Discrete Events Simulation

\author{
Michel Bierlaire
 ```
michel.bierlaire@epfl.ch

``` \\ Transport and Mobility Laboratory
}

\section*{Simulation of a system}
- Generate the stochastic mechanisms of the systems.
- Collect the evolution of given indicators over time.
- Book-keeping may be complex.
- Need for a general framework.

Discrete event simulation

\section*{Discrete Event Simulation}

Keep track of variables:
- Time variable \(t\) : amount of time that has elapsed.
- Counter variables: count events having occurred by \(t\)
- System state variables.

Events:
- List of future events sorted in chronological order
- Process the next event:
- remove the first event in the list,
- update the variables,
- generate new events, if applicable (keep the list sorted),
- collect statistics.

\section*{Discrete Event Simulation: an example}

Example: Satellite
- Today, Bilal works alone at the bar at Satellite.
- When a customer arrives, she is served if Bilal is free. Otherwise, she joins the queue.
- Customers are served using a "first come, first served" logic.
- When Bilal has finished serving a customer,
- he starts serving the next customer in line, or
- waits for the next customer to arrive if the queue is empty.
- The amount of time required by Bilal to serve a customer is a random variable \(X_{s}\) with pdf \(f_{s}\).
- The amount of time between the arrival of two customers is a random variable \(X_{a}\) with pdf \(f_{a}\).
- Satellite does not accept the arrival of customers after time \(T\).

\section*{Discrete Event Simulation: an example}

Possible questions:
- In average, how much time does a customer wait after her arrival, until being served?
- When can Bilal go home?

\section*{Discrete Event Simulation: an example}

Variables:
Time: \(\quad t\)
Counters: \(\quad N_{A}\) number of arrivals
\(N_{D}\) number of departures
System state: \(n\) number of customers in the system
Event list:
- Next arrival. Time: \(t_{A}\)
- Service completion for the customer currently being served. Time: \(t_{D}\) ( \(\infty\) if no customer is being served).
- The bar closes. Time: \(T\).

List management:
- The number of events is always 3 in this example.
- We just need to update the times, and keep them sorted.

\section*{Initialization}
- Time: \(t=0\).
- Counters: \(N_{A}=N_{D}=0\).
- State: \(n=0\).
- First event: arrival of first customer: draw \(r\) from \(f_{a}\).
- Events list:
- \(t_{A}=r\),
- \(t_{D}=\infty\),
- \(T\) (bar closes).

Statistics to collect:
- \(A(i)\) arrival of customer \(i\).
- \(D(i)\) departure of customer \(i\).
- \(T_{p}\) time after \(T\) that the last customer departs.

\section*{Case 1: arrival of a customer}

If \(t_{A}=\min \left(t_{A}, t_{D}, T\right)\)
- Time \(t=t_{A}\) : we move along to time \(t_{A}\).
- Counter \(N_{A}=N_{A}+1\) : one more customer arrived.
- State \(n=n+1\) : one more customer in the system.
- Next arrival:
- draw \(r\) from \(f_{a}\),
- \(t_{A}=t+r\).
- Service time: if \(n=1\) (she is served immediately)
- draw \(s\) from \(f_{s}\),
- \(t_{D}=t+s\).
- Statistics: \(A\left(N_{A}\right)=t\).

\section*{Case 2: departure of a customer}

Conditions: \(t_{D}=\min \left(t_{A}, t_{D}, T\right), t_{D}<t_{A}\)
- Time \(t=t_{D}\) : we move along to time \(t_{D}\).
- Counter \(N_{D}=N_{D}+1\) : one more customer departed.
- State \(n=n-1\) : one less customer in the system.
- Service time: if \(n=0\), then \(t_{D}=\infty\). Otherwise,
- draw \(s\) from \(f_{s}\),
- \(t_{D}=t+s\).
- Statistics: \(D\left(N_{D}\right)=t\).

\section*{Case 3: after hours}

Conditions: \(T<\min \left(t_{A}, t_{D}\right)\),
1. Customers are still waiting: \(n>0\)
- Time \(t=t_{D}\) : we move along to time \(t_{D}\).
- Counter \(N_{D}=N_{D}+1\) : one more customer departed.
- State \(n=n-1\) : one less customer in the system.
- Service time: if \(n>0\), then
- draw \(s\) from \(f_{s}\),
- \(t_{D}=t+s\).
- Statistics: \(D\left(N_{D}\right)=t\).
2. No more customers: \(n=0\)
- Statistics: \(T_{p}=\max (t-T, 0)\).

\section*{An instance}

\section*{Scenario:}
- Service time: exponential with mean 1.0
- Inter-arrival time: exponential with mean 1.0
- Closing time: 10.0

\section*{An instance (ctd.)}
\begin{tabular}{rrrrrrrr} 
Event & t & NA & ND & n & tA & tD & T \\
\hline Arrival & 0.94 & 1 & 0 & 1 & 1.48 & 3.22 & 10.0 \\
Arrival & 1.48 & 2 & 0 & 2 & 2.01 & 3.22 & 10.0 \\
Arrival & 2.01 & 3 & 0 & 3 & 3.16 & 3.22 & 10.0 \\
Arrival & 3.16 & 4 & 0 & 4 & 3.44 & 3.22 & 10.0 \\
Departure & 3.22 & 4 & 1 & 3 & 3.44 & 3.49 & 10.0 \\
Arrival & 3.44 & 5 & 1 & 4 & 3.81 & 3.49 & 10.0 \\
Departure & 3.49 & 5 & 2 & 3 & 3.81 & 3.91 & 10.0 \\
Arrival & 3.81 & 6 & 2 & 4 & 7.22 & 3.91 & 10.0 \\
Departure & 3.91 & 6 & 3 & 3 & 7.22 & 5.84 & 10.0 \\
Departure & 5.84 & 6 & 4 & 2 & 7.22 & 5.88 & 10.0 \\
Departure & 5.88 & 6 & 5 & 1 & 7.22 & 6.49 & 10.0 \\
Departure & 6.49 & 6 & 6 & 0 & 7.22 & \(\infty\) & 10.0
\end{tabular}

\section*{An instance (ctd.)}
\begin{tabular}{rrrrrrrr} 
Event & t & NA & ND & n & tA & tD & T \\
\hline\(\ldots\) & & & & & & & \\
Departure & 7.38 & 7 & 7 & 0 & 7.42 & \(\infty\) & 10.0 \\
Arrival & 7.42 & 8 & 7 & 1 & 8.58 & 8.42 & 10.0 \\
Departure & 8.42 & 8 & 8 & 0 & 8.58 & \(\infty\) & 10.0 \\
Arrival & 8.58 & 9 & 8 & 1 & 9.64 & 9.91 & 10.0 \\
Arrival & 9.64 & 10 & 8 & 2 & 10.7 & 9.91 & 10.0 \\
Departure & 9.91 & 10 & 9 & 1 & 10.7 & 10.7 & 10.0 \\
After hours & 10.7 & 10 & 10 & 0 & 10.7 & 10.7 & 10.0 \\
Finish & 10.7 & 10 & 10 & 0 & 10.7 & 10.7 & 10.0
\end{tabular}

\section*{An instance (ctd.)}

Statistics for each customer (rounded):
\begin{tabular}{rrrr} 
Cust. & Arrival & Departure & Time \\
\hline 1 & 0.94 & 3.22 & 2.28 \\
2 & 1.48 & 3.49 & 2.02 \\
3 & 2.01 & 3.91 & 1.9 \\
4 & 3.16 & 5.84 & 2.68 \\
5 & 3.44 & 5.88 & 2.45 \\
6 & 3.81 & 6.49 & 2.68 \\
7 & 7.22 & 7.38 & 0.165 \\
8 & 7.42 & 8.42 & 1.0 \\
9 & 8.58 & 9.91 & 1.33 \\
10 & 9.64 & 10.7 & 1.02
\end{tabular}
- Average time in the system: 1.75
- Bilal leaves Satellite at 10.7
-TRANSP-0R

\section*{Another instance}

Scenario: Bilal works faster
- Service time: exponential with mean 0.2
- Inter-arrival time: exponential with mean 1.0
- Closing time: 10.0

\section*{An instance (ctd.)}
\begin{tabular}{rrrrrrrr} 
Event & t & NA & ND & n & tA & tD & T \\
\hline Arrival & 1.02 & 1 & 0 & 1 & 3.14 & 1.38 & 10.0 \\
Departure & 1.38 & 1 & 1 & 0 & 3.14 & \(\infty\) & 10.0 \\
Arrival & 3.14 & 2 & 1 & 1 & 6.97 & 3.25 & 10.0 \\
Departure & 3.25 & 2 & 2 & 0 & 6.97 & \(\infty\) & 10.0 \\
Arrival & 6.97 & 3 & 2 & 1 & 7.08 & 7.26 & 10.0 \\
Arrival & 7.08 & 4 & 2 & 2 & 7.24 & 7.26 & 10.0 \\
Arrival & 7.24 & 5 & 2 & 3 & 10.0 & 7.26 & 10.0 \\
Departure & 7.26 & 5 & 3 & 2 & 10.0 & 8.32 & 10.0 \\
Departure & 8.32 & 5 & 4 & 1 & 10.0 & 8.51 & 10.0 \\
Departure & 8.51 & 5 & 5 & 0 & 10.0 & \(\infty\) & 10.0 \\
Finish & 10.0 & 5 & 5 & 0 & 10.0 & \(\infty\) & 10.0
\end{tabular}

\section*{An instance (ctd.)}

Statistics for each customer (rounded):
\begin{tabular}{rrrr} 
Cust. & Arrival & Departure & Time \\
\hline 1 & 1.02 & 1.38 & 0.355 \\
2 & 3.14 & 3.25 & 0.11 \\
3 & 6.97 & 7.26 & 0.296 \\
4 & 7.08 & 8.32 & 1.24 \\
5 & 7.24 & 8.51 & 1.27
\end{tabular}
- Average time in the system: 0.654
- Bilal leaves Satellite at 10.0.
- He stops working at 8.51.

\section*{Notes}
- The indicators under interest are random variables.
- Running the simulator provides one realization of these r.v.
- A large number of realizations must be drawn to have an idea of the distribution.
- It is not unusual to have indicators with complex distribution, that is multi-modal and asymmetric. Therefore, the mean may not always be sufficient to describe the r.v.```

