$\begin{array}{c} {\rm Simulation \ and \ Optimization} \\ {\rm \ Lab \ 1} \end{array}$

Chen Jiang Hang

Transportation and Mobility Laboratory

May 17, 2013

Project assignment

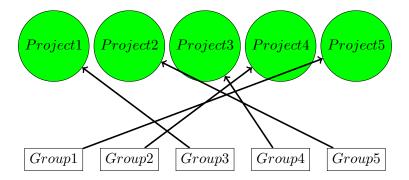
Groups

Group	Members
1	Flavio Finger, Jonas Gros, Evanthia Kazagli
2	Jessie Madrazo, Florian Lucker, Julien Monge
3	Marija Nikolic, Tomas Robenek
4	Paul Anderson, Franz Zeimetz, Alberto Mian
5	Sofia Samoili, Marco Vocialta, Seyedeh Taheri

Projects

Project	Optimization algorithm Matlab coding
1	Preconditioned Projected Gradient Method
2	Interior Point Method
3	Augmented Lagrangian Method
4	Local Sequential Quadratic Programming Method
5	Global Sequential Quadratic Programming Method

Assignment



Some tips for Matlab coding

Some tips

- Matrix multiplication: y = (AB)x = A(Bx), which way is better?
- To solve the linear equation system Ax = b where A is square, in Matlab, x = A\b is more efficient than x = inv(A) * b
- Matlab discriminates in favor of upper-right triangular matrices for inversion! If your matrix is lower-left triangular, first transpose it, invert the result, and transport back.

Exercises today

Line search

- Objective: find a step α^* such that both Wolfe's conditions are verified.
- Input:
 - **①** Function $f : \mathcal{R}^n \to \mathcal{R}$, continuously differentiable
 - 2 Gradient $\nabla f : \mathcal{R}^n \to \mathcal{R}^n$
 - $I ector x \in \mathcal{R}^n$
 - **9** Descent direction d such that $\nabla f(x)^T d < 0$
 - Solution First approximation of the solution $\alpha_0 > 0$
 - Parameters β_1 and β_2 such that $0 < \beta_1 < \beta_2 < 1$ (e.g., $\beta_1 = 10^{-4}$ and $\beta_2 = 0.99$)
 - Parameter $\lambda > 1$

Exercises today

Line search

- Initialization: $i = 0, \alpha_l = 0, \alpha_r = +\infty$
- Iterations:
 - **1** If α_i verify both conditions, then $\alpha^* = \alpha_i$. STOP.
 - 2 If α_i violates Wolfe 1, then the step is too long and

$$\alpha_r = \alpha_i$$
$$\alpha_{i+1} = \frac{\alpha_l + \alpha_r}{2}$$

3 If α_i verifies Wolfe 1 and violate Wolfe 2, then the step is too short and

$$\alpha_{l} = \alpha_{i}$$

$$\alpha_{i+1} = \begin{cases} \frac{\alpha_{l} + \alpha_{r}}{2}, & \text{if } \alpha_{r} < +\infty; \\ \lambda \alpha_{i}, & \text{otherwise.} \end{cases}$$

Line search

Try your code for the following example:

$$f(x_1, x_2) = x_1^2 + x_2^2$$

- Starting point: (1,1)
- d = (-0.5, -1)

Modified Cholesky Factorization

- Objective: Modify a matrix in order to make it positive-definite
- Input: Symmetric matrix $A \in \mathcal{R}^{n \times n}$
- Output: A lower triangular matrix L and $\tau >= 0$ such that $A + \tau I = L L^T$ is positive-definite

Modified Cholesky Factorization

Frobenius Norm of a matrix:

$$||A||_F = \sqrt{\sum_{i=1}^{m} \sum_{j=1}^{n} |a_{ij}|^2}$$

- Initialization: k=0; if $\min_i a_{ii}>0,$ then $\tau_k=0,$ otherwise $\tau_k=\frac{1}{2}\|A\|_F$
- Iterations:
 - **(**) Compute the Cholesky factorization LL^T of $A + \tau_k I$
 - If the factorization is successful, STOP.
 - **3** Else $\tau_{k+1} = \max\{2\tau_k, \frac{1}{2} \|A\|_F\}$

$$\bullet \ k = k+1$$

Matlab Hint:

- norm(A,'fro')
- chol
- try...catch...end

Modified Cholesky Factorization

Try your Matlab code on the following matrix:

$$A = \begin{bmatrix} 6 & 3 & 4 & 8 \\ 3 & 6 & 5 & 1 \\ 4 & 5 & 10 & 7 \\ 8 & 1 & 7 & 5 \end{bmatrix}$$