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Discrete distributions

• Let X be a discrete r.v. with pmf:

P (X = xi) = pi, i = 0, . . . ,

where
∑

i pi = 1.

• The support can be finite or infinite.

• The following algorithm generates draws from this distribution

1. Let r be a draw from U(0, 1).

2. Initialize k = 0, p = 0.

3. p = p + pk.

4. If r < p, set X = xk and stop.

5. Otherwise, set k = k + 1 and go to step 3.

Inverse transform method
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Inverse Transform Method: illustration

p1 = 0.24 p2 = 0.42 p3 = 0.11 p4 = 0.23

0 0.24 0.66 0.77 1
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Discrete distributions

Acceptance-rejection technique

• Attributed to von Neumann.

• Mostly useful with continuous distributions.

• We want to draw from X with pmf pi.

• We know how to draw from Y with pmf qi.

Define a constant c ≥ 1 such that

pi

qi
≤ c ∀i s.t. pi > 0.

Algorithm:

1. Draw y from Y

2. Draw r from U(0, 1)

3. If r <
py

cqy
, return x = y and stop. Otherwise,

start again.
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Acceptance-rejection: analysis

Probability to be accepted during a given iteration:

P (Y = y, accepted) = P (Y = y) P (accepted|Y = y)

= qy py/cqy

=
py

c

Probability to be accepted:

P (accepted) =
∑

y P (accepted|Y = y)P (Y = y)

=
∑

y
py

cqy
qy

= 1/c.

Probability to draw x at iteration n

P (X = x|n) = (1 − 1
c )n−1 px

c
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Acceptance-rejection: analysis

Therefore,

P (X = x) =
+∞
∑

n=1

P (X = x|n)

=

+∞
∑

n=1

(

1 − 1

c

)n−1
px

c

= c
px

c

= px.

Reminder: geometric series

+∞
∑

n=0

xn =
1

1 − x
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Acceptance-rejection: analysis

Remarks:

• Average number of iterations: c

• The closer c is to 1, the closer the pmf of Y is to the pmf of X.
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Continuous distributions

Inverse Transform Method
Idea:

• Let X be a continuous r.v. with CDF FX(ε)

• Draw r from a uniform U(0, 1)

• Generate F−1
X (r).

Motivation:

• FX is monotonically increasing

• It implies that ε1 ≤ ε2 is equivalent to FX(ε1) ≤ FX(ε2).
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Inverse Transform Method
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Inverse Transform Method

More formally:

• Denote FU (ε) = ε the CDF of the r.v. U(0, 1)

• Let G be the distribution of the r.v. F−1
X (U)

G(ε) = Pr(F−1
X (U) ≤ ε)

= Pr(FX(F−1
X (U)) ≤ FX(ε))

= Pr(U ≤ FX(ε))

= FU (FX(ε))

= FX(ε)
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Inverse Transform Method

Examples: let r be a draw from U(0, 1)

Name FX(ε) Draw
Exponential(b) 1 − e−ε/b −b ln r

Logistic(µ,σ) 1/(1 + exp(−(ε − µ)/σ)) µ − σ ln(1
r − 1)

Power(n,σ) (ε/σ)n σr1/n

Note: the CDF is not always available (e.g. normal distribution).
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Continuous distributions

Rejection Method

• We want to draw from X with pdf fX .

• We know how to draw from Y with pdf fY .

Define a constant c ≥ 1 such that

fX(ε)

fY (ε)
≤ c ∀ε

Algorithm:

1. Draw y from Y

2. Draw r from U(0, 1)

3. If r < fX(y)
cfY (y), return x = y and stop. Otherwise,

start again.
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Rejection Method: example

Draw from a normal distribution

• Let X̄ ∼ N(0, 1) and X = |X̄|

• Probability density function: fX(ε) = 2√
2π

e−ε2/2, 0 < ε < +∞

• Consider an exponential r.v. with pdf fY (ε) = e−ε, 0 < ε < +∞
• Then

fX(ε)

fY (ε)
=

2√
2π

eε−ε2/2

• The ratio takes its maximum at ε = 1, therefore

fX(ε)

fY (ε)
≤ fX(1)

fY (1)
=
√

2e/π ≈ 1.315.

• Rejection method, with fX(ε)
cfY (ε) = 1√

e
eε−ε2/2 = eε− ε2

2 − 1
2 = e−

(ε−1)2

2
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Rejection Method: example

Draw from a normal

1. Draw r from U(0, 1)

2. Let y = − ln(1 − r) (draw from the exponential)

3. Draw s from U(0, 1)

4. If s < e−
(y−1)2

2 return x = y and go to step 5.
Otherwise, go to step 1.

5. Draw t from U(0, 1).

6. If t ≤ 0.5, return x. Otherwise, return −x.

Note: this procedure can be improved. See Ross, Chapter 5.
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Draws from the exponential
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Rejected draws
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Accepted draws

0

1000

2000

3000

4000

5000

6000

7000

8000

9000 Accepted draws

Drawing from distributions – p. 17/33



Rejected and accepted draws
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The polar method

Draw from a normal distribution

• Let X ∼ N(0, 1) and Y ∼ N(0, 1) independent

• pdf:

f(x, y) =
1√
2π

e−x2/2 1√
2π

e−y2/2 =
1

2π
e−(x2+y2)/2.

• Let R and θ such that R2 = X2 + Y 2, and tan θ = Y/X.

(X, Y )

R

θ
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The polar method

Change of variables (reminder):

• Let A be a multivariate r.v. distributed with pdf fA(a).

• Consider the change of variables b = H(a) where H is bijective
and differentiable

• Then B = H(A) is distributed with pdf

fB(b) = fA(H−1(b))

∣

∣

∣

∣

det
(

dH−1(b)

db

)∣

∣

∣

∣

.

Here: A = (X, Y ), B = (R2, θ) = (T, θ)

H−1(B) =

(

T
1
2 cos θ

T
1
2 sin θ

)

dH−1(B)

dB
=

(

1
2T− 1

2 cos θ −T
1
2 sin θ

1
2T− 1

2 sin θ T
1
2 cos θ

)

Drawing from distributions – p. 20/33



The polar method

H−1(b) =

(

T
1
2 cos θ

T
1
2 sin θ

)

dH−1(b)

db
=

(

1
2T− 1

2 cos θ −T
1
2 sin θ

1
2T− 1

2 sin θ T
1
2 cos θ

)

Therefore,
∣

∣

∣

∣

det
(

dH−1(b)

db

)∣

∣

∣

∣

=
1

2
.

and

fB(T, θ) =
1

2

1

2π
e−T/2, 0 < T < +∞, 0 < θ < 2π.

Product of

• an exponential with mean 2: 1
2e−T/2

• a uniform on [0, 2π[: 1/2π
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The polar method

Therefore,

• R2 and θ are independent

• R2 is exponential with mean 2

• θ is uniform on (0, 2π)

Algorithm:

1. Let r1 and r2 be draws from U(0, 1).

2. Let R2 = −2 ln r1 (draw from exponential of mean
2)

3. Let θ = 2πr2 (draw from U(0, 2π))

4. Let

X = R cos θ =
√
−2 ln r1 cos(2πr2)

Y = R sin θ =
√
−2 ln r1 sin(2πr2)
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The polar method

Issue: time consuming to compute sine and cosine
Solution: generate directly the sine and the cosine

• Draw a random point (s1, s2) in the circle of radius one centered
at (0, 0).

• How? Draw a random point in the square [−1, 1] × [−1, 1] and
reject points outside the circle

• Let (R, θ) be the polar coordinates of this point.

• R2 ∼ U(0, 1) and θ ∼ U(0, 2π) are independent

R2 = s2
1 + s2

2

cos θ = s1/R

sin θ = s2/R

Drawing from distributions – p. 23/33



The polar method

Original transformation:

X = R cos θ =
√
−2 ln r1 cos(2πr2)

Y = R sin θ =
√
−2 ln r1 sin(2πr2)

Replace r1 by t = R2 ∼ U(0, 1), and the sine and cosine as
described above

t = s2
1 + s2

2

X = R cos θ =
√
−2 ln t s1√

t
= s1

√

−2 ln t
t

Y = R sin θ =
√
−2 ln t s2√

t
= s2

√

−2 ln t
t
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The polar method

Algorithm:

1. Let r1 and r2 be draws from U(0, 1).

2. Define s1 = 2r1 − 1 and s2 = 2r2 − 1 (draws from
U(−1, 1)).

3. Define t = s2
1 + s2

2.

4. If t > 1, reject the draws and go to step 1.

5. Return

x = s1

√

−2 ln t

t
and y = s2

√

−2 ln t

t
.
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Transformations of standard normal

• If r is a draw from N(0, 1), then

s = br + a

is a draw from N(a, b2)

• If r is a draw from N(a, b2), then

er

is a draw from a log normal LN(a, b2) with mean

ea+(b2/2)

and variance
e2a+b2(eb2 − 1)
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Multivariate normal

• If r1,. . . ,rn are independent draws from N(0, 1), and

r =









r1

...
rn









• then
s = a + Lr

is a vector of draws from the n-variate normal N(a, LLT ), where
• L is lower triangular, and

• LLT is the Cholesky factorization of the
variance-covariance matrix
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Multivariate normal

Example:

L =







ℓ11 0 0

ℓ21 ℓ22 0

ℓ31 ℓ32 ℓ33







s1 = ℓ11r1

s2 = ℓ21r1 + ℓ22r2

s3 = ℓ31r1 + ℓ32r2 + ℓ33r3
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Transforming draws

• Consider draws from the following distributions:
• normal: N(0, 1) (draws denoted by ξ below)
• uniform: U(0, 1) (draws denoted by r below)

• Draws R from other distributions are obtained from nonlinear
transforms.

• Lognormal(a,b)

f(x) =
1

xb
√

2π
exp

(−(lnx − a)2

2b2

)

R = ea+bξ
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Transforming draws

• Cauchy(a,b)

f(x) =

(

πb

(

1 +

(

x − a

b

)2
))−1

R = a + b tan

(

π(r − 1

2
)

)

• χ2(a) (a integer)

f(x) =
x(a−2)/2e−x/2

2a/2Γ(a/2)
R =

a
∑

j=1

ξ2
j

• Erlang(a,b) (b integer)

f(x) =
(x/a)b−1e−x/a

a(b − 1)!
R = −a

b
∑

j=1

ln ri
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Transforming draws

• Exponential(a)

F (x) = 1 − e−x/a R = −a ln r

• Extreme Value(a,b)

F (x) = 1 − exp
(

−e−(x−a)/b
)

R = a − b ln(− ln r)

• Logistic(a,b)

F (x) =
(

1 + e−(x−a)/b
)−1

R = a + b ln

(

r

1 − r

)
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Transforming draws

• Pareto(a,b)

F (x) = 1 −
(a

x

)b

R = a(1 − r)−1/b

• Standard symmetrical triangular distribution

f(x) =

{

4x if 0 ≤ x ≤ 1/2

4(1 − x) if 1/2 ≤ x ≤ 1
R =

r1 + r2

2

• Weibull(a,b)

F (x) = 1 − e−( x
a )

b

R = a(− ln r)1/b
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Appendix

Uniform distribution: X ∼ U(a, b)

• pdf

fX(x) =

{

1/(b − a) if a ≤ x ≤ b,

0 otherwise.

• CDF

FX(x) =











0 if x ≤ a,

(x − a)/(b − a) if a ≤ x ≤ b,

1 if x ≥ b.

• Mean, median: (a + b)/2.

• Variance: (b − a)2/12
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