Statistical analysis and bootstrapping

Michel Bierlaire

michel.bierlaire@epfl.ch

Transport and Mobility Laboratory

Introduction

- The outputs of the simulator are random variables.
- Running the simulator provides one realization of these r.v.
- We have no access to the pdf or CDF of these r.v.
- Well... this is actually why we rely on simulation.
- How to derive statistics about a r.v. when only instances are known?
- How to measure the quality of this statistic?

Sample mean and variance

- Consider X_1, \ldots, X_n independent and identically distributed (i.i.d.) r.v.
- $E[X_i] = \mu$, $Var(X_i) = \sigma^2$.
- The sample mean

$$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$

is an unbiased estimate of the population mean μ , as $\mathrm{E}[\bar{X}] = \mu$.

• The sample variance

$$S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (X_{i} - \bar{X})^{2}$$

is an unbiased estimator of the population variance σ^2 , as ${\rm E}[S^2]=\sigma^2$. (see proof: Ross, chapter 7)

Sample mean and variance

Recursive computation:

- 1. Initialize $\bar{X}_0 = 0$, $S_1^2 = 0$.
- 2. Update the mean

$$\bar{X}_{k+1} = \bar{X}_k + \frac{X_{k+1} - \bar{X}_k}{k+1}$$

3. Update the variance

$$S_{k+1}^2 = \left(1 - \frac{1}{k}\right) S_k^2 + (k+1)(\bar{X}_{k+1} - \bar{X}_k)^2.$$

- Consider X_1, \ldots, X_n i.i.d. r.v. with CDF F.
- Consider a parameter $\theta(F)$ of the distribution (mean, quantile, mode, etc.)
- Consider $\widehat{\theta}(X_1, \dots, X_n)$ an estimator of $\theta(F)$.
- The Mean Square Error of the estimator is defined as

$$\mathsf{MSE}(F) = \mathrm{E}_F \left[\left(\widehat{\theta}(X_1, \dots, X_n) - \theta(F) \right)^2 \right],$$

where E_F emphasizes that the expectation is taken under the assumption that the r.v. all have distribution F.

If F is unknown, it is not immediate to find an estimator of MSE.

How many draws must be used?

- Let X a r.v. with mean θ and variance σ^2 .
- We want to estimate the mean θ of the simulated distribution.
- The estimator used is the sample mean: \bar{X} .
- The mean square error is

$$E[(\bar{X} - \theta)^2] = \frac{\sigma^2}{n}$$

- The sample mean \bar{X} is normally distributed with mean θ and variance σ^2/n .
- So we can stop generating data when σ/\sqrt{n} is small.
- \bullet σ is approximated by the sample variance S.
- Law of large numbers: at least 100 draws (say) should be used.
- See Ross p. 121 for details.

- Other indicators than the mean are desired.
- Theoretical results about the MSE cannot always be derived.
- Solution: rely on simulation.
- Method: bootstrapping.

Empirical distribution function

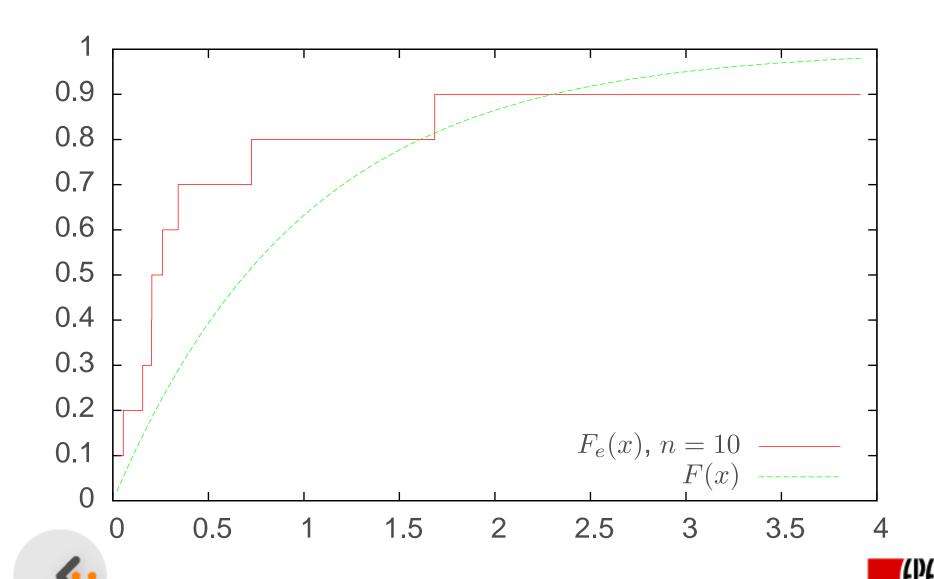
- Consider X_1, \ldots, X_n i.i.d. r.v. with CDF F.
- Consider a realization x_1, \ldots, x_n of these r.v.
- The empirical distribution function is defined as

$$F_e(x) = \frac{1}{n} \#\{i | x_i \le x\},$$

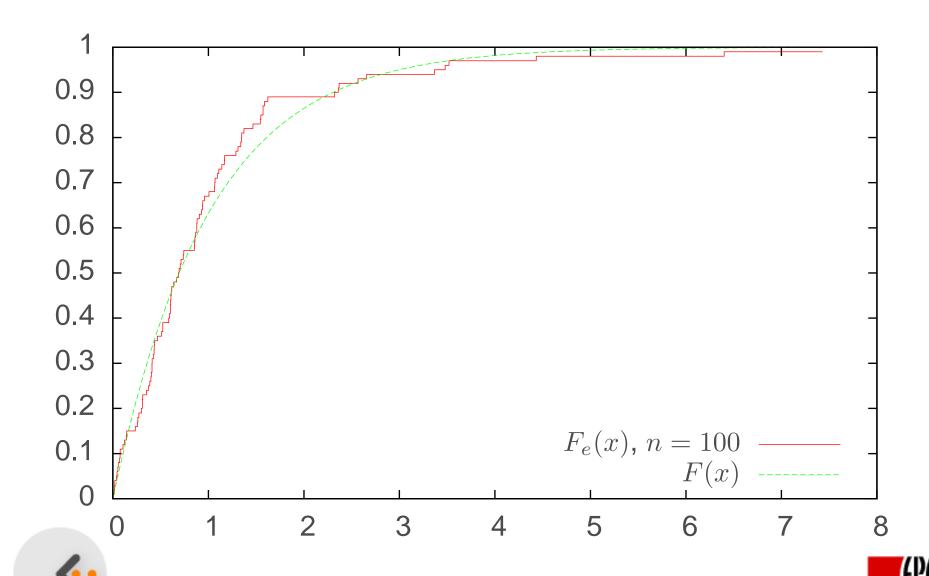
that is the number of values less or equal to x.

• CDF of a r.v. that can take any x_i with equal probability.

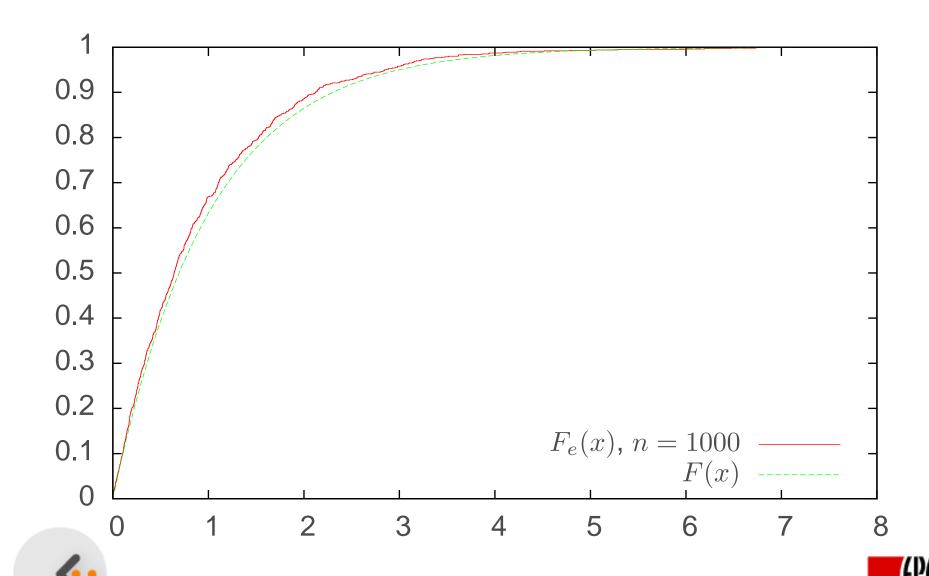
Empirical CDF



Empirical CDF



Empirical CDF



- We use the empirical distribution function F_e
- We can approximate

$$\mathsf{MSE}(F) = \mathbb{E}_F \left[\left(\widehat{\theta}(X_1, \dots, X_n) - \theta(F) \right)^2 \right],$$

by

$$\mathsf{MSE}(F_e) = \mathrm{E}_{F_e} \left[\left(\widehat{\theta}(X_1, \dots, X_n) - \theta(F_e) \right)^2 \right],$$

• $\theta(F_e)$ can be computed directly from the data (mean, variance, etc.)

We want to compute

$$\mathsf{MSE}(F_e) = \mathrm{E}_{F_e} \left[\left(\widehat{\theta}(X_1, \dots, X_n) - \theta(F_e) \right)^2 \right],$$

- F_e is the CDF of a r.v. that can take any x_i with equal probability.
- Therefore,

$$MSE(F_e) = \frac{1}{n^n} \sum_{i_1=1}^{n} \cdots \sum_{i_n=1}^{n} \left[\left(\widehat{\theta}(x_{i_1}, \dots, x_{i_n}) - \theta(F_e) \right)^2 \right],$$

- Clearly impossible to compute when n is large.
- Solution: simulation.

Bootstrapping

- For r = 1, ..., R
- Draw x_1^r, \ldots, x_n^r from F_e , that is draw from the data:
 - 1. Let s be a draw from U[0,1]
 - 2. Set j = floor(ns).
 - 3. Return x_j .
- Compute

$$M_r = \left(\widehat{\theta}(x_1^r, \dots, x_n^r) - \theta(F_e)\right)^2,$$

• Estimate of $MSE(F_e)$ and, therefore, of MSE(F):

$$\frac{1}{R} \sum_{r=1}^{R} M_r$$

Typical value for R: 100.

Bootstrap: simple example

Data: 0.636, -0.643, 0.183, -1.67, 0.462

• Mean= -0.206

• MSE= $E[(\bar{X} - \theta)^2] = S^2/n = 0.1817$

r						$\hat{ heta}$	MSE
1	-0.643	-0.643	-0.643	0.462	0.462	-0.201	2.544e-05
2	-0.643	0.183	0.636	0.636	0.636	0.2896	0.2456
3	-1.67	-1.67	0.183	0.462	0.636	-0.411	0.04204
4	-1.67	-0.643	0.183	0.183	0.636	-0.2617	0.003105
5	-0.643	0.462	0.462	0.636	0.636	0.3105	0.2667
6	-1.67	-1.67	0.183	0.183	0.183	-0.5573	0.1234
7	-0.643	0.183	0.183	0.462	0.636	0.1642	0.137
8	-1.67	-1.67	-0.643	0.183	0.183	-0.7225	0.2667
9	0.183	0.462	0.462	0.636	0.636	0.4756	0.4646
10	-0.643	0.183	0.183	0.462	0.636	0.1642	0.137

0.1686

Appendix: MSE for the mean

- Consider X_1, \ldots, X_n i.i.d. r.v.
- Denote $\theta = E[X_i]$ and $\sigma^2 = Var(X_i)$.
- Consider $\bar{X} = \sum_{i=1}^{n} X_i/n$.
- $E[\bar{X}] = \sum_{i=1}^n E[X_i]/n = \theta$.
- MSE:

$$E[(\bar{X} - \theta)^2] = \operatorname{Var} \bar{X}$$

$$= \operatorname{Var}\left(\sum_{i=1}^{n} X_i/n\right)$$

$$= \sum_{i=1}^{n} \operatorname{Var}(X_i)/n^2$$

$$= \sigma^2/n.$$

