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Modeling

e A system can be seen as a black box, modeled by
y = h(zx,u)

e Example: a car

e 1 captures the state of the system (e.g. speed, position of other
vehicles)

e 1 captures possible human controls on the system (e.qg.
acceleration/deceleration)

e y represents indicators of performance (e.g. oil consumption).
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Modeling

e The model f is usually decomposed to reflect the interactions
of the subsystems

e For example,

e a car-following model captures the target speed of the
driver,

e an engine model derives the actual consumption as a
function of the acceleration.

e In practice, such a model is never representing accurately the
reality.
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Modeling

e Uncertainty Is captured by random variables
Y =h(X,U,¢)

where X, U, € and Y are random variables.
e \We are interested in the distribution of Y.

e When f is complex (that is, a combination of many models),
e the distribution of Y is complex,
e even if the distributions of X, U and ¢ are simple.
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Modeling

e Assume for the sake of simplicity that all r.v. are continuous
e Denote Z the random vector (X, U, ¢)
e Distribution of Y':

fy(y) = /fy(ylZ = 2)fz(2)dz.

e In general, no analytical formula is available for fy

e When the dimension of Z is large, numerical integration is not
an option.

e Solution: Monte-Carlo integration
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Monte-Carlo integration

Compute
1
I:/ f(x)dx
0

If e ~ U(0,1), then

I =E[f(e)]
If r1,..., r, are k independent draws from ¢, then
1 k
= tm k Z_; fri)

Requires only to evaluate f.
Monte-Carlo integration

Intuitive example: estimation of =
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Monte-Carlo integration

fy(y) = / fy(ylZ = 2)fz(2)dz.

e |dea of simulation:
e Draw R realizations of Z: z4,..., zR.
e Approximate:

W) = [ Fr 02 = f22)dz = 5 3" 1) =)
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Challenges

e How to generate draws from Z?

e How to represent complex systems? (specification of h)
e How large R should be?

e How good is the approximation of the integral?
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Pseudo-random numbers

e Deterministic sequence of numbers
e Which have the appearance of draws from a U (0, 1) distribution

Typical sequence:
T, = ax,—1 modulo m
e This has a period of the order of m
e S0, m should be a large prime number
e Forinstance: m =2 -1landa="7°
e x,/mliesinthe [0, 1] interval
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Outline

e Drawing from distributions
e Discrete event simulation

e Data analysis

e Variance reduction

e Markov Chain Monte Carlo
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