Project 4: Local Sequential Quadratic Programming Method

Assigned to: Jessie Madrazo, Florian Lucker, Julien Monge May 23, 2013

General description of the algorithm

Objective

Find the local minimum of the non-linear optimization problem:

 $\min_{x \in \mathcal{R}^n} f(x)$

such that h(x) = 0.

Input

- Function $f : \mathcal{R}^n \to \mathcal{R}$, two-times differentiable
- Gradient $\nabla f : \mathcal{R}^n \to \mathcal{R}^n$
- Hessian $\nabla^2 f : \mathcal{R}^n \to \mathcal{R}^{n \times n}$
- Function $h: \mathcal{R}^n \to \mathcal{R}^m$, two-times differentiable
- Gradient $\nabla h : \mathcal{R}^n \to \mathcal{R}^{n \times m}$
- Hessian $\nabla^2 h_i : \mathcal{R}^n \to \mathcal{R}^{n \times n}$ for every constraint $i = 1, \dots, m$
- Initial solution (x_0, λ_0)
- Precision $\epsilon \in \mathcal{R}, \epsilon > 0$

Iterations

- 1. Compute $\nabla_{xx}^2 L(x_k, \lambda_k) = \nabla^2 f(x_k) + \sum_{i=1}^m (\lambda_k)_i \nabla^2 h_i(x_k)$
- 2. Find d_x , d_λ by solving the following quadratic problem

$$\min_{d} \nabla f(x_k)^T d + \frac{1}{2} d^T \nabla_{xx}^2 L(x_k, \lambda_k) d$$

s.t.
$$\nabla h(x_k)^T d + h(x_k) = 0$$

by using the analytic solution,

$$d_{\lambda} = H^{-1}(h(x_k) - \nabla h(x_k)^T \nabla_{xx}^2 L(x_k, \lambda_k)^{-1} \nabla f(x_k))$$

with $H = \nabla h(x_k)^T \nabla_{xx}^2 L(x_k, \lambda_k)^{-1} \nabla h(x_k)$
$$d_x = -\nabla_{xx}^2 L(x_k, \lambda_k)^{-1} (\nabla h(x_k) d_{\lambda} + \nabla f(x_k))$$

- 3. $x_{k+1} = x_k + d_x$
- 4. $\lambda_{k+1} = d_{\lambda}$
- 5. k = k + 1

Stopping criterion

 $\|\nabla L(x_k,\lambda_k)\| \le \epsilon$

Algorithm testing & analysis

The sutdents will implement and apply the above algorithm to the following problem:

$$\min_{x \in \mathcal{R}^2} \qquad 100(x_2 - x_1^2)^2 + (1 - x_1)^2$$
$$x_1 - x_2^2 = \frac{1}{2}$$

The suggested starting point $(x_0, \lambda_0) = (-1, 0, 1)$. Meanwhile, analyze the computation complexity for the Step 2 in terms of flop (the number of floating point operations).