

pλ(1) =
1

2 + e−λ

pλ(2) =
e−λ

2 + e−λ

pλ(3) =
1

2 + e−λ
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Example
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Simulated annealing

• If λ is large,

• we generate a Markov chain with stationary distribution pλ(x).

• The mass is concentrated on optimal solutions.

• As the normalizing constant is not needed, only eλ(f
∗−f(x)) is

used.

• Construction of the Markov process through the concept of
neighborhood.

• A neighbor y of x is obtained by simple modifications of x.

• The Markov process will proceed from neighbors to neighbors.

• The neighborhood structure must be designed such that the
chain is irreducible, that is the whole space F must be covered.

• It must be designed also such that the size of the neighborhood
is reasonably small.
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Neighborhood

• Examples of neighborhoods:

• x and y are neighbors if they differ only in one coordinate.
• x and y are neighbors if two elements are interchanged.

• Denote N(x) the set of neighbors of x.

• Define a Markov process where the next state is a randomly
drawn neighbor.

• Transition probability:

Qxy =
1

|N(x)|

• Metropolis Hastings:

αxy = min

(

p(y)Qyx

p(x)Qxy

, 1

)

= min

(

e−λf(y)|N(x)|

e−λf(x)|N(y)|
, 1

)

Markov Chain Monte Carlo Methods – p. 34/36



Notes

• The neighborhood structure can always be arranged so that
each vector has the same number of neighbors. In this case,

αxy = min

(

e−λf(y)

e−λf(x)
, 1

)

• If y is better than x, the next state is automatically accepted.

• Otherwise, it is accepted with a probability that depends on λ.

• If λ is high, the probability is small.

• When λ is small, it is easy to escape from local optima.
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Notes

• In practice, it may be better to enumerate F (MH is asymptotic
while F is finite).

• It is therefore usually used as a heuristic, where the value of λ
is changed over time. For instance

λk = C ln(1 + k), C > 0.

• The heuristic returns the best solution encountered during the
process.
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