Drawing from distributions

Michel Bierlaire
michel.bierlaire@epfl.ch
Transport and Mobility Laboratory

Discrete distributions

- Let X be a discrete r.v. with pmf:

$$
P\left(X=x_{i}\right)=p_{i}, i=0, \ldots,
$$

where $\sum_{i} p_{i}=1$.

- The support can be finite or infinite.
- The following algorithm generates draws from this distribution

1. Let r be a draw from $U(0,1)$.
2. Initialize $k=0, p=0$.
3. $p=p+p_{k}$.
4. If $r<p$, set $X=x_{k}$ and stop.
5. Otherwise, set $k=k+1$ and go to step 3.

Inverse transform method

Inverse Transform Method: illustration

Discrete distributions

Acceptance-rejection technique

- Attributed to von Neumann.
- Mostly useful with continuous distributions.
- We want to draw from X with pmf p_{i}.
- We know how to draw from Y with pmf q_{i}.

Define a constant $c \geq 1$ such that

$$
\frac{p_{i}}{q_{i}} \leq c \forall i \text { s.t. } p_{i}>0
$$

Algorithm:

1. Draw y from Y
2. Draw r from $U(0,1)$
3. If $r<\frac{p_{y}}{c q_{y}}$, return $x=y$ and stop. Otherwise,
C.start again.
\geqslant TRANSP-OR

Acceptance-rejection: analysis

Probability to be accepted during a given iteration:

$$
\begin{array}{rlrl}
P(Y=y, \text { accepted }) & & P(Y=y) & P(\text { accepted } \mid Y=y) \\
& =q_{y} & & p_{y} / c q_{y} \\
& =\frac{p_{y}}{c} &
\end{array}
$$

Probability to be accepted:

$$
\begin{aligned}
P(\text { accepted }) & =\sum_{y} P(\text { accepted } \mid Y=y) P(Y=y) \\
& =\sum_{y} \frac{p_{y}}{c q_{y}} q_{y} \\
& =1 / c .
\end{aligned}
$$

Probability to draw x at iteration n

$$
P(X=x \mid n)=\left(1-\frac{1}{c}\right)^{n-1} \frac{1}{c}
$$

Acceptance-rejection: analysis

Therefore,

$$
\begin{aligned}
P(X=x) & =\sum_{n=1}^{+\infty} P(X=x \mid n) \\
& =\sum_{n=1}^{+\infty}\left(1-\frac{1}{c}\right)^{n-1} \frac{p_{x}}{c} \\
& =c \frac{p_{x}}{c} \\
& =p_{x}
\end{aligned}
$$

Reminder: geometric series

$$
\sum_{n=0}^{+\infty} x^{n}=\frac{1}{1-x}
$$

Acceptance-rejection: analysis

Remarks:

- Average number of iterations: c
- The closer c is to 1 , the closer the pmf of Y is to the pmf of X.

Continuous distributions

Inverse Transform Method

Idea:

- Let X be a continuous r.v. with CDF $F_{X}(\varepsilon)$
- Draw r from a uniform $U(0,1)$
- Generate $F_{X}^{-1}(r)$.

Motivation:

- F_{X} is monotonically increasing
- It implies that $\varepsilon_{1} \leq \varepsilon_{2}$ is equivalent to $F_{X}\left(\varepsilon_{1}\right) \leq F_{X}\left(\varepsilon_{2}\right)$.

Inverse Transform Method

Inverse Transform Method

More formally:

- Denote $F_{U}(\varepsilon)=\varepsilon$ the CDF of the r.v. $U(0,1)$
- Let G be the distribution of the r.v. $F_{X}^{-1}(U)$

$$
\begin{aligned}
G(\varepsilon) & =\operatorname{Pr}\left(F_{X}^{-1}(U) \leq \varepsilon\right) \\
& =\operatorname{Pr}\left(F_{X}\left(F_{X}^{-1}(U)\right) \leq F_{X}(\varepsilon)\right) \\
& =\operatorname{Pr}\left(U \leq F_{X}(\varepsilon)\right) \\
& =F_{U}\left(F_{X}(\varepsilon)\right) \\
& =F_{X}(\varepsilon)
\end{aligned}
$$

Inverse Transform Method

Examples: let r be a draw from $U(0,1)$

Name	$F_{X}(\varepsilon)$	Draw
Exponential (b)	$1-e^{-\varepsilon / b}$	$-b \ln r$
$\operatorname{Logistic}(\mu, \sigma)$	$1 /(1+\exp (-(\varepsilon-\mu) / \sigma))$	$\mu-\sigma \ln \left(\frac{1}{r}-1\right)$
$\operatorname{Power}(n, \sigma)$	$(\varepsilon / \sigma)^{n}$	$\sigma r^{1 / n}$

Note: the CDF is not always available (e.g. normal distribution).

Continuous distributions

Rejection Method

- We want to draw from X with pdf f_{X}.
- We know how to draw from Y with pdf f_{Y}.

Define a constant $c \geq 1$ such that

$$
\frac{f_{X}(\varepsilon)}{f_{Y}(\varepsilon)} \leq c \forall \varepsilon
$$

Algorithm:

1. Draw y from Y
2. Draw r from $U(0,1)$
3. If $r<\frac{f_{X}(y)}{c f_{Y}(y)}$, return $x=y$ and stop. Otherwise, start again.

Rejection Method: example

Draw from a normal distribution

- Let $\bar{X} \sim N(0,1)$ and $X=|\bar{X}|$
- Probability density function: $f_{X}(\varepsilon)=\frac{2}{\sqrt{2 \pi}} e^{-\varepsilon^{2} / 2}, 0<\varepsilon<+\infty$
- Consider an exponential r.v. with pdf $f_{Y}(\varepsilon)=e^{-\varepsilon}, 0<\varepsilon<+\infty$
- Then

$$
\frac{f_{X}(\varepsilon)}{f_{Y}(\varepsilon)}=\frac{2}{\sqrt{2 \pi}} e^{\varepsilon-\varepsilon^{2} / 2}
$$

- The ratio takes its maximum at $\varepsilon=1$, therefore

$$
\frac{f_{X}(\varepsilon)}{f_{Y}(\varepsilon)} \leq \frac{f_{X}(1)}{f_{Y}(1)}=\sqrt{2 e / \pi} \approx 1.315 .
$$

- Rejection method, with $\frac{f_{X}(\varepsilon)}{c f_{Y}(\varepsilon)}=\frac{1}{\sqrt{e}} e^{\varepsilon-\varepsilon^{2} / 2}=e^{\varepsilon-\frac{\varepsilon^{2}}{2}-\frac{1}{2}}=e^{-\frac{(\varepsilon-1)^{2}}{2}}$

Rejection Method: example

Draw from a normal

```
    1. Draw \(r\) from \(U(0,1)\)
    2. Let \(y=-\ln (1-r)\) (draw from the exponential)
    3. Draw \(s\) from \(U(0,1)\)
    4. If \(s<e^{-\frac{(y-1)^{2}}{2}}\) return \(x=y\) and go to step 5 .
        Otherwise, go to step 1 .
    5. Draw \(t\) from \(U(0,1)\).
    6. If \(t \leq 0.5\), return \(x\). Otherwise, return \(-x\).
```

Note: this procedure can be improved. See Ross, Chapter 5.

Draws from the exponential

COOLE POLYTICHNIQUE fedirale de Lausanne

Rejected draws

fedirale de lausanne

Accepted draws

Rejected and accepted draws

The polar method

Draw from a normal distribution

- Let $X \sim N(0,1)$ and $Y \sim N(0,1)$ independent
- pdf:

$$
f(x, y)=\frac{1}{\sqrt{2 \pi}} e^{-x^{2} / 2} \frac{1}{\sqrt{2 \pi}} e^{-y^{2} / 2}=\frac{1}{2 \pi} e^{-\left(x^{2}+y^{2}\right) / 2} .
$$

- Let R and θ such that $R^{2}=X^{2}+Y^{2}$, and $\tan \theta=Y / X$.

The polar method

Change of variables (reminder):

- Let A be a multivariate r.v. distributed with pdf $f_{A}(a)$.
- Consider the change of variables $b=H(a)$ where H is bijective and differentiable
- Then $B=H(A)$ is distributed with pdf

$$
f_{B}(b)=f_{A}\left(H^{-1}(b)\right)\left|\operatorname{det}\left(\frac{d H^{-1}(b)}{d b}\right)\right|
$$

Here: $A=(X, Y), B=\left(R^{2}, \theta\right)=(T, \theta)$

$$
H^{-1}(B)=\binom{T^{\frac{1}{2}} \cos \theta}{T^{\frac{1}{2}} \sin \theta} \quad \frac{d H^{-1}(B)}{d B}=\left(\begin{array}{cc}
\frac{1}{2} T^{-\frac{1}{2}} \cos \theta & -T^{\frac{1}{2}} \sin \theta \\
\frac{1}{2} T^{-\frac{1}{2}} \sin \theta & T^{\frac{1}{2}} \cos \theta
\end{array}\right)
$$

The polar method

$$
H^{-1}(b)=\binom{T^{\frac{1}{2}} \cos \theta}{T^{\frac{1}{2}} \sin \theta} \quad \frac{d H^{-1}(b)}{d b}=\left(\begin{array}{cc}
\frac{1}{2} T^{-\frac{1}{2}} \cos \theta & -T^{\frac{1}{2}} \sin \theta \\
\frac{1}{2} T^{-\frac{1}{2}} \sin \theta & T^{\frac{1}{2}} \cos \theta
\end{array}\right)
$$

Therefore,

$$
\left|\operatorname{det}\left(\frac{d H^{-1}(b)}{d b}\right)\right|=\frac{1}{2} .
$$

and

$$
f_{B}(T, \theta)=\frac{1}{2} \frac{1}{2 \pi} e^{-T / 2}, \quad 0<T<+\infty, \quad 0<\theta<2 \pi .
$$

Product of

- an exponential with mean $2: \frac{1}{2} e^{-T / 2}$
- a uniform on $[0,2 \pi[: 1 / 2 \pi$

The polar method

Therefore,

- R^{2} and θ are independent
- R^{2} is exponential with mean 2
- θ is uniform on $(0,2 \pi)$

Algorithm:

1. Let r_{1} and r_{2} be draws from $U(0,1)$.
2. Let $R^{2}=-2 \ln r_{1}$ (draw from exponential of mean 2)
3. Let $\theta=2 \pi r_{2}$ (draw from $U(0,2 \pi)$)
4. Let

$$
\begin{aligned}
X & =R \cos \theta=\sqrt{-2 \ln r_{1}} \cos \left(2 \pi r_{2}\right) \\
Y & =R \sin \theta=\sqrt{-2 \ln r_{1}} \sin \left(2 \pi r_{2}\right)
\end{aligned}
$$

The polar method

Issue: time consuming to compute sine and cosine Solution: generate directly the sine and the cosine

- Draw a random point $\left(s_{1}, s_{2}\right)$ in the circle of radius one centered at $(0,0)$.
- How? Draw a random point in the square $[-1,1] \times[-1,1]$ and reject points outside the circle
- Let (R, θ) be the polar coordinates of this point.
- $R^{2} \sim U(0,1)$ and $\theta \sim U(0,2 \pi)$ are independent

$$
\begin{aligned}
R^{2} & =s_{1}^{2}+s_{2}^{2} \\
\cos \theta & =s_{1} / R \\
\sin \theta & =s_{2} / R
\end{aligned}
$$

The polar method

Original transformation:

$$
\begin{aligned}
& X=R \cos \theta=\sqrt{-2 \ln r_{1}} \cos \left(2 \pi r_{2}\right) \\
& Y=R \sin \theta=\sqrt{-2 \ln r_{1}} \sin \left(2 \pi r_{2}\right)
\end{aligned}
$$

Replace r_{1} by $t=R^{2} \sim U(0,1)$, and the sine and cosine as described above

$$
\begin{aligned}
t & =s_{1}^{2}+s_{2}^{2} \\
X & =R \cos \theta=\sqrt{-2 \ln t} \frac{s_{1}}{\sqrt{t}}=s_{1} \sqrt{\frac{-2 \ln t}{t}} \\
Y & =R \sin \theta=\sqrt{-2 \ln t} \frac{s_{2}}{\sqrt{t}}=s_{2} \sqrt{\frac{-2 \ln t}{t}}
\end{aligned}
$$

The polar method

Algorithm:

1. Let r_{1} and r_{2} be draws from $U(0,1)$.
2. Define $s_{1}=2 r_{1}-1$ and $s_{2}=2 r_{2}-1$ (draws from $U(-1,1))$.
3. Define $t=s_{1}^{2}+s_{2}^{2}$.
4. If $t>1$, reject the draws and go to step 1.
5. Return

$$
x=s_{1} \sqrt{\frac{-2 \ln t}{t}} \text { and } y=s_{2} \sqrt{\frac{-2 \ln t}{t}} .
$$

Transformations of standard normal

- If r is a draw from $N(0,1)$, then

$$
s=b r+a
$$

is a draw from $N\left(a, b^{2}\right)$

- If r is a draw from $N\left(a, b^{2}\right)$, then

$$
e^{r}
$$

is a draw from a log normal $L N\left(a, b^{2}\right)$ with mean

$$
e^{a+\left(b^{2} / 2\right)}
$$

and variance

$$
e^{2 a+b^{2}}\left(e^{b^{2}}-1\right)
$$

Multivariate normal

- If r_{1}, \ldots, r_{n} are independent draws from $N(0,1)$, and

$$
r=\left(\begin{array}{c}
r_{1} \\
\vdots \\
r_{n}
\end{array}\right)
$$

- then

$$
s=a+L r
$$

is a vector of draws from the n-variate normal $N\left(a, L L^{T}\right)$, where

- L is lower triangular, and
- $L L^{T}$ is the Cholesky factorization of the variance-covariance matrix

Multivariate normal

Example:

$$
\begin{gathered}
L=\left(\begin{array}{rrr}
\ell_{11} & 0 & 0 \\
\ell_{21} & \ell_{22} & 0 \\
\ell_{31} & \ell_{32} & \ell_{33}
\end{array}\right) \\
s_{1}=\ell_{11} r_{1} \\
s_{2}=\ell_{21} r_{1}+\ell_{22} r_{2} \\
s_{3}=\ell_{31} r_{1}+\ell_{32} r_{2}+\ell_{33} r_{3}
\end{gathered}
$$

Transforming draws

- Consider draws from the following distributions:
- normal: $N(0,1)$ (draws denoted by ξ below)
- uniform: $U(0,1)$ (draws denoted by r below)
- Draws R from other distributions are obtained from nonlinear transforms.
- Lognormal(a,b)

$$
f(x)=\frac{1}{x b \sqrt{2 \pi}} \exp \left(\frac{-(\ln x-a)^{2}}{2 b^{2}}\right) \quad R=e^{a+b \xi}
$$

Transforming draws

- Cauchy(a,b)

$$
f(x)=\left(\pi b\left(1+\left(\frac{x-a}{b}\right)^{2}\right)\right)^{-1} \quad R=a+b \tan \left(\pi\left(r-\frac{1}{2}\right)\right)
$$

- $\chi^{2}(a)$ (a integer)

$$
f(x)=\frac{x^{(a-2) / 2} e^{-x / 2}}{2^{a / 2} \Gamma(a / 2)} \quad R=\sum_{j=1}^{a} \xi_{j}^{2}
$$

- Erlang(a,b) (b integer)

$$
f(x)=\frac{(x / a)^{b-1} e^{-x / a}}{a(b-1)!} \quad R=-a \sum_{j=1}^{b} \ln r_{i}
$$

Transforming draws

- Exponential(a)

$$
F(x)=1-e^{-x / a} \quad R=-a \ln r
$$

- Extreme Value(a,b)

$$
F(x)=1-\exp \left(-e^{-(x-a) / b}\right) \quad R=a-b \ln (-\ln r)
$$

- Logistic(a,b)

$$
F(x)=\left(1+e^{-(x-a) / b}\right)^{-1} \quad R=a+b \ln \left(\frac{r}{1-r}\right)
$$

Transforming draws

- Pareto(a,b)

$$
F(x)=1-\left(\frac{a}{x}\right)^{b} \quad R=a(1-r)^{-1 / b}
$$

- Standard symmetrical triangular distribution

$$
f(x)=\left\{\begin{array}{ll}
4 x & \text { if } 0 \leq x \leq 1 / 2 \\
4(1-x) & \text { if } 1 / 2 \leq x \leq 1
\end{array} \quad R=\frac{r_{1}+r_{2}}{2}\right.
$$

- Weibull(a,b)

$$
F(x)=1-e^{-\left(\frac{x}{a}\right)^{b}} \quad R=a(-\ln r)^{1 / b}
$$

Appendix

Uniform distribution: $X \sim U(a, b)$

- pdf

$$
f_{X}(x)= \begin{cases}1 /(b-a) & \text { if } a \leq x \leq b \\ 0 & \text { otherwise }\end{cases}
$$

- CDF

$$
F_{X}(x)= \begin{cases}0 & \text { if } x \leq a \\ (x-a) /(b-a) & \text { if } a \leq x \leq b, \\ 1 & \text { if } x \geq b\end{cases}
$$

- Mean, median: $(a+b) / 2$.
- Variance: $(b-a)^{2} / 12$

