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The problem

Generic problem:

@
subject to
h(zx) = 0 [h:R" —R™]
gl) < 0 [g:R" - R
r € X CR"
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Outline

e Feasible directions, constraint qualification

e Optimality conditions
e Convex constraints
e Lagrange multipliers: necessary conditions
e Lagrange multipliers: sufficient conditions

e Algorithms
e Constrained Newton
e Interior point
e Augmented lagrangian
e Sequential quadratic programming
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Feasible directions

Definitions:
e 1 € R" Is a feasible point if it verifies the constraints

e Given z feasible, d is a feasible direction in x if thereisn > 0
such that

T + ad

Is feasible for any 0 < a < 7.
Convex constraints:
e Let X CRR" beaconvexset,and x, y € X, x # y.
e The direction
d=y—=x
IS feasible in .
e Moreover, foreach 0 < a <1, ax + (1 — a)y IS feasible.
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Feasible directions

Corollary:
o Let X CR"
e Let z be an interior point, that is there exists £ > 0 such that

|z —z|| <e =z € X.

e Then, any direction d Is feasible in .
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Feasible sequences

e Consider the generic optimization problem

o Let z™ € R™ be a feasible point

e The sequence (z) is said to be feasible in z T if
o lim; ..oz =2,
e Jko such that =, Is feasible If & > kg,
o 1, # a7 forall k.
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Feasible sequence: example

e One equality constraint
h(z) = 2% — 29 =0,

e Feasible point: ™ = (0,0)*

o

e Feasible sequence:

;E;|}_\ =
N———
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Feasible sequence: example

e -1 0.5 0 0.5 )
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Feasible limiting direction

Idea: consider the sequence of directions

T — T
dg,

IR

and take the limit.
e Directions d,. are not necessarily feasible
e The sequence may not always converge
e Subsequences must then be considered
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Feasible limiting direction: example

dy
g h(z) =23 — 29 =
da
ds3
/ d_
xm =0
se -1 -0.5 0 0.5 )
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Feasible limiting direction: example

e Constraint; h(z) = 2% — x5 =0
e Feasible point: 2™ = (0,0)7
e Feasible sequence:

e Sequence of directions:
(=1)"k
dr = ( VES+1 )

e Two limiting directions
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Feasible limiting direction: example

h(z) = 2% — 29 =
dq
S
da
ds3
dy
< 4 d/>
e -1 -0.5 0 0.5 )
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Feasible limiting direction

e Consider the generic optimization problem

e Letz™ € R” be feasible
e Let (z)x be afeasible sequence in z™

e Then, d # 0 is a feasible limiting direction in z* for the
sequence (xy )y If there exists a subsequence (xy, ); such that

Notes:

e It is sometimes called a tangent direction.

e Any feasible direction d is also a limiting feasible direction, for
the sequence

1
T, =x7 + =d
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Cone of directions

e Consider the generic optimization problem

e Let ™ € R™ be feasible
e The set of directions d such that

d'Vg;(xT) <0, Vi=1,...,psuchthat g;(z") =0,

and
dTVhi(zt) =0, i=1,...,m,

as well as their multiples ad, o > 0, is the cone of directions at

xt.
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Cone of directions

8 d// | d/

Vh(z™)

- <

-1 -0.5 0 0.5 .(l]ﬂ.
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Cone of directions

Theorem:

e Consider the generic optimization problem
o Let z™ € R™ be feasible
e If d is a limiting feasible direction at =™

e Then d belongs to the cone of directions at x*

=2 TRANSP-OR — I

ECOLE POLYTECHMIQUE
FEDERALE DE LALUSAMME

Optimization and Simulation — p. 16/51



Constraint qualification

Definition:
e Consider the generic optimization problem
e LetzT € R" be feasible

e The constraint qualification condition is verified if every
direction in the cone of directions at = is a feasible limiting
direction at = .

This is verified in particular
e If the constraints are linear, or

o if the gradients of the constraints active at z* are linearly
iIndependent.
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Optimality conditions

Necessary condition for the generic problem:

e Let z* be alocal minimum of the generic problem

e Then
Vix*)'d>0

for each direction d which is feasible limiting at =*.

Intuition: no “feasible” direction I1s a descent direction
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Optimality conditions: convex problem (1)

Consider the problem

subject to
re X CR"
where X is convex and not empty.
e If 2* Is a local minimum of this problem
e Then, forany z € X,

Vi) (z—2*) >0.
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Optimality conditions: convex problem (lI)

e Assume now that X is convex and closed.
e For any y € R", we note by [y]*" the projection of y on X.
e If ™ IS a local minimum, then

¥ = [z* —aVf(z")]" Va > 0.
e Moreover, if f Is convex, the condition is sufficient.

Note: useful when the projection is easy to compute (e.g. bound
constraints)

E (|

- T RANSP'D R ECOLE POLYTECHMIQUE

FEDERALE DE LALUSAMME

Optimization and Simulation — po. 20/51



Optimality conditions: Karush-Kuhn-Tucker

The problem:
min f(z)
subject to
h(zx) = 0 [h:R" —R™]
gz) < 0 |g:R" —RP]
r € X =R"

e Let z* be alocal minimum
e Let L be the Lagrangian

L(z, A, p) = f(z) + XM h(z) + p' g(x).

e Assume that the constraint qualification condition is verified.
e Then...
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Optimality conditions: Karush-Kuhn-Tucker

... there exists a unique \* € R™ and a unique p* € RP such that
Vo L(z" N pw") = V(") + (X)) Vh(z™) + (1) Vg(z*) =0,

W20 j=1...p,
and
pigi(x®) =0 j=1,...,p.

If f, g and h are twice differentiable, we also have

ylI'V2 L(x*, \*, n*)y >0 Vy # 0 such that
yI'Vhi(z*) =0 i=1,...,m
yI'Vg;(z*)=0 4i=1,...,psuchthat g;(z*) = 0.
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KKT: sufficient conditions

Let 2* € R™, A\* € R™ and u* € RP be such that
VaeL(x®, X, u") =0
hx®) =0, g(z*) <0

pe =0,

pigi(x™) =0 Vj, wp; >0 Vjsuchthatg;(z*)=0.

yI'V2 L(x*, \*, u*)y >0 Vy # 0 such that
yI'Vhi(z*) =0 i=1,...,m
yI'Vg;(z*)=0 4i=1,...,psuchthat g;(z*) = 0.

Then x* Is a strict local minimum of the problem.

E (G

- T RANSP'D R ECOLE POLYTECHMIQUE

FEDERALE DE LALUSAMME

Optimization and Simulation — n. 23/51



Algorithms

e Constrained Newton

e Interior point

e Augmented lagrangian

e Sequential quadratic programming

Here: we give the main ideas.
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Constrained Newton

Context:
e Problem with a convex constraint set.

e Assumption: it is easy to project on the set.
e Examples: bound constraints, linear constraints.

Main idea:

e In the unconstrained case, Newton = preconditioned steepest
descent

e Consider first the projected gradient method

e Precondition it.
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Projected gradient method
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Condition number

e Consider V2 f(z) positive definite.
e Let )\, be the largest eigenvalue, and )\,, the smallest.
e The condition number is equal to A;/\,,.

e Geometrically, it is the ratio between the largest and the
smallest curvature.

e The closest it Is to one, the better.

E (|

- T RANSP'D R ECOLE POLYTECHMIQUE

FEDERALE DE LALUSAMME

Optimization and Simulation = p. 27/51



Condition number

Cond =9/2 Cond=1
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Preconditioning

Preconditioning = appropriate change of variables.

e Let M € R™™ "™ be invertible.
e Change of variables = linear application =’ = Mzx.

Consider a function f : R" — R.

fa) = fM ')
Vi) = M'Vf(M ') =MV f(v)
Vif(x') = MTV2f(M~ 'z )M~!

= M IVif(x)M—1.
Now, consider V2 f(x) = LL', and 2/ = L x. Then,

V2f(z") = L7 'W2f(z)L~ T
L't
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Readings

e Bierlaire (2006) Chapter 18.
e Bertsekas (1999) Section 2.3.
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Algorithms

e Constrained Newton

e Interior point

e Augmented lagrangian

e Sequential quadratic programming
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Interior point methods

Motivation:
e At an interior point, every direction is feasible.
e It gives more freedom to the algorithm.
Main ideas:
e Focus first on being feasible.
e Then try to become optimal.
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Barrier functions

e Let X C R” be a closed set.
e Letg: R™ — R™ a convex function.
e Let S be the set of interior points for g:

S={zxeR"z e X,g(x) < 0}.
e A function barrier B : S — R IS continuous and such that

lim  B(x) = 4oc.

x€S,g9(x)—0
e Examples:
B(x) = — Zln(—g] (x))
j=1

1
B(x) = — :
3 @ =-2. 06 (0
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Barrier functions: example (logarithmic)

1<x<3 = B(zx)=—In(z—1) —In(3 — x).

2 2.5 3
ZT
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Barrier methods

e Define a sequence of parameters (e;), such that
.O<5k—|—1<5k;k207]—7---
® limk Ek = 0.

e At each iteration, solve
rp = argmin, s f(x) + e, B(x).

Issues:
e The subproblem should be easy to solve.

e In particular, we should rely on unconstrained optimization. A
descent method should not go outside the constraints, thanks
to the barrier.

e The speed of convergence of (¢ ) IS critical.
Typical applications: linear programming, convex programming

£ (|

- T RANSP'D R ECOLE POLYTECHMIQUE

FEDERALE DE LALUSAMME

Optimization and Simulation — p. 35/51



Readings

e Bierlaire (2006) Chapter 19.
e Bertsekas (1999) Section 4.1.

See also: Wright, S. J. (1997) Primal-Dual Interior-Point Methods,
SIAM
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Algorithms

e Constrained Newton

e Interior point

e Augmented lagrangian

e Sequential quadratic programming
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Augmented Lagrangian

Main ideas:

e Focus first on reducing the objective function, even if
constraints are violated.

e Then recover feasibllity.
e Inspired by the optimality conditions.
We assume that the problem has only equality constraints

min f(2)
subject to
h(x) =0 [h:R" — R™]
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Augmented Lagrangian

e Solve a sequence of unconstrained optimization problems.

e Penalize the constraint violation using
e a lagrangian relaxation, and
e a guadratic penalty function.
Augmented lagrangian

Le(w.A) = f(@) + X h(@) + 5 [[h(@)]*
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Augmented Lagrangian: lagrangian relaxation

e If \* Is known (see optimality conditions).
e Then the solution is given by solving the unconstrained problem

min Le(, A) = f(x) + (\) h(x) + [ h()])*

reR™

with ¢ sufficiently large.

e Unfortunately, A* is not known by default.
e But we will be able to approximate it.
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Augmented Lagrangian: quadratic penalty

e If c becomes large enough, any non feasible point will be non
optimal for

min Lo(z, ) = f(z) + XTh(z) + 5 [h(@)II%,

for any \.
e Consider a sequence (cx)x such that

lim = +o0.
Cl—O0

e Then, for a given A, the sequence
T = argmin,cpn L, (T, M)

converges to a solution of the constrained problem.
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Augmented Lagrangian: quadratic penalty

Main issue:
o If ¢ Islarge, L., (x,\) Is ill-conditioned.

e Methods for unconstrained optimization become slow, or may
even fail to converge.

e But... if Ais close to A\*, no need for large values of ¢;..
Theoretical result:
e Under relatively general conditions, the sequence

lilgn A+ ckh(:vk)

converges to \*.
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Augmented Lagrangian: algorithm

1. Use an unconstrained optimization algorithm to solve
Tp+1 = argming cpn Le, (2, Ag)

to a given precision ¢y.

2. If x;1 Is close to feasibility:
e update the estimate of the multipliers: \p11 = A\ + cxh(xk)
o keep ¢, = cpiq,
e require more precision: ;1 = e /c.

3. If z; 1 Is far from feasibility:
o keep M\pi1 = Mg
e increase cy,
e relax the precision: ;11 = eg/cka1.
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Readings

e Bierlaire (2006) Chapter 20.
e Bertsekas (1999) Section 4.2.
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Sequential quadratic programming

Main ideas:
e Apply Newton’s method to solve the necessary optimality
conditions
VL(z*,\") =0.
e One iteration amounts to solve a quadratic problem.
e Enforce global convergence with a merit function.

We assume that the problem has only equality constraints

min f(z)

subject to
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Sequential quadratic programming

Lagrangian and derivatives:

L(z,)\) = f(z) + \'h(x).

VL(z,\) = < me((;; N ) :
(i )

Newton’s method: at each iteration, find d such that

V2L(zp, M\ )d = =V L(xk, \i),
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Sequential quadratic programming

It can be shown that it is equivalent to solving the following quadratic
problem

1
mjn Vf(xp)td+ idTVimL(xk, Ak )d

subject to
Vh(zi)'d + h(z) = 0.

e An analytical solution can be derived for this problem.
e In practice, dedicated iterative algorithms are used.
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Sequential quadratic programming

e Newton’s method is not globally convergent.
e The same applies to the SQP method described above.

e Idea: apply similar globalization techniques than for
unconstrained optimization (line search, trust region).

e Main concept: reject a candidate if it is not sufficiently better
than the current one.

e But what does “better’ mean?

e Two (potentially) conflicting objectives:
e decrease f(x)
e bring h(x) close to O.
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Sequential quadratic programming

e Solution: combine them into a merit function
Gc(r) = f(x) +cllh(z)|1 = +cZ!h

e For instance, use Wolfe’s conditions on the merit function. But...

e technical difficulties: need to
e guarantee that d is a descent direction for ¢,

e deal with the non differentiability of ¢...
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Sequential quadratic programming

Notes:
e Differentiable merit functions could also be used.
e They may involve singularities.

E (G

- T RANSP'D R ECOLE POLYTECHMIQUE

FEDERALE DE LALUSAMME

Optimization and Simulation — . 50/51



Readings

e Bierlaire (2006) Chapter 21.
e Bertsekas (1999) Section 4.3.
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