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Introduction

• The outputs of the simulator are random variables.

• Running the simulator provides one realization of these r.v.

• We have no access to the pdf or CDF of these r.v.

• Well... this is actually why we rely on simulation.

• How to derive statistics about a r.v. when only instances are
known?

• How to measure the quality of this statistic?
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Sample mean and variance

• Consider X1, . . . , Xn independent and identically distributed
(i.i.d.) r.v.

• E[Xi] = µ, Var(Xi) = σ2.

• The sample mean

X̄ =
1

n

n∑

i=1

Xi

is an unbiased estimate of the population mean µ, as E[X̄] = µ.

• The sample variance

S2 =
1

n− 1

n∑

i=1

(Xi − X̄)2

is an unbiased estimator of the population variance σ2, as
E[S2] = σ2. (see proof: Ross, chapter 7)
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Sample mean and variance

Recursive computation:

1. Initialize X̄0 = 0, S2
1 = 0.

2. Update the mean

X̄k+1 = X̄k +
Xk+1 − X̄k

k + 1

3. Update the variance

S2
k+1 =

(
1− 1

k

)
S2
k + (k + 1)(X̄k+1 − X̄k)

2.
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Mean Square Error

• Consider X1, . . . , Xn i.i.d. r.v. with CDF F .

• Consider a parameter θ(F ) of the distribution (mean, quantile,
mode, etc.)

• Consider θ̂(X1, . . . , Xn) an estimator of θ(F ).

• The Mean Square Error of the estimator is defined as

MSE(F ) = EF

[(
θ̂(X1, . . . , Xn)− θ(F )

)2]
,

where EF emphasizes that the expectation is taken under the
assumption that the r.v. all have distribution F .

• If F is unknown, it is not immediate to find an estimator of MSE.
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How many draws must be used?

• Let X a r.v. with mean θ and variance σ2.

• We want to estimate the mean θ of the simulated distribution.

• The estimator used is the sample mean: X̄.

• The mean square error is

E[(X̄ − θ)2] =
σ2

n

• The sample mean X̄ is normally distributed with mean θ and
variance σ2/n.

• So we can stop generating data when σ/
√
n is small.

• σ is approximated by the sample variance S.

• Law of large numbers: at least 100 draws (say) should be used.

• See Ross p. 121 for details.
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Mean Square Error

• Other indicators than the mean are desired.

• Theoretical results about the MSE cannot always be derived.

• Solution: rely on simulation.

• Method: bootstrapping.
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Empirical distribution function

• Consider X1, . . . , Xn i.i.d. r.v. with CDF F .

• Consider a realization x1,. . . ,xn of these r.v.

• The empirical distribution function is defined as

Fe(x) =
1

n
#{i|xi ≤ x},

that is the number of values less or equal to x.

• CDF of a r.v. that can take any xi with equal probability.
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Empirical CDF

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.5 1 1.5 2 2.5 3 3.5 4

Fe(x), n = 10
F (x)

Statistical analysis and bootstrapping – p. 9/15



Empirical CDF
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Empirical CDF
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Mean Square Error

• We use the empirical distribution function Fe

• We can approximate

MSE(F ) = EF

[(
θ̂(X1, . . . , Xn)− θ(F )

)2]
,

by

MSE(Fe) = EFe

[(
θ̂(X1, . . . , Xn)− θ(Fe)

)2]
,

• θ(Fe) can be computed directly from the data (mean, variance,
etc.)
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Mean Square Error

• We want to compute

MSE(Fe) = EFe

[(
θ̂(X1, . . . , Xn)− θ(Fe)

)2]
,

• Fe is the CDF of a r.v. that can take any xi with equal
probability.

• Therefore,

MSE(Fe) =
1

nn

n∑

i1=1

· · ·
n∑

in=1

[(
θ̂(xi1 , . . . , xin)− θ(Fe)

)2]
,

• Clearly impossible to compute when n is large.

• Solution: simulation.
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Bootstrapping

• For r = 1, . . . , R

• Draw xr
1,. . . ,xr

n from Fe, that is draw from the data:
1. Let s be a draw from U [0, 1]

2. Set j = floor(ns).
3. Return xj .

• Compute

Mr =
(
θ̂(xr

1, . . . , x
r
n)− θ(Fe)

)2
,

• Estimate of MSE(Fe) and, therefore, of MSE(F ):

1

R

R∑

r=1

Mr

• Typical value for R: 100.
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Bootstrap: simple example

• Data: 0.636, -0.643, 0.183, -1.67, 0.462

• Mean= -0.206

• MSE= E[(X̄ − θ)2] = S2/n= 0.1817

r θ̂ MSE

1 -0.643 -0.643 -0.643 0.462 0.462 -0.201 2.544e-05

2 -0.643 0.183 0.636 0.636 0.636 0.2896 0.2456

3 -1.67 -1.67 0.183 0.462 0.636 -0.411 0.04204

4 -1.67 -0.643 0.183 0.183 0.636 -0.2617 0.003105

5 -0.643 0.462 0.462 0.636 0.636 0.3105 0.2667

6 -1.67 -1.67 0.183 0.183 0.183 -0.5573 0.1234

7 -0.643 0.183 0.183 0.462 0.636 0.1642 0.137

8 -1.67 -1.67 -0.643 0.183 0.183 -0.7225 0.2667

9 0.183 0.462 0.462 0.636 0.636 0.4756 0.4646

10 -0.643 0.183 0.183 0.462 0.636 0.1642 0.137

0.1686
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Appendix: MSE for the mean

• Consider X1, . . . , Xn i.i.d. r.v.

• Denote θ = E[Xi] and σ2 = Var(Xi).

• Consider X̄ =
∑n

i=1
Xi/n.

• E[X̄] =
∑n

i=1
E[Xi]/n = θ.

• MSE:
E[(X̄ − θ)2] = Var X̄

= Var

(
n∑

i=1

Xi/n

)

=

n∑

i=1

Var(Xi)/n
2

= σ2/n.
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