# **Optimization and Simulation**

Michel Bierlaire

michel.bierlaire@epfl.ch

Transport and Mobility Laboratory





#### Introduction

- Management of complex systems
  - Transportation systems
  - Environmental systems
  - Process systems
  - Structural systems
  - en.wikipedia.org/wiki/List\_of\_types\_of\_systems\_engineering
- The whole may be different from the sum of the parts
- Need for methods to deal with the complexity
- To optimize: to find the best configuration
- To simulate: to act like.



## Optimization: the problem

$$\min_{x \in \mathbb{R}^n} f(x)$$

subject to

$$h(x) = 0$$

$$g(x) \leq 0$$

$$x \in X \subseteq \mathbb{R}^n$$

#### Modeling elements:

- 1. Decision variables: x
- 2. Objective function:  $f: \mathbb{R}^n \to \mathbb{R} \ (n > 0)$
- 3. Constraints:
  - equality:  $h: \mathbb{R} \to \mathbb{R}^m \ (m \ge 0)$
  - inequality:  $g: \mathbb{R}^n \to \mathbb{R}^p \ (p \ge 0)$
  - X is a convex set





## The problem

- $x_i$ , i = 1, ..., n, are continuous variables
- f, g and h are sufficiently differentiable
- $Y = \{x \in \mathbb{R}^n | h(x) = 0, g(x) \le 0 \text{ and } x \in X\}$  is non empty

**Local minimum**  $x^* \in Y$  is a local minimum of the above problem if there exists  $\varepsilon > 0$  such that

$$f(x^*) \le f(x) \quad \forall x \in Y \text{ such that } ||x - x^*|| < \varepsilon.$$

Global minimum  $x^* \in Y$  is a global minimum of the above problem if

$$f(x^*) \le f(x) \quad \forall x \in Y.$$





## Lagrangian

- Assume  $X = \mathbb{R}^n$  in the above problem
- Consider  $\lambda \in \mathbb{R}^m$
- Consider  $\mu \in \mathbb{R}^p$

The function  $L: \mathbb{R}^{n+m+p} \to \mathbb{R}$  defined as

$$L(x, \lambda, \mu) = f(x) + \lambda^{T} h(x) + \mu^{T} g(x)$$
  
=  $f(x) + \sum_{i=1}^{m} \lambda_{i} h_{i}(x) + \sum_{j=1}^{p} \mu_{j} g_{j}(x)$ 

is called the lagrangian function.



#### **Dual function**

• The function  $q: \mathbb{R}^{m+p} \to \mathbb{R}$  defined as

$$q(\lambda, \mu) = \min_{x \in \mathbb{R}^n} L(x, \lambda, \mu)$$

is called the dual function of the optimization problem.

- Parameters  $\lambda$  and  $\mu$  are called dual variables. x are called primal variables.
- If  $x^*$  is a global minimum of the optimization problem, then, for any  $\lambda \in \mathbb{R}^m$  and any  $\mu \in \mathbb{R}$ ,  $\mu \geq 0$ , we have

$$q(\lambda, \mu) \le f(x^*).$$



### **Dual problem**

Let  $X_q \subseteq \mathbb{R}^{m+p}$  be the domain of q, that is

$$X_q = \{\lambda, \mu | q(\lambda, \mu) > -\infty\}$$

The optimization problem

$$\max_{\lambda,\mu} q(\lambda,\mu)$$

subject to

$$\mu \geq 0$$

and

$$(\lambda,\mu)\in X_q$$

is called the dual problem of the original problem, which is called the primal problem in this context.



#### **Duality results**

Weak duality theorem Let  $x^*$  be a global minimum of the primal problem, and  $(\lambda^*, \mu^*)$  a global maximum of the dual problem. Then,

$$q(\lambda^*, \mu^*) \le f(x^*).$$

#### Convexity-concavity of the dual problem

- The objective function of the dual problem is concave.
- The feasible set of the dual problem is convex.



