
Tutorial on MATLAB
MATH-600: Optimization and Simulation

Winter 2012

Bilal Farooq

February 24, 2012

1. Introduction

MATLAB is a specialized tool developed by MathWorks for performing numerical

computations using matrices and vectors. It also has the visualization capabilities to

display the results and data graphically. Cleve Moler wrote the first full version of

MATLAB in 1970s and since then it has been commercialized and evolved into a leading

tool for numerical computations. Due to its specialized nature, various numerical

functionalities are available built-in, which makes the development of code in MATLAB

faster thus one can focus more on the thinking, thoroughness, and experimentation. The

graphical capabilities provided in MATLAB are very useful and can be outputted as

pictures (TIFF, JPEG, or EPS), which you can use in MS Word and LATEX. For advance

users, the interfaces to native languages (including: Fortran, C, C++, Java, and .NET

framework) are provided.

2. Documentation and Resources

Due to its wide usage by the research community and industry for a long time, there is a

wealth of resources available for MATLAB on Internet. The prime source for

documentation is recommended to be the official tutorials on the MathWorks’ student

center (http://www.mathworks.com/academia/student_center/tutorials/launchpad.html).

MATLAB Central (http://www.mathworks.com/MATLABcentral/) is also a good place

for newsgroup, usergroups, examples, and other support.

EPFL provides latest version of MATLAB to its researchers via their Gasper account.

The installer can be downloaded from Distrilog for Windows, MacOS X and Linux

(After logging in, search for MATLAB on http://distrilog.epfl.ch/search.aspx). There are

two options: Standalone and Network license. The license for the standalone version has

to be updated every February, so it is recommended to install the network version. In case

you use MATLAB with network license from home, you will have to logon to EPFL

VPN first.

3. Getting Started

After launching the MATLAB application, the main window appears, which is shown in

Figure 1. It has various sub frames showing different information.

3.1 The Command Window

As clear from the name, it is the central point of the MATLAB interface (figure 1) from

where you can execute commands, functions, and various numerical operations. In the

command window, write clc and press Enter/Retrun key. This will clear the screen from

any past text. As a start, you can use it as a calculator by writing the calculations (try

1+1…or may be a bit less trivial than that!) and pressing Enter/Return.

The window on bottom right (Command History) keeps the history of commands being

executed in current and past sessions. You can browse through them and double click on

them to execute any previous command.

Figure 1: MATLAB Interface

Few examples: exp(1), (log(2)+sin(60))^2, sin(pi/4),1/ -1.3412e+03

format long

Tip: Use up arrow few to repeat the command

3.2 Command Line Help

Use help command to list the complete help topics. For more focused topics use:

help matlab/general

General purpose commands.

help matlab/lang

Programming language constructs

help matlab/elfun

Elementary math functions.

For help on a keyword use

help function

4. Important Tools

In this section we will discuss basic, but important dimensions of the MATLAB scripting

language.

4.1 Classes (Data Types)

Figure 2: Basic Data Types in MATLAB

(Source: http://www.mathworks.com/help/techdoc/matlab_prog/f2-47534.html)

MATLAB recognizes Complex numbers (3.43–5.4i), infinity (Inf), and Not a Number

(NaN 0/0)

4.2 Variables

A MATLAB variable is essentially a tag that you assign to a value while that value

remains in memory. The tag gives you a way to reference the value in memory so that

your programs can read it, operate on it with other data, and save it back to memory.

MATLAB variable names must begin with a letter, which may be followed by any

combination of letters, digits, and underscores. MATLAB distinguishes between

uppercase and lowercase characters, so A and a are not the same variable.
>> N=30;

>> N

N =

 30

>>N=N-20

N =

 10

>> isvarname 3_(#@#*$

ans =

 0

MATLAB provides three basic types of variables:

4.1.1 Local Variable

Variable defined within function has a local level scope. Variables defined in a function

do not remain in memory from one function call to the next, unless they are defined as

Global or Persistent. Suppose, for example, you want to study the effect of the interaction

coefficients, α and β, in the Lotka-Volterra predator-prey model.

Create a program file, lotka.m

function yp = lotka(y)

%LOTKA Lotka-Volterra predator-prey model.

 ALPHA = 0.01

 BETA = 0.02

 yp = [y(1) - ALPHA*y(1)*y(2); -y(2) + BETA*y(1)*y(2)];

end

Then using command prompt enter the statements
lotka([1; 1]);

4.1.2 Global Variable

If the same variable in a base workspace can be used in various functions, it can be

defined as global scope.

Create a program file, lotka.m

function yp = lotka(y)

%LOTKA Lotka-Volterra predator-prey model.

 global ALPHA BETA

 yp = [y(1) - ALPHA*y(1)*y(2); -y(2) + BETA*y(1)*y(2)];

end

Then using command prompt enter the statements

global ALPHA BETA

ALPHA = 0.01

BETA = 0.02

lotka([1; 1]);

4.1.3 Persistent Variable

MATLAB does not clear them from memory when the function exits, so their value is

retained from one function call to the next.

function findSum(inputvalue)

 persistent SUM_X

 if isempty(SUM_X)

 SUM_X = 0;

 end

 SUM_X = SUM_X + inputvalue

end

Then using command prompt enter the statements
>> findSum(20);

SUM_X =

 20

>> findSum(20);

SUM_X =

 40

>> findSum(20);

SUM_X =

 60

4.2 Vectors

There are two types of vectors: row vector and column vector.

In row vector values is separated by commas or spaces
>> v = [3 1];
>> v
v =
 3 1
>> a = [1:3,6]
a =
 1 2 3 6
>> b = [1:0.5:3]
b =
 1.0000 1.5000 2.0000 2.5000 3.0000

Accessing an element of a vector
>> b(1)
ans =
 1.0000

In column vectors values are separated by semicolon
>> v = [3;1];
v =
 3
 1

Transposing a vector

>> v = [3;1]'
v =
 3 1

Basic operations on vectors

Vector addition/subtraction

>> v(1:3)-v(2:4)
ans =
 -2 -2 -2

Vector multiplication

>> a =[1;5]
a =
 1
 5
>> v*a
ans =
 8

Multiplication/division by constant

>> v/3
ans =
 1.0000 0.3333

More arithmetic

>> -2*a'+v/3
ans =
 -1.0000 -9.6667

>> -2*a+v/3
??? Error using ==> plus
Matrix dimensions must agree.

4.3 Matrices

Vectors are special case of matrices, so we can define a matrix in the same way by

combing the operation.
>> D = [1,2,2;3,2,1]

D =

 1 2 2

 3 2 1

Zero matrix
>> Z = zeros(3,3)

Z =

 0 0 0

 0 0 0

 0 0 0

One matrix
>> Z = ones(3,3)

Z =

 1 1 1

 1 1 1

 1 1 1

Identity matrix
>> I = eye(3),3*I

I =

 1 0 0

 0 1 0

 0 0 1

ans =

 3 0 0

 0 3 0

 0 0 3

Diagonal matrix
>> D = [-3 0 0; 0 4 0; 0 0 2]

D =

 -3 0 0

 0 4 0

 0 0 2

or
>> d = [-3 4 2], D = diag(d)

d =

 -3 4 2

D =

 -3 0 0

 0 4 0

 0 0 2

Inverse of a matrix
>> inv(D)

ans =

 -0.3333 0 0

 0 0.2500 0

 0 0 0.5000

Size of a matrix

>> D = [1,2,2;3,2,1]

D =

 1 2 2

 3 2 1

>> size(D)

ans =

 2 3

Dot product (.*)

>> A = [1,2,3;-1,2,-2;3,5,-9];

>> B = [-2 3 1

 -1 2 2

 3 -2 2];

>> A.*B

ans =

 -2 6 3

 1 4 -4

 9 -10 -18

For more details on matrix operations, please see Griffiths, 2005 and

http://www.mathworks.com/help/techdoc/learn_matlab/f2-644.html .

4.4 Plotting (Griffiths, 2005)

Suppose we wish to plot a graph of 𝑦 = 𝑐𝑜𝑠 3𝜋 𝑥 𝑓𝑜𝑟 0 ≤ 𝑥 ≤ 1. We do this by

sampling the function at a sufficiently large number of points and then joining up the

points (𝑥,𝑦) by straight line segments. Suppose we take 𝑁 + 1 points equally spaced a

distance h apart:
>> N=10;h=1/N; x= 0:h:1;

This will define set of points 𝑥 = 0, ℎ, 2ℎ,… ,1− ℎ, 1. Same can be achieved by

linspace(a,b,n), which generated 𝑛 + 1 equidistant points between a and b, inclusive

>> x=linspace(0,1,11);
>> y = cos(3*pi*x);
>> plot(x,y)

>> x=linspace(0,1,51);
>> y = cos(3*pi*x);
>> plot(x,y)
title('Graph of y = cos(3pi x)')
xlabel('x axis')
ylabel('y-axis')

These plots can be saved as jpeg or other picture formats. For details on graphics in

MATLAB, please see: http://www.mathworks.com/help/techdoc/ref/f16-8602.html

4.5 .m File format

It is the text based file format in which you can write functions and scripts that can then

be executed in MATLAB environment.

4.6 Functions, Scripts and Loops

You can enter commands one at a time at the MATLAB command line, but many times it

makes more sense to write a series of commands to a file (.m file) that you then execute

as you would any MATLAB function. These functions can then be called like any other

MATLAB function or command. There are two kinds of program files:

- Scripts, which do not accept input arguments or return output arguments. They

operate on data in the workspace

- Functions, which can accept input arguments and return output arguments.

Internal variables are local to the function, but you can define global or persistent

variables

4.6.1 Script

Create a file name surface3D.m that has following code:
[a,b] = meshgrid(-2:.2:2, -2:.2:2);

c = a.* exp(-a.^2 - b.^2);

surf(a,b,c)

Save it, and type surface3D on the command line

4.6.2 Functions (Griffiths, 2005)

Save the following code in area.m
function [A] = area(a,b,c)

% Compute the area of a triangle whose

% sides have length a, b and c.

% Inputs:

% a,b,c: Lengths of sides

% Output:

% A: area of triangle

% Usage:

% Area = area(2,3,4);

% Written by dfg, Oct 14, 1996.

s = (a+b+c)/2;

A = sqrt(s*(s-a)*(s-b)*(s-c));

%%%%%%%%% end of area %%%%%%%%%%%

Save and on command line write:
>> Area = area(10,15,20)

Area =

72.6184

4.6.3 Looping

For loop
>> a = [0.8 0.1; 0.2 0.9]

>> x = [1; 0]

>> for i = 1:20, x = a*x, end

In cases where the interval is not 1, use:
>> for i = 1:2:20, x = a*x, end

While loop:
>> S = 1; n = 1;

>> while S+(n+1)^2 < 100

n = n+1; S = S + n^2;

end

>> [n, S]

ans =

6 91

More on programming: http://www.mathworks.com/help/techdoc/learn_matlab/f4-

8955.html

5. References

• Griffiths D.F. (2005) An Introduction to MATLAB (v2.3),

http://www.maths.dundee.ac.uk/~ftp/na-reports/MATLABNotes.pdf

• MATLAB: Getting started

http://www.mathworks.com/help/pdf_doc/MATLAB/getstart.pdf

• http://www.math.utah.edu/lab/ms/MATLAB/MATLAB.html

• MATLAB tutorials and Learning Resources

http://www.mathworks.com/academia/student_center/tutorials/launchpad.html

• http://www.math.utah.edu/lab/ms/matlab/matlab.html

