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Siméon Denis Poisson

Siméon-Denis Poisson (1781–1840). French mathematician.

• Poisson random variable

• Poisson process

• Non homogeneous Poisson process
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Poisson random variable

• Number of successes in a large number n of trials (binomial
distribution)

• when the probability p of a success is small.

• Denote λ = np.

Pr(X = k) = e−λ
λk

k!
.

Property:
E[X] = Var(X) = λ.
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Poisson random variable
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Poisson random variable
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Poisson process

• Events are occurring at random time points

• N(t) is the number of events during [0, t]

• They constitute a Poisson process with rate λ > 0 if
1. N(0) = 0,
2. # of events occurring in disjoint time intervals are

independent,
3. distribution of N(t+ s)−N(t) depends on s, not on t,
4. probability of one event in a small interval is approx. λh:

lim
h→0

Pr(N(h) = 1)

h
= λ,

5. probability of two events in a small interval is approx. 0:

lim
h→0

Pr(N(h) ≥ 2)

h
= 0.
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Poisson process

Property:

N(t) ∼ Poisson(λt), Pr(N(t) = k) = e−λt
(λt)k

k!

Inter-arrival times:

• Sk is the time when the kth event occurs,

• Xk = Sk − Sk−1 is the time elapsed between event k − 1 and
event k.

• X1 = S1

• Distribution of X1: Pr(X1 > t) = Pr(N(t) = 0) = e−λt.

• Distribution of X2:

Pr(Xk > t|Sk−1 = s) = Pr(0 events in ]s, s+ t]|Sk−1 = s)

= Pr(0 events in ]s, s+ t])

= e−λt.
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Poisson process

• X1 is an exponential random variable with mean 1/λ

• X2 is an exponential random variable with mean 1/λ

• X2 is independent of X1.

• Same arguments can be used for k = 3, 4 . . ..

Therefore, the CDF of Xk is, for any k,

F (t) = Pr(Xk ≤ t) = 1− Pr(Xk > t) = 1− e−λt.

The pdf is

f(t) =
dF (t)

dt
= λe−λt.

The inter-arrival times X1, X2,. . . are independent and identically
distributed exponential random variables with parameter λ, and
mean 1/λ.
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Poisson process

• Simulation of event times of a Poisson process with rate λ until
time T :
1. t = 0, k = 0.

2. Draw r ∼ U(0, 1).

3. t = t− ln(r)/λ.

4. If t > T, STOP.

5. k = k + 1, Sk = t.

6. Go to step 2.
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Non homogeneous Poisson process

• Assume that the rate varies with time, and call it λ(t).

• The events constitute a non homogeneous Poisson process
with rate λ(t) if
1. N(0) = 0

2. # of events occurring in disjoint time intervals are
independent,

3. probability of one event in a small interval is approx. λ(t)h:

lim
h→0

Pr ((N(t+ h)−N(t)) = 1)

h
= λ(t),

4. probability of two events in a small interval is approx. 0:

lim
h→0

Pr ((N(t+ h)−N(t)) ≥ 2)

h
= 0.
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Non homogeneous Poisson process

• Mean value function:

m(t) =

∫
t

0

λ(s)ds, t ≥ 0.

• Poisson distribution:

N(t+ s)−N(t) ∼ Poisson(m(t+ s)−m(t))

• Link with homogeneous Poisson process:
• Consider a Poisson process with rate λ.
• If an event occurs at time t, count it with probability p(t).
• The process of counted events is a non homogeneous

Poisson process with rate λ(t) = λp(t).
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Non homogeneous Poisson process

Proof:

1. N(0) = 0 [OK]

2. # of events occurring in disjoint time intervals are independent,
[OK]

3. probability of one event in a small interval is approx. λ(t)h: [?]

lim
h→0

Pr ((N(t+ h)−N(t)) = 1)

h
= λ(t),

4. probability of two events in a small interval is approx. 0: [OK]

lim
h→0

Pr ((N(t+ h)−N(t)) ≥ 2)

h
= 0.
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Non homogeneous Poisson process

• N(t) number of events of the non homogeneous process

• N ′(t) number of events of the underlying homogeneous
process

Pr ((N(t+ h)−N(t)) = 1) =
∑

k
Pr ((N ′(t+ h)−N ′(t)) = k, 1 is counted)

= Pr ((N ′(t+ h)−N ′(t)) = 1, 1 is counted)
= Pr ((N ′(t+ h)−N ′(t)) = 1)Pr(1 is counted)

limh→0
Pr((N(t+h)−N(t))=1)

h
= limh→0

Pr((N ′(t+h)−N
′(t))=1)

h
Pr(1 is counted)

= λp(t).
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Non homogeneous Poisson process

Simulation of event times of a non homogeneous Poisson process
with rate λ(t) until time T :

1. Consider λ such that λ(t) ≤ λ, for all t ≤ T.

2. t = 0, k = 0.

3. Draw r ∼ U(0, 1).

4. t = t− ln(r)/λ.

5. If t > T, STOP.

6. Generate s ∼ U(0, 1).

7. If s ≤ λ(t)/λ, then k = k + 1, S(k) = t.

8. Go to step 3.
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Summary

• Poisson random variable

• Poisson process

• Non homogeneous Poisson process

• Main assumption: events occur continuously and independently
of one another

• Typical usage: arrivals of customers in a queue

• Easy to simulate
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