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Preface

Optimization algorithms are important tools for engineers, but difficult to use. In
fact, none of them is universal, and a good understanding of the different methods is
necessary in order to identify the most appropriate one in the context of specific appli-
cations. Designed to teach undergraduate engineering students about optimization,
this book also provides professionals employing optimization methods with significant
elements to identify the methods that are appropriate for their applications, and to
understand the possible failures of certain methods on their problem. The content
is meant to be formal, in the sense that the results presented are proven in detail,
and all described algorithms have been implemented and tested by the author. In
addition, the many numeric and graphic illustrations constitute a significant base for
understanding the methods.

The book features eight parts. The first part focuses on the formulation and the
analysis of the optimization problem. It describes the modeling process that leads to
an optimization problem, as well as the transformations of the problem into an equiv-
alent formulation. The properties of the problem and corresponding hypotheses are
discussed independently of the algorithms. Subsequently, the optimality conditions,
the theoretical foundations that are essential for properly mastering the algorithms,
are analyzed in detail in Part II. Before explaining the methods for unconstrained
continuous optimization in Part IV, algorithms for solving systems of non linear
equations, based on Newton’s method, are described in Part III. The algorithms for
constrained continuous optimization constitute the fifth part. Part VI addresses op-
timization problems based on network structures, elaborating more specifically on
the shortest path problem and the maximum flow problem. Discrete optimization
problems, where the variables are constrained to take integer values, are introduced
in Part VII, where both exact methods and heuristics are presented. The last part is
an appendix containing the definitions and theoretical results used in the book.

Several chapters include exercises. Chapters related to algorithms also propose
projects involving an implementation. It is advisable to use a mathematical program-
ming language, such as Octave (Eaton, 1997) or Matlab (Moled, 2004). If a language
such as C, C++, or Fortran is preferred, a library managing the linear algebra, such
as LAPACK (Anderson et al., 1999), can be useful. When time limits do not allow
a full implementation of the algorithms by the students, the teaching assistant may
prepare the general structure of the program, including the implementation of opti-
mization problems (objective function, constraints, and derivatives) in order for the
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students to focus on the key points of the algorithms. The examples described in
detail in this book enable the implementations to be verified.

Optimization is an active research field, that is, permanently stimulated by the
needs of modern applications. Many aspects are absent from this book. “Every choice
entails the rejection of what might have been better,” said Andre Gide. Among the
important topics not covered in this book, we can mention

o the numerical aspects related to the implementation, particularly important and
tricky in this area (see, e.g., Dennis and Schnabel, 1996);

« the convergence analysis of the algorithms (see, e.g., Ortega and Rheinboldt, 1970,
Dennis and Schnabel, 1996, Conn et al., 2000, and many others);

« automatic differentiation, allowing the automatic generation of analytical deriva-
tives of a function (Griewank, 1989, Griewank, 2000);

« techniques to deal with problems of large size, such as updates with limited mem-
ory (Byrd et al., 1994) or partially separable functions (Griewank and Toint, 1982);

« homotopy methods (Forster, 1995);
« semidefinite optimization (Gértner and Matousek, 2012);

o the vast field of convex optimization (Ben-Tal and Nemirovski, 2001, Boyd and
Vandenberghe, 2004, Calafiore and El Ghaoui, 2014);

« stochastic programming (Birge and Louveaux, 1997, Shapiro et al., 2014);
« robust optimization (Ben-Tal et al., 2009), where uncertainty of the data is ex-

plicitly accounted for.

This book is the fruit of fifteen years of teaching optimization to undergraduate
students in engineering at the Ecole Polytechnique Fédérale of Lausanne. Except for
the parts of the book related to networks and discrete optimization that are new, the
material in the book has been translated from Bierlaire (2006), a textbook in French.
The main sources of inspiration are the following books:

« Bertsimas and Weismantel (2005)
o de Werra et al. (2003)

« Bonnans et al. (2003)

« Conn et al. (2000)

» Nocedal and Wright (1999)

« Bertsekas (1999)

« Wolsey (1998)

« Bertsekas (1998)

« Bertsimas and Tsitsiklis (1997)
o Wright (1997)

« Dennis and Schnabel (1996)

o Ahuja et al. (1993).



Preface ix

There are many books on optimization. Within the vast literature, we may cite
the following books in English: Beck (2014), Calafiore and El Ghaoui (2014), Ben-
Tal et al. (2009), Boyd and Vandenberghe (2004), Ben-Tal and Nemirovski (2001),
Conn et al. (2000), Kelley (1999), Kelley (1995), Birge and Louveaux (1997), Den-
nis and Schnabel (1996), Axelsson (1994), Polyak (1987), Scales (1985), Coleman
(1984), McCormick (1983), Gill et al. (1981), Fletcher (1980), Fletcher (1981), Or-
tega and Rheinboldt (1970), and Fiacco and McCormick (1968). Several books are
also available in French. Among them, we can cite Korte et al. (2010), Dodge (2006),
Cherruault (1999), Breton and Haurie (1999), Hiriart-Urruty (1998), Bonnans et al.
(1997), and Gauvin (1992).

The bibliographic source for the biographies of Jacobi, Hesse, Lagrange, Fermat,
Newton, Al Khwarizmi, Cauchy, and Lipschitz is Gillispie (1990). The information
about Tucker (Gass, 2004), Dantzig (Gass, 2003), Little (Larson, 2004), Fulkerson
(Bland and Orlin, 2005), and Gomory (Johnson, 2005) come from the series JFORS’
Operational Research Hall of Fame. The source of information for Euler is his
biography by Finkel (1897). Finally, the information on Davidon was taken from his
web page

www.haverford.edu/math/wdavidon.html

and from Nocedal and Wright (1999). The selection of persons described in this work
is purely arbitrary. Many other mathematicians have contributed significantly to the
field of optimization and would deserve a place herein. I encourage the reader to read,
in particular, the articles of the series IJFORS’ Operational Research Hall of Fame
published in International Transactions in Operational Research, expressly
dealing with Morse, Bellman, Kantorovich, Erlang, and Kuhn.

Online material

The book has a companion website:

www.optimizationprinciplesalgorithms.com

The algorithms presented in the book are coded in GNU Octave, a high-level in-
terpreted language (www.gnu.org/software/octave), primarily intended for numerical
computations. The code for the algorithms, as well as examples of optimization prob-
lems, are provided. All the examples have been run on GNU Octave, version 3.8.1.
on a MacBook Pro running OS X Yosemite 10.10.2. If you use these codes, Michel
Bierlaire, the author, grants you a nonexclusive license to run, display, reproduce, dis-
tribute and prepare derivative works of this code. The code has not been thoroughly
tested under all conditions. The author, therefore, does not guarantee or imply its
reliability, serviceability, or function. The author provides no program services for
the code.
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Part 1

Formulation and analysis of the
problem






No one trusts a model except the
man who wrote it; everyone trusts
an observation, except the man who
made it.

Harlow Shapley

Modeling is a necessity before any optimization process. How do we translate a
specific problem statement into a mathematical formulation that allows its analysis
and its resolution? In this first part, we propose modeling in the field of optimization.
Then, we identify the properties of the optimization problem that are useful in the
development of the theory and algorithms.






Chapter 1

Formulation

Contents
1.1 Modeling . . . . . . i i i i i i ittt e e e e e e e e 5
1.1.1 Projectile . . . . . . ... . 6
1.1.2  SWISSCOmM . . . . . . . i e e e e e e 7
1.1.3 Chateau Laupt-Himum . . ... ... .. ... ...... 9
1.14 Euclid . . . . . . . . e 11
1.1.5 Agent 007 . . . . . . . . . ... 11
1.1.6 Indiana Jones . . . . . . . . . . . ... 13
1.1.7 Geppetto . . . . .. 14
1.2 Problem transformations . . . ... ... .......... 16
1.2.1 Simple transformations . . .. ... ... ... ... .. 16
1.2.2 Slack variables . . . .. .. ... ... ... .. ...... 19
1.3 Hypotheses . . .. ... ... 20
1.4 Problem definition . . . . . . ... ... ... .. 0 0. 21
1.5 EXEercCiSes. . . ¢ v v v v v v v v o v o vt ot e et e e e e e 26

1.1 Modeling

The need to optimize is a direct result of the need to organize. Optimizing consists in
identifying an optimal configuration or an optimum in a system in the broadest sense
of the term. We use here Definition 1.1, given by Oxford University Press (2013).

Definition 1.1 (Optimum). (In Latin optimum, the best). The most favorable
or advantageous condition, value, or amount, especially under a particular set of

circumstances.

As part of a scientific approach, this definition requires some details. How can we
judge that the condition is favorable, and how can we formally describe the set of

circumstances?



6 Modeling

The answer to these questions is an essential step in any optimization: mathe-
matical modeling (Definition 1.2 by Oxford University Press, 2013). The modeling
process consists of three steps:

1. The identification of the decision variables. They are the components of the
system that describe its state, and that the analyst wants to determine. Or, they
represent configurations of the system that are possible to modify in order to
improve its performance. In general, if these variables are n in number, they are
represented by a (column)’ vector of R™, often denoted by x = (x7 .. xn)T e,

X1

Xn

In practice, this step is probably the most complicated and most important. The
most complicated because only experience in modeling and a good knowledge of
the specific problem can guide the selection. The most important because the rest
of the process depends on it. An inappropriate selection of decision variables can
generate an optimization problem that is too complicated and impossible to solve.

2. The description of the method to assess the state of the system in question, given
a set of decision variables. In this book, we assume that the person performing
the modeling is able to identify a formula, a function, providing a measure of the
state of the system, a value that she wants to make the smallest or largest possible.
This function, called objective function, is denoted by f and the aforementioned
measure obtained for the decision variables x is a real number denoted by f(x).

3. The mathematical description of the circumstances or constraints, specifying the
values that the decision variables can take.

Definition 1.2 (Mathematical model). Mathematical representation of a physical,
economic, human phenomenon, etc., conducted in order to better study it.

The modeling process is both exciting and challenging. Indeed, there is no uni-
versal recipe, and the number of possible models for a given problem is only limited
by the imagination of the modeler. However, it is essential to master optimization
tools and to understand the underlying assumptions in order to develop the adequate
model for the analysis in question. In this chapter, we provide some simple examples
of modeling exercises. In each case, we present a possible modeling.

1.1.1 Projectile

We start with a simple problem. A projectile is launched vertically at a rate of 50
meters per second, in the absence of wind. After how long and at which altitude does

1 See Appendix A about the mathematical notations used throughout the book.
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it start to fall? Note that, in this case, the decision variables represent a state of the
system that the analyst wants to calculate.
The modeling process consists of three steps.

Decision variables A single decision variable is used. Denoted by x, it represents
the number of seconds from the launch of the projectile. Note that in this case,
the decision variables represent a state of the system that the analyst wants to
calculate.

Objective function We seek to identify the maximum altitude reached by the ob-
ject. We must thus express the altitude as a function of the decision variable. Since
we are dealing with the uniformly accelerating movement of an object subjected
to gravity, we have

9.81
f(x) :7%X2+V0X+X0 :—78x2+50x,

where g = 9.81 is the acceleration experienced by the projectile, vo = 50 is its
initial velocity, and xo = 0 is its initial altitude.

Constraints Time only goes forward. Therefore, we impose x > 0.
We obtain the optimization problem

9.81 ,
max ——-—x +50x%, (1.1)

subject to (s.t.)
x > 0. (1.2)

1.1.2 Swisscom

The company Swisscom would like to install an antenna to connect four important
new customers to its network. This antenna must be as close as possible to each
client, giving priority to the best customers. However, to avoid the proliferation of
telecommunication antennas, the company is not allowed to install the new antenna
at a distance closer than 10 km from the other two antennas, respectively located at
coordinates (—5,10) and (5,0) and represented by the symbol & in Figure 1.1. The
coordinates are expressed in kilometers from Swisscom’s headquarters. Swisscom
knows the geographic situation of each customer as well as the number of hours of
communication that the customer is supposed to consume per month. This data is
listed in Table 1.1. At which location should Swisscom install the new antenna?
The modeling process consists of three steps.

Decision variables Swisscom must identify the ideal location for the antenna, i.e.,
the coordinates of that location. We define two decision variables x; and x;
representing these coordinates in a given reference system.

Objective function The distance di(x1,x2) between a customer i located at the
coordinates (aj, b;) and the antenna is given by

dix1,%2) = /(1 — @) + (x2 — bi)2. (13)
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Y

Figure 1.1: Swisscom problem

Table 1.1: Data for Swisscom customers

Customer Coord. Hours

1 (5,10) 200
2 (10,5) 150
3 (0,12) 200
4 (12,0) 300

To take into account the communication time, we measure the sum of the distances
weighted by the number of consumed hours:

f(x1,%x2) =200d7 (x1,%x2) +150d2(x1,%x2)
+200d3(x1,%x2) +300d4(x1,%x2)

:200\/(x1 —5)2 4 (xz — 10)2

+150 \/m —10)2 + (x2 — 5)2

4200 1/x% + (x2 — 12)2

+300 /(%1 —12)2 +x3.

Constraints The constraints on the distances between the antennas can be expressed
as

V1502 + (x2 —10)2 > 10 (L.5)
and
(x1 —5)2 +x3 >10. (1.6)
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We can combine the various stages of modeling to obtain the following optimiza-
tion problem:

min f(x7,x3) = 200 \/(x1 —5)2 4+ (x2 —10)2

x€ER2
+150 4/ (x1 —10)2 + (x2 — 5)2
Vx1 =102 + (x2 - 5) W
4200 /%% + (x2 —12)2
43004/ (x1 — 12)2 +x3
subject to (s.t.)
V01 +5)2+ (2 = 10)2 > 10
(1.8)

V0 =512 + (2 — 1012 > 10.

1.1.3 Chateau Laupt-Himum

The Chéteau Laupt-Himum produces rosé wine and red wine by buying grapes from
local producers. This year they can buy up to one ton of Pinot (a red grape) from a
winegrower, paying € 3 per kilo. They can then vinify the grapes in two ways: either
as a white wine to obtain a rosé wine or as a red wine to get Pinot Noir, a full-bodied
red wine. The vinification of the rosé wine costs € 2 per kilo of grapes, while that of
the Pinot Noir costs € 3.50 per kilo of grapes.

In order to take into account economies of scale, the Chateau wants to adjust the
price of its wine to the quantity produced. The price for one liter of the rosé is €15
minus a rebate of €2 per hundred liters produced. Thus, if they produce 100 liters
of rosé, they sell it for €13 per liter. If they produce 200, they sell it for €11 per
liter. Similarly, they sell the Pinot Noir at a price of € 23 per liter, minus a rebate of
€ 1 per hundred liters produced.

How should the Chéateau Laupt-Himum be organized in order to maximize its
profit, when a kilo of grapes produces 1 liter of wine?

The modeling process consists of three steps.

Decision variables The strategy of the Chateau Laupt-Himum is to decide how
many liters of rosé wine and Pinot Noir to produce each year, and the number of
kilos of grapes to buy from the winegrower. Therefore, we define three decision
variables:

e X1 is the number of liters of rosé wine to produce each year,
e X2 is the number of liters of Pinot Noir to produce,
o X3 is the number of kilos of grapes to buy.

Objective function The objective of the Chateau Laupt-Himum is to maximize its
profit. This gain is the income from the wine sales minus the costs.
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Each liter of rosé wine that is sold gives (in €)

15— —
100 !
taking into account the reduction. Similarly, each liter of Pinot Noir gives (in €)
1
——X2.
100
The revenues corresponding to the production of x; liters of rosé wine and x,
liters of Pinot Noir are equal to

2 1
X1 (15@7(]) +X2<23WX2> .

It costs 3x3 to purchase the grapes. To produce a liter of wine, they need one kilo
of vinified grapes, which costs €2 for the rosé and € 3.50 for the Pinot Noir. The
total costs are

23

2x1 +3.5%2 + 3x3.

The objective function that the Chateau Laupt-Himum should maximize is

2 1
X1 (]5— W)ﬂ) +X2<23— WX2> — (ZX] +3.5X2+3X3).

Constraints The Chateau cannot buy more than 1 ton of grapes from the wine-

grower, i.e.,
x3 < 1,000.

Moreover, they cannot produce more wine than is possible with the amount of
grapes purchased. As one kilo of grapes produces one liter of wine, we have

X1 +x2 <x3.

It is necessary to add constraints which are, although apparently trivial at the
application level, essential to the validity of the mathematical model. These con-
straints specify the nature of the decision variables. In the case of Chateau Laupt-
Himum, negative values of these variables would have no valid interpretation. It
is necessary to impose

x1 >0, x2 >0, x3 > 0. (1.9)

We combine the modeling steps to obtain the following optimization problem:

max f(x) = x; (15 — %m) + %2 (23 — Lm) —(2x1 +3.5%x2 +3x3) (1.10)

x€R3 100
subject to
X1 +%x2 < X3
x3 < 1000
x1 >0 (1.11)
x2 >0

x3 > 0.
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1.1.4 Euclid

In about 300 BC, the Greek mathematician Euclid was interested in the following
geometry problem: what is the rectangle with the greatest area among the rectangles
with given perimeter L? This is considered as one of the first known optimization
problems in history. We write it in three steps.

Decision variables The decision variables are the length x; and the height x; of the
rectangle, expressed in any arbitrary unit.

Objective function We are looking for the rectangle with maximum area. There-
fore, the objective function is simply equal to x1x;.

Constraints The total length of the edges of the rectangle must be equal to L, that
is
2x1 + 2x; = L. (1.12)

Moreover, the dimensions x; and x; must be non negative:
x1 >0 and x; > 0. (1.13)

Combining everything, we obtain the following optimization problem:

max X1X2 (1.14)
xER2
subject to
2x1+2x2 = L
x1; > 0 (1.15)
x; > 0.

1.1.5 Agent 007

James Bond, secret agent 007, has a mission to defuse a nuclear bomb on a yacht
moored 100 meters from shore. Currently, James Bond is 80 meters from the nearest
point to the yacht on the beach. He is capable of running on the beach at 20 km/h
and swimming at 6 km/h. Given that he needs 30 seconds to defuse the bomb, and
that the bomb is programmed to explode in 102 seconds, will James Bond have the
time to save the free world? This crucial issue, illustrated in Figure 1.2, can be solved
by an optimization problem.
The modeling process consists of three steps.

Decision variables The decision that James Bond must make in order to arrive as
fast as possible on the yacht is to choose when to stop running on the beach and
start swimming towards the yacht. We define a decision variable x representing
the distance in meters to run on the beach before jumping into the water.

Objective function Since the objective is to minimize the time to get to the yacht,
the objective function associates a decision x with the corresponding time in sec-
onds. Since James Bond runs at 20 km/h, the x meters on the beach are covered
in 3.6x/20 seconds, i.e., 18x/100 seconds. From there, he swims a distance of

/1002 4 (80 — x)? (1.16)
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Figure 1.2: The setting for James Bond

at a speed of 6 km/h. This takes him

% 1002 + (80 —x)2 = 0.6 \/1002 + (80 —x)2 (1.17)

seconds. The objective function is

1
f(x) = %x+ 0.64/1002 + (80 —x)2. (1.18)

Note that the trivial decisions such as x = 0 and x = 80 have disastrous conse-
quences for the future of the planet. An optimization approach is essential.

Constraints A secret agent like James Bond suffers no constraint! However, it makes
sense to require that he does not run backward or beyond the yacht, that is,

0<x<80.

We can combine the different steps of the modeling to obtain the following opti-
mization problem:

18
1 = — 2 J— 2
Iggﬁf(x) ]00x+0.6 1002 + (80 — x) (1.19)
subject to
x>0
(1.20)
x < 80.

This example is inspired by Walker (1999).
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1.1.6 Indiana Jones

During his quest to find the cross of Coronado, the famous archaeologist Indiana
Jones gets stuck facing a huge room filled with Pseudechis porphyriacus, venomous
snakes. This room is 10 meters long and 5 high. Given the aversion the adventurer
has for these reptiles, it is impossible for him to wade through them, and he considers
passing over them. However, the roof is not strong enough, so he cannot walk on it.
Ever ingenious, he places the end of a ladder on the ground, blocked by a boulder,
leans it on the wall, and uses it to reach the other end of the room (Figure 1.3). Once
there, he uses his whip to get down to the floor on the other side of the snake room.
Where on the floor must he place the end of the ladder, so that the length used is as
small as possible, and the ladder thus less likely to break under his weight? We write
the optimization problem that would help our hero.

X2

X1

Figure 1.3: The setting for Indiana Jones

The modeling process consists of three steps.

Decision variables The decision variable is the position on the floor of the end of
the ladder. To facilitate our modeling work, let us also use a decision variable for
the other end of the ladder. Thus

e X1 is the position on the floor of the ladder’s end,
e X2 is the height of the other end of the ladder at the other end of the room.

Objective function Since the objective is to find the smallest possible ladder, we

minimize its length, i.e.,
f(x) = \/xF +x3.

Constraints The positions x; and x; should be such that the ladder is leaned exactly
on the edge of the wall of the room. By using similar triangles, this constraint
can be expressed as

X2 h . X2 — h

x1 x1—0 0
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or
X1xX2 —hx; —€x; =0.

Finally, the ends of the ladder must be outside the room, and

x1 >4 and X2 > h.

We can combine the modeling steps to obtain the following optimization problem:
min y/x3 + x3 1.21
R 1 2 ( )

X1x2 —hxy —4Ix2 =0
xq > ¢ (1.22)
X2 > h.

subject to

1.1.7 Geppetto

The company Geppetto Inc. produces wooden toys. It specializes in the manufacture
of soldiers and trains. Each soldier is sold for € 27 and costs € 24 in raw material. To
produce a soldier, 1 hour of carpentry labor is required, as well as 2 hours of finishing.
Each train is sold for € 21 and costs € 19 in raw material. To produce a train, it takes
1 hour of carpentry labor and 1 hour of finishing. Geppetto has two carpenters and
two finishing specialists each working 40 hours per week. He himself puts in 20 hours
per week on finishing work. The trains are popular, and he knows that he can always
sell his entire production. However, he is not able to sell more than 40 soldiers per
week. What should Geppetto do to optimize his income?
The modeling process is organized in three steps.

Decision variables Geppetto’s strategy is to determine the number of soldiers and
trains to produce per week. Thus, we define two decision variables:

e X1 is the number of soldiers to produce per week,

e X2 is the number of trains to produce per week.

Objective function The objective of Geppetto is to make as much money as pos-
sible. The quantity to maximize is the profit. Geppetto’s gains consist of the
income from the sales of the toys, minus the cost of the raw material. Geppetto’s
income is the sum of the income from the sales of the soldiers and the sales of the
trains. The income (in €) from the sales of the soldiers is the number of soldiers
sold multiplied by the selling price of one soldier, i.e., 27x;. The income from
the sales of the trains is 21x,. The total income for Geppetto is 27x7 + 21 x>.
Similarly, we evaluate the material costs to 24 x; + 19x,. The gain is

(27x1 +21x2) — (24 %7 + 19x2), (1.23)

or
f(x) = 3x1 +2x2 . (1.24)
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Constraints The production is subject to three main constraints. First, the available
labor does not allow more than 100 finishing hours (performed by two workers and
Geppetto) and 80 hours of carpentry (performed by two carpenters). Furthermore,
to avoid unsold objects, they should not produce more than 40 soldiers per week.
The number of hours per week of finishing is the number of hours of finishing
for the soldiers, multiplied by the number of soldiers produced, plus the hours of
finishing for the trains, multiplied by the number of trains produced. This number
may not exceed 100, and we can express the following constraint:

2x1 +x2 < 100. (1.25)
A similar analysis of the carpentry resources leads to the following constraint:
x1 +x2 < 80. (1.26)
Finally, the constraint to avoid unsold products can simply be written as:
x1 <40. (1.27)

At this stage, it seems that all the constraints of the problem have been described
mathematically. However, it is necessary to add constraints that are, although
apparently trivial at the application level, essential to the validity of the mathe-
matical model. These constraints specify the nature of the decision variables. In
the case of Geppetto, it is not conceivable to produce parts of trains or soldiers.
The decision variables must absolutely take integer values, so that

X1 GN, x2 € N, (1.28)

We combine the different stages of the modeling to obtain the following optimiza-
tion problem:

max f(x) = 3x1 + 2x2, (1.29)
xeN2

subject to
2x1 + x2 < 100
X1 + x2 < 80 (1.30)
X1 < 40.

Interestingly, the constraints (1.28), albeit of a trivial aspect, significantly compli-
cate the optimization methods. Most of the book is devoted to problems where the
integrality of the variables is not imposed. An introduction to discrete optimization
is provided in Part VII. This example is inspired by Winston (1994).
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1.2 Problem transformations

Even though the modeling step is completed, we are not yet out of the woods. In-
deed, there are many ways to write a given problem mathematically. Algorithms and
software often require a special formulation based on which they solve the problem.
In this chapter, we study techniques that help us comply with these requirements.

Obtaining the mathematical formulation of a problem does not necessarily end the
modeling process. In fact, the obtained formulation may not be adequate. In particu-
lar, the software capable of solving optimization problems often require the problems
to be formulated in a specific way, not necessarily corresponding to the result of
the approach described in Section 1.1. We review some rules for transforming an
optimization problem into another equivalent problem.

Definition 1.3 (Equivalence). Two optimization problems P; and P, are said to be
equivalent if we can create a feasible point (i.e., satisfying the constraints) in P, from
a feasible point in Py (and vice versa) with the same value of the objective function.
In particular, the two problems have the same optimal cost, and we can obtain a
solution of P, from a solution of P; (and vice versa).

1.2.1 Simple transformations
Here are some simple transformations that are often used in modeling.

1. Consider the optimization problem

min f(x
xEX CRn (),

where X is a subset of R™. Consider a function g : R — R that is strictly
increasing on Im(f) = {z | 3x € X such that z = f(x)}, i.e., for any z1,z, € Im(f),
g(z1) > g(z2) if and only if z; > z,. Thus,?

argmin, cx c gn f(x) = argmin, cx c g h(x), (1.31)

where h(x) = g(f(x)), and

min g(f(x)) =g ( min f(x)) . (1.32)

x€EX CRn x€X CRn

In particular, adding or subtracting a constant to the objective function of an
optimization problem does not change its solution

Ve € R, argmin, .y cpn f(x) = argmin, .y cpn (f(x) +¢) . (1.33)

2 The operator argmin identifies the values of the decision variables that reach the minimum, while

the operator min identifies the value corresponding to the objective function. See Appendix A.
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Similarly, if the function f generates only positive values, taking the logarithm of
the objective function or taking its square does not change its solution:

argmin, y c gn f(X) = argmin, .y c gn log(f(x)), (1.34)

and

argmin, .y c gn f(x) = argmin, .y c gn (f(x))z , (1.35)
as g(x) = x? is strictly increasing for x > 0. Note that the log transformation is
typically used in the context of maximum likelihood estimation of unknown pa-
rameters in statistics, where the objective function is a probability and, therefore,
is positive. The square transform is relevant namely when f(x) is expressed as a
square root (see the example on Indiana Jones in Section 1.1.6). In this case, the
square root can be omitted.

. A maximization problem whose objective function is f(x) is equivalent to a mini-
mization problem whose objective function is —f(x):

argmax, f(x) = argmin —f(x), (1.36)
and
max f(x) = —min —f(x) . (1.37)
X X
Similarly, we have
argmin,, f(x) = argmax, —f(x), (1.38)
and
min f(x) = — max—f(x) . (1.39)

. A constraint defined by a lower inequality can be multiplied by —1 to get an upper
inequality
g(x) <0 &= —g(x) > 0. (1.40)

. A constraint defined by an equality can be replaced by two constraints defined by
inequalities
g(x) <0

g(x) > 0. (1.41)

gx) =0 &= {
Note that this transformation is primarily used when constraints are linear. When
g(x) is non linear, this transformation is generally not recommended.

. Some software require that all decision variables be non negative. However, for
problems such as the Swisscom example described in Section 1.1.2, such restric-
tions are not relevant. If a variable x can take any real value, it is then replaced
by two artificial variables denoted by x™ and x ™, such that

x=x"—x". (1.42)

In this case, we can meet the requirements of the software and impose x* > 0 and
x~ >0, without loss of generality.
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6. In the presence of a constraint x > a, with a € R, a simple change of variable
x=X+a (1.43)

transforms the constraint into
x>0. (1.44)

To illustrate these transformations, let us consider the following optimization
problem:

max —x* + siny (1.45)
Xy
subject to
6x —y? > 1 (1.46)
x*+y? =3 (1.47)
x>2 (1.48)
y€R, (1.49)

and transform it in such a way as to obtain a minimization problem, in which all the
decision variables are non negative, and all constraints are defined by lower inequali-
ties. We get the following problem:

— min (X+2)? —sin(y* —y7) (1.50)
Xyt y—
subject to
—6x+2)+ (yt—y ) +1<0 (1.51)
X+2%+ @yt —y )’ —3<0 (1.52)
—X+2%—(yt—y )’ +3<0 (1.53)
x>0 (1.54)
yt >0 (1.55)
Yy~ >0, (1.56)
where

(1.50) is obtained by applying (1.37) to (1.45),
(1.51) is obtained by applying (1.40) to (1.46)
(1.52) and (1.53) are obtained by applying (1.41) to (1.47)
(1.54) ( (1.48)
) (

)

)

1.564) is obtained by applying 1.43) to (1.48),
(1.55) and (1.56) are obtained by applying (1.42) to (1.49).

Note that the transformed problem has more decision variables (3 instead of 2 for the
original problem) and more constraints (6 instead of 3 for the original problem).
When the solution (X*,y™*,y~*) of (1.50)—(1.56) is available, it is easy to obtain
the solution to the original problem (1.45)—(1.49) by applying the inverse transfor-
mations, i.e.,
X =X"+2

. . (1.57)
y =y -y

—x%
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1.2.2 Slack variables

A slack variable is introduced to replace an inequality constraint by an equality con-
straint. Such a variable should be non negative. There are several ways to define a
slack variable.

« The slack variable y is introduced directly in the specification, and its value is
explicitly restricted to be non negative:

gx) +y =0

Y (1.58)

gx) <0 &= {
The above specification does not completely eliminate inequality constraints. How-
ever, it simplifies considerably the nature of these constraints.
o The slack variable is introduced indirectly using a specification enforcing its non
negativity. For example, the slack variable can be defined as y = z?, and

g(x) <0 &= g(x) +22 =0. (1.59)

o The slack variable can also be introduced indirectly using an exponential, that is,
y = exp(z), and
g(x) <0 &= g(x) +e*=0. (1.60)

The limitation of this approach is that there is no value of z such that g(x)+e* =0
when the constraint is active, that is when g(x) = 0. Strictly speaking, the two
specifications are not equivalent. However, the slack variable exp(z) can be made
as close to zero as desired by decreasing the value of z, as
. z

ZEIPOO e =0. (1.61)
So, loosely speaking, we can say that the two specifications are “asymptotically
equivalent.”

The slack variable (z%, e* or y) thus introduced measures the distance between the
constraint and the point x. The special status of such variables can be effectively
exploited for solving optimization problems.

Definition 1.4 (Slack variable). A slack variable is a decision variable introduced
in an optimization problem to transform an inequality constraint into an equality
constraint, possibly with a non negativity constraint.

For example, we consider the following optimization problem:

XI1ni71612 x3 —x3 (1.62)

subject to
sinx; < g (1.63)
In(e*' +e*2) > /e (1.64)

x1 —x2 < 100. (1.65)
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We introduce the slack variable z; for the constraint (1.63), the slack variable z;,
for the constraint (1.64), and the slack variable y3 for the constraint (1.65). The
obtained optimization problem is

min X3 —x3, (1.66)
X1,X%X2,21,22,Y3

subject to

sinxg + 2% =

%Nl:]

In(e*' +e*?) —e* =
X1 —x2 +y3 =100
yz > 0.

Note that the objective function is not affected by the introduction of slack variables.

1.3 Hypotheses

The methods and algorithms presented in this book are not universal. Each approach
is subject to assumptions about the structure of the underlying problem. Specific
assumptions are discussed for each method. However, there are three important
assumptions that concern (almost) the whole book: the continuity hypothesis, the
differentiability hypothesis, and the determinism hypothesis.

The continuity hypothesis consists in only considering problems for which the
objective to optimize and the constraints are modeled by continuous functions of
decision variables. This hypothesis excludes problems with integer variables (see
discussion in Section 1.1.7). Such problems are treated by discrete optimization
or integer programming.® An introduction to discrete optimization in provided in
Part VII of this book. We also refer the reader to Wolsey (1998) for an introduction to
combinatorial optimization, as well as to Schrijver (2003), Bertsimas and Weismantel
(2005), and Korte and Vygen (2007).

The differentiability hypothesis (which obviously implies the continuity hypoth-
esis) also requires that the functions involved in the model are differentiable. Non
differentiable optimization is the subject of books such as Boyd and Vandenberghe
(2004), Bonnans et al. (2006), and Dem’Yanov et al. (2012).

The determinism hypothesis consists in ignoring possible errors in the data for the
problem. Measurement errors, as well as modeling errors, can have a non negligible
impact on the outcome. Stochastic optimization (Birge and Louveaux, 1997) enables
the use of models in which some pieces of data are represented by random variables.
Robust optimization (see Ben-Tal and Nemirovski, 2001 and Ben-Tal et al., 2009)
produces solutions that are barely modified by slight disturbances in the data of the
problem.

3 The term “programming”, used in the sense of optimization, was introduced during the Second

World War.
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It is crucial to be aware of these hypotheses in the modeling stage. The use of
inappropriate techniques can lead to erroneous results. For instance, it is shown in
Section 25.4 that solving a discrete optimization problem by solving a continuous
version (called the relazation) and then rounding the solutions to the closest integer
is inappropriate.

1.4 Problem definition

We now outline the main concepts that define the optimization problems, and analyze
the desired properties.
We consider the following optimization problem:

Inin f(x) (1.71)
subject to
h(x) =0 (1.72)
glx) <0 (1.73)
and
x € X, (1.74)

where f is a function of R™ in R, h is a function of R™ in R™, g is a function of
R™ in RP and X C R™ is a convex set (Definition B.2). We say that this is an opti-
mization problem with n decision variables, m equality constraints, and p inequality
constraints. We assume that n > 0, i.e., that the problem involves at least one de-
cision variable. However, we consider problems where m and p are zero, as well as
problems where X = R". By employing the transformations described in Section 1.2,
it is possible to express any optimization problem satisfying the hypotheses described
in Section 1.3 in the form (1.71)—(1.74).

We consider two types of solutions to this problem: local minima, where none of
their neighbors also satisfying the constraints are better, and global minima, where
no other point satisfying the constraints is better.

Definition 1.5 (Local minimum). Let Y = {x eR™|h(x) =0, g(x) <0and x € X}
be the feasible set, that is the set of vectors satisfying all constraints. The vector
x* € Y is called a local minimum of the problem (1.71)—(1.74) if there exists ¢ > 0
such that

f(x*) < f(x), Vx €Y suchthat |[x —x*|| <e. (1.75)

The notation || - || denotes a vector norm on R™ (Definition B.1).
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Definition 1.6 (Strict local minimum). Let Y = {x € R™ | h(x) =0, gx) <
0 and x € X} be the feasible set, that is the set of vectors satisfying all the constraints.
The vector x* € Y is called a strict local minimum of the problem (1.71)—(1.74) if
there exists € > 0 such that

f(x*) < f(x), V¥x €Y, x+#x" such that [|x —x*|| <e. (1.76)

Definition 1.7 (Global minimum). Let Y = {x eR™ | h(x) =0, g(x) <0and x €
X} be the feasible set, that is the set of vectors satisfying all the constraints. The
vector x* € Y is called a global minimum of the problem (1.71)—(1.74) if

f(x*) < f(x), Vx €Y. (1.77)

Definition 1.8 (Strict global minimum). Let Y = {x € R" | h(x) =0, g(x) <
0 and x € X} be the feasible set, that is the set of vectors satisfying all the constraints.
The vector x* € Y is called a strict global minimum of the problem (1.71)-(1.74) if

f(x*) < f(x), Vx €Y, x Ax". (1.78)

The notions of local maximum, strict local maximum, global maximum and strict
global maximum are defined in a similar manner.

Example 1.9 (Local minimum and maximum). Figure 1.4 illustrates these defini-

tions for the function 5 . 1
f(x):—gx3+zxz—?x—|—3. (1.79)

The point x* ~ 0.6972 is a local minimum of f. Indeed, there is an interval [x* —
%,x* + %], represented by the dotted lines, such that f(x*) < f(x), for any x in the
interval. Similarly, the point x* ~ 2.1024 is a local maximum. Indeed, there exists
an interval [i* — %,i* + 17], represented by the dotted lines, such that f(x*) > f(x),
for any x in the interval.

Example 1.10 (Binary optimization). Let f : R™ — R be differentiable, and let us
take the optimization problem
min f(x)

with constraints x € {0, 1}™, i.e., such that each variable can take only the value O or
1. However, we can express the constraints in the following manner:

hi(x) = xi(1 —xi) =0, i=1,...,n.
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Figure 1.4: Local minimum and maximum for Example 1.9

We thus get n differentiable constraints and the hypotheses are satisfied. However,
since each feasible point is isolated, each of them is a local minimum of the problem.
Therefore, algorithms for continuous optimization designed to identify local minima
are useless for this type of problem.

In general, it is desirable to exploit the particular structure of the problem, because
an excess of generality penalizes optimization algorithms. We analyze special cases
of the problem (1.71)—(1.74).

It is important to note that the existence of a solution is not always guaranteed.
For example, the problem min,cg f(x) = x has neither a minimum nor a maximum,
whether local or global. In fact, this function is not bounded in the sense that it can
take on values that are arbitrarily large and arbitrarily small.

Definition 1.11 (Function bounded from below). The function f : R™ — R is
bounded from below on Y C R™ if there exists a real M such that

f(x) > M, Vx €Y. (1.80)

The function f(x) = x is unbounded on R. However, it is bounded on compact
subsets of R. Among all the bounds M of Definition 1.11, the largest is called the
infimum of f.

Definition 1.12 (Infimum). Let f: R™ — R be a function bounded from below on
the set Y C R™. The infimum of f on Y is denoted by

inf 1(y) (1.81)



24 Problem definition

and is such that

inf f(y) < f(x), Vx €Y (1.82)
yey
and
VM > ig(f(y) , Ix €Y such that f(x) < M. (1.83)
y

Example 1.13 (Infimum). Consider f(x) = e* and Y =R. We have

inf f(y) =0.
Inf (y)

We verify Definition 1.12. We have

0 = inf f(y) < f(x) =€, vx € R,
yey

and (1.82) is satisfied. Consider an arbitrary M > 0, and consider x = InM/2. In

this case,

M
f(X):7<M,

and the definition is satisfied.

This example shows that an optimization problem is not always well defined, and
that no solution may exist. Theorem 1.14 identifies cases where the problem is well-
defined, and where the infimum of a function on a set is reached by at least one
point of the set. In this case, the point is a global minimum of the corresponding
optimization problem.

Theorem 1.14 (Weierstrass theorem). Let Y C R™ be a closed and non empty
subset of R™, and let f: Y — R be a lower semi-continuous function (Definition
B.21) on Y. IfY is compact (Definition B.23) or if f is coercive (that is, if it
goes to +oco when x goes to +oo or —oco, see Definition B.22), there exists x* € Y
such that

f(x*) =in€1fo(9)-

Proof. Consider a sequence (xy)x of elements of Y such that

Jm lxic) :ylrelfo(y)-
If Y is compact, it is bounded and the sequence has at least one limit point x*. If f is
coercive (Definition B.22), the sequence (xi )k is bounded and has at least one limit
point x*. In both cases, due to the lower semi-continuity of f in x*, we have
f(x*) < lim f(xx) = inf f(y),
yey

k—o0



Formulation 25

and

f(x") = yirelgf(y)-

O

Note that some functions may include local minima and have no global minimum,
as for Example 1.9, shown in Figure 1.4, where the function (1.79) is unbounded from
below, as

XETOO—ZX3 + %xz— 2x+3 = —o0.

In some cases, an optimization problem with constraints can be simplified and
the constraints ignored. Before detailing such simplifications in Section 3.1, we state
now a general theoretical result when the optimum is an interior point of the set of

constraints.

Definition 1.15 (Interior point). Consider Y C R™ and y € Y. We say that y is in
the interior of Y if there exists a neighborhood of y in Y. Formally, y is in the interior
of Y if there exists € > 0 such that all points in a neighborhood of size ¢ of y belong
to Y, that is such that

lz—yl| <e=z€Y. (1.84)

Theorem 1.16 (Solution in the interior of constraints). Let x* be a local minimum
of the optimization problem (1.71)—(1.74). Let Y = {x € R™ | h(x) =0, g(x) <
0 and x € X} be the feasible set, and let Y = Y1 NY2 such that x* is an interior
pownt of Y1. Then x* is a local minimum of the problem

in f(x).
g 1

In particular, if x* is an wnterior pownt of Y, then the theorem applies with
Y, =R™ and x* is a solution of the unconstrained optimization problem.

Proof. According to Definition 1.15, there exists ¢; > 0 such that
y €Yy, Vysuch that Hy —X*H <e¢. (1.85)
Since x* is a local minimum (Definition 1.5), there exists ¢, > 0 such that
f(x*) <fly), Wy € Ysuchthat ||[y—x"||<es. (1.86)

Then, if ¢ = min(es,€2), any point y € Y, such that |y —x*|| < ¢ belongs also to
Y: and, therefore, is feasible. Consequently, x* is better, in the sense of the objective
function, than any of these y. Formally, we get

f(x*) <f(y), Wy €Y, such that Hy —x*

<e, (1.87)

which is exactly (1.75) where Y has been replaced by Y2, and x* is a local minimum
of the problem with only the Y, constraints. [l
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This result is used particularly in the development of optimality conditions for
problems with constraints (Chapter 6), as well as in the development of algorithms
called interior point methods. Note that a problem containing equality constraints
has no interior points.

Before detailing algorithms that enable an optimization problem to be solved, it is
essential to properly understand the nature of this problem. In Chapter 2, we analyze
the objective function in detail. Constraints are discussed in Chapter 3. Finally, in
Chapter 4, we analyze the ways in which it is possible to combine the objective
function and constraints.

1.5 Exercises

Exercise 1.1 (Geometry). We want to determine a parallelepiped with a volume of
unity and minimal surface.

1. Formulate this problem as an optimization problem by determining

(a) the decision variables,
(b) the objective function,
(c) the constraint(s).

2. Formulate this problem as a minimization problem with only lower inequality
constraints.

Exercise 1.2 (Finance). A bank wants to determine how to invest its assets for the
year to come. Currently, the bank has a million euros that it can invest in bonds, real
estate loans, leases or personal loans. The annual interest rate of different investment
types are 6% for bonds, 10% for real estate loans, 8% for leases, and 13% for personal
loans.

To minimize risk, the portfolio selected by the bank must satisfy the following
restrictions:

o The amount allocated to personal loans must not exceed half of that invested in
bonds.
o The amount allocated to real estate loans must not exceed that allocated to leases.

o At most 20% of the total invested amount can be allocated to personal loans.
1. Formulate this problem as an optimization problem by determining

(a) the decision variables,
(b) the objective function,
(c) the constraint(s).
2. Formulate this problem as a minimization problem with only lower inequality
constraints.

3. Formulate this problem as a maximization problem with equality constraints and
with non negativity constraints on the decision variables.
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Exercise 1.3 (Stock management). The company Daubeliou sells oil and wants to

optimize the management of its stock. The annual demand is estimated at 100,000

liters and is assumed to be homogeneous throughout the year. The cost of storage

is €40 per thousand liters per year. When the company orders oil to replenish its

stock, this costs €80. Assuming that the order arrives instantly, how many orders

must the company Daubeliou place each year to satisfy demand and minimize costs?
Formulate this problem as an optimization problem by determining

1. the decision variables,
2. the objective function,
3. the constraint(s).

Advice:

o Set the amount of oil to order each time as a decision variable.

« Represent in a graph the evolution of the stock as a function of time.

Exercise 1.4 (Measurement errors). Mr. O. Beese is obsessed with his weight. He
owns 10 scales and weighs himself each morning on each of them. This morning he
got the following measurement results:

100.8 99.4 101.3 97.6 102.5 102.4
104.6 102.6 95.1 96.6

He wishes to determine an estimate of his weight while minimizing the sum of the
squares of measurement errors from the 10 scales. Formulate the optimization prob-
lem that he needs to solve.

Exercise 1.5 (Congestion). Every day, 10,000 people commute from Divonne to
Geneva. By train, the journey takes 40 minutes. By road, the travel time depends on
the level of congestion. It takes 20 minutes when the highway is completely deserted.
When there is traffic, travel time increases by 5 minutes per thousand people using
the highway (assuming that there is one person per car). If 4,000 people take the car
and 6,000 take the train, the travel time by road is equal to 20 +5 x 4 = 40 minutes,
which is identical to the travel time by train. In this situation, it would be of no
interest to change one’s mode of transport. We say that the system is at equilibrium.
However, from the point of view of the average travel time per person, is this situation
optimal? Formulate an optimization problem to answer the question.






Chapter 2

Objective function

Before attempting to understand how to solve a problem, we first try to understand
the problem itself. In this chapter, we identify the properties of the objective function
which are useful in the development of theory and algorithms. A crucial part in
optimization is to understand the geometry of the problem. Derivatives play a central
role in this analysis. We also identify what constitutes a good or a bad geometry for

a problem.
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Several concepts can be used to characterize the objective function. It is important
to identify the characteristics of the objective function because each optimization
algorithm is based on specific hypotheses. When the hypotheses of an algorithm have
not been verified for a given problem, there is no guarantee that the algorithm can
be used to solve this problem.

2.1 Convexity and concavity
A function f : R®™ — R is said to be convez if, for any vector x and y of R™, the

graph of f between x and y is not above the line segment connecting (x, f(x)) and
(y, f (y)) in R"*1. Definition 2.1 establishes this property formally.
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Definition 2.1 (Convex function). A function f : R™ — R is said to be convex if,
for any x,y € R™ and for any A € [0, 1], we have

f(Ax + (1 —=Ny) < Af(x) + (1 =A)f(y). (2.1)

Definition 2.1 is shown in Figure 2.1. The line segment connecting the points
(x, f(x)) and (y, f(y)) is never below the graph of f. The point z = Ax + (1 —A)y is
somewhere between x and y when 0 < A < 1. The point with coordinates (z, Af(x) +
(1 —?\)f(y)) is on the line segment between the points (x, f(x)) and (y, f(y)). In order
for the function to be convex, this point must never (i.e., for all x, y and 0 <A < 1)
be below the graph of the function.

(2, Mf(x) + (1 = A)f(y))~

k (2, 1(2))

Figure 2.1: Illustration of Definition 2.1

Figure 2.2 shows a non convex function, in which there is an x and y such that
the line connecting (x, f (x)) and (y, f (y)) is partially located below the graph of the
function.

The notion of convexity of a function can be strengthened, giving strict convexity.

Definition 2.2 (Strictly convex function). A function f : R™ — R is said to be
strictly convex if for all x,y € R™, x # y, and for all A € ]0,1[, we have

f(Ax + (1 —A)y) < Af(x) + (1 = A)f(y). (2.2)

The convexity of the function is an important feature in optimization. In gen-
eral, when the function is not convex, it is particularly difficult to identify a global
minimum of the problem (1.71)—(1.74).

Note that the importance of convexity is linked to minimization problems. When
we study maximization problems, the concept of concavity should be used, as shown
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(x, f(x))

Figure 2.2: Illustration of a counterexample to Definition 2.1

by Definition 2.3. As discussed in Section 1.2.1, a maximization problem can always
be easily transformed into a minimization problem using (1.37).

Definition 2.3 (Concave function). A function f : R™ — R is said to be concave if
—f is a convex function, i.e., if for all x,y € R™ and for all A € [0, 1], we have

f(Ax + (1 =A)y) > Af(x) + (1 = A)f(y). (2.3)

Note that convexity and concavity are not complementary properties. A function
may be neither convex nor concave. This is the case of the function represented in
Figure 2.2.

2.2 Differentiability: the first order

An important assumption in this book is that the objective function f and the func-
tions g and h describing the constraints are continuous (Definition B.5) and differen-
tiable. We summarize here the main concepts related to differentiability.

Definition 2.4 (Partial derivative). Let f: R™ — R be a continuous function. The
function Vif(x) : R™ — R, also written as 0f(x)/0x; is called the i*" partial derivative
of f and is defined as

lim f(x1,...,xi+oc,...,xn)ff(xh...,xi,...,xn).
ox—0 x

(2.4)

This limit may not exist.
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If the partial derivatives 0f(x)/0x; exist for all i, the gradient of f is defined as
follows.

Definition 2.5 (Gradient ). Let f : R™ — R be a differentiable function. The
function denoted by Vf(x) : R™ — R™ is called the gradient of f and is defined as

of(x)
aX1
Vi(x) = 5 (2.5)

of(x)
0Xny

The gradient plays a key role in the development and analysis of optimization
algorithms.

Example 2.6 (Gradient). Consider f(x1,%2,%3) = €X' +x¥x3—x1x2%3. The gradient
of f is given by
eX! 4+ 2x1X3 — X2X3
Vi(x1,%2,%3) = —X1X3 . (2.6)
X3 —x1%2

The analysis of the behavior of the function in certain directions is also important
for optimization methods. We introduce the concept of a directional derivative.

Definition 2.7 (Directional derivative). Let f: R™ — R be a continuous function.
Consider x € R™ and d € R™. The directional derivative of f in x in the direction d

is given by

lim wx)_f(x)) (2.7)

ox—0

if the limit exists. In addition, when the gradient exists, the directional derivative is
the scalar product between the gradient of f and the direction d, i.e.,

Vi(x)Td. (2.8)

Definition 2.8 (Differentiable function). Let f : R™ — R be a continuous function.
If, for any d € R™, the directional derivative of f in the direction d exists, the function
f is said to be differentiable.

This concept is sometimes called “Gateaux differentiability,” in the sense that
other types of differentiability can be defined (like the Fréchet differentiability). In
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this book, we deal with continuous differentiable functions for which a distinction is
unnecessary.

Example 2.9 (Directional derivative). Consider f(x1,x2,x3) = e +X12X3 —X1X2X3,
and
dy
d= d |. (2.9)
ds
The directional derivative of f in the direction d is
(di dz d3 )Vf(xi,x2,x3) =
e 5 (2.10)
di(e*" + 2x1x3 — x2x3) — dax1x3 + d3(x7 —x1%2),

where Vf(x1,x2,%3) is given by (2.6).

A numerical illustration of the directional derivative is given in Example 2.14.
Note that the partial derivatives are in fact directional derivatives in the direction of

the coordinate axes and
of(x)

axi

=Vi(x)Te, (2.11)

where e; is the column 1i of the identity matrix, i.e., a vector with all entries equal to
0, except the one at line i which is 1.

The directional derivative provides information about the slope of the function in
the direction d, just as the derivative gives information of the slope of functions of
one variable. In particular, the function increases in the direction d if the directional
derivative is positive and decreases if it is negative. In the latter case, we say that it
is a descent direction.

Definition 2.10 (Descent direction). Let f : R™ — R be a differentiable function.
Consider x, d € R™. The direction d is a descent direction in x if

d"Vf(x) <0. (2.12)

The terminology “descent direction” is justified by Theorem 2.11. It shows the
decrease of the function along the descent direction. The theorem also states that
the decrease is proportional to the slope, that is, the directional derivative, in the
neighborhood of x.

Theorem 2.11 (Descent direction). Let f : R™ — R be a differentiable function.
Consider x € R™ such that Vf(x) #0 and d € R™. If d s a descent direction, in
the sense of Definition 2.10, there exists 1 > 0 such that

f(x + ad) < f(x), Vo< <. (2.13)



34 Differentiability: the first order

Moreover, for any B < 1, there exists > 0 such that
f(x + ad) < f(x) + apVF(x)"d, (2.14)
for all 0 < o < 7.

Proof. We use (C.1) from Taylor’s theorem (Theorem C.1) to evaluate the function
in x + «d by employing the information in x. We have

f(x + ad) = f(x) + od" VF(x) + o(e||d])) Taylor
= f(x) + xd"Vf(x) + o(a) |ld|| does not depend on .

The result follows from the fact that d" Vf(x) < 0 by assumption, and that o(«) can
be made as small as needed. More formally, according to the definition of the Landau
notation o( - ) (Definition B.17), for any & > 0, there exists n such that

lo(a)]
— <eg, Vo< <.

We choose ¢ = —d" Vf(x), which is positive according to Definition 2.10. Then,

ol _ Jola)
x 0.4

< —d"Vf(x), V0 < o <. (2.15)
We now need only multiply (2.15) by « to obtain
ad" VE(x) +o(a) <0, Vo< o<,

and f(x 4+ ad) < f(x), VO < o« < 1. The result (2.14) is obtained in a similar manner,
by choosing ¢ = (p — 1)Vf(x)"d in the definition of the Landau notation. We have
e >0 because p < 1 and Vf(x)"d < 0. O

Among all directions d from a point x, the one in which the slope is the steepest
is the direction of the gradient Vf(x). To show this, we consider all directions d that
have the same norm (the same length) as the gradient and compare the directional
derivative for each of them.

Theorem 2.12 (Steepest ascent). Let f : R — R be a differentiable function.
Consider x € R™ and d* = Vf(x). Then, for all d € R™ such that ||d| = ||Vf(x)||,
we have

d"Vf(x) < d*TVE(x) = VI(x)TVE(x). (2.16)
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Proof. Let d be any direction. We have

dTV(x) < ||d]| HVf H Cauchy-Schwartz (Theorem C.13)
= ||Vf(x || assumption ||d|| = ||Vf(x)||
= Vf(x)"Vf(x) definition of a scalar product
= ad*"Vf(x) definition of d* .
Since d*TVf = ||Vf || > 0, the function increases in the direction d*, which
corresponds to the steepest ascent. O

If the direction of the gradient corresponds to the steepest ascent of the function x,
we need only consider the direction opposite the gradient —Vf(x) to find the steepest
descent.

Corollary 2.13 (Steepest descent). Let f : R™ — R be a differentiable function.
Consider x € R™ and d* = —Vf(x). Then, for any d € R" such that ||d|| =
HVf(x) , we have

—VF(x)T V(x) = d*" VF(x) < dTV(x) (2.17)

and the direction opposite the gradient is that in which the function has its
steepest descent.

Proof. Let d be any direction. We have
—dT Vf(x) < VFf(x)TVf(x) by applying Theorem 2.12 at —d
= —(d*)T VF(x) according to the definition of d*
and —d'" Vf(x) < —(d*)T Vi(x). We get (2.17) by multiplying this last inequality

by —1. Since ar’ Vf(x) < 0, the function is decreasing in the direction d*, which
corresponds to the steepest descent. O

Example 2.14 (Steepest ascent). Consider f(x) = x§ +2x3, andx = (1 1)T.
We consider three directions

d1_Vf(x)_<l>, d2—<:>, and d3_<_31>.

The directional derivative in f in each direction equals:
dj Vf(x) =17
dIVf(x) =5
dIV(x) =11.

The shape of the function in each of these directions is shown in Figure 2.3. For each
direction d;, the function f(x + «d;) is represented for values of & between 0 and 1.
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Figure 2.3: Shape of the function %x% + 2x, at point (1,1)7 in several directions

Example 2.15 (Steepest descent). Consider f(x) = %x% +2x3,andx=(1 1)
We consider three directions

d1_Vf(x)_<:l>, d2—<j>, and d3_<_13>.

The directional derivative in f in each direction equals:

Al Vf(x) = —17

A Vf(x) = -5

Al vf(x) = —11.
The shape of the function in each of these directions is shown in Figure 2.4. For each
direction di, the function f(x + «d;) is represented for values of « between 0 and 1.
It is important to note in this figure that the function does not constantly decrease
along one descent direction. The descent feature is local, i.e., valid in a neighborhood

of x. Even if the function increases later, the steepest descent is locally observed in
the direction —Vf(x).

In addition to providing information on the slope of the function, the gradient
also enables to verify whether the function is convex or concave.

Theorem 2.16 (Convexity according to the gradient). Let f: X C R™ — R be a
differentiable function on an open convezx set X. f is convex on X if and only if

fly) —f(x) > (y—x)"VF(x), Vx,y € X. (2.18)
f s strictly conver on X if and only if

fly) — f(x) > (y —x)'VF(x), vx,y € X. (2.19)
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Figure 2.4: Shape of the function %X% + 2x, at point (1,1)7 in several directions

Proof. Necessary condition. We first show that (2.18) is a necessary condition. Let
X,y € X be arbitrary and let us consider d = y — x. We evaluate the directional
derivative of f in the direction d and obtain

(y—x)"Vf(x) = dTVF(x) definition of d
= lim M Definition 2.7
a0 x
f — —f
_ i Ty —x)) — 09 definition of d.
a0 (49

Since the limit is reached for « — 0, we can assume without loss of generality that
o« < 1. We obtain, by convexity of f, and by applying Definition 2.1 with A =1 — «,
1 —oa)f fly) —f
(y —x)T Vf(x) < lim (=) + afly) = ) (2.20)
x>0 &
We now need only simplify (2.20) to obtain (2.18).
Sufficient condition. We now assume that (2.18) is satisfied, and let us demon-
strate the convexity of f. Let x,y € X be arbitrary, and let us take z = Ax + (1 — A)y.
z € X because X is convex. We apply (2.18) first for z and x, and then for z and y:

f(x) —f(z) > (x —2)"Vf(2)

2.21
fly) — f(z) > (y —2)'Vf(z). 221)

We multiply the first inequality by A and the second by (1 —A) and sum them up to
obtain
AMF(x) + (1= A)f(y) — f(z) > (W + (1 —A)y —2) ' Vi(2). (2.22)

According to the definition of z, we obtain the characterization (2.2) of Definition 2.1,
and f is convex.
The proof for the strictly convex case is identical. [l
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If we write (2.18) in a slightly different way:
fly) > f(x) + (y —x)T VF(x), Vx,y € R™, (2.23)

the right term is nothing else than the equation of the hyperplane that is tangent to
the function f at point x. In this case, we see that a function is convex if and only
if the graph is never below the hyperplane tangent. Figure 2.5 illustrates this idea in
the case of a function with one variable.

fx) + (y—x)TVER)

Figure 2.5: Hyperplane tangent to a convex function

We conclude this section by generalizing the notion of the gradient for the func-
tions of R™ — R™. In this case, the various partial derivatives are arranged in a
matrix called the gradient matriz. Each column of this matrix is the gradient of the
corresponding component of f.

Definition 2.17 (Gradient matrix). Let f : R™ — R™ be such that f; : R™ — R
is differentiable, for i = 1,..., m. In this case, f is differentiable, and the function
Vi(x) : R™ — R™*™ is called a gradient matriz and is defined by

Vix)=| Vfi(x) -+ Vfn(x)
ah st B (2.24)
aX1 aX1 aX1

00X, OXp 0Xn,
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The gradient matrix is often used in its transposed form and is then called the
Jacobian matrix of f.

Definition 2.18 (Jacobian matrix). Consider f : R™ — R™. The function J(x) :
R™ — R™*™ ig called a Jacobian matrix and is defined as
— Vi) ——
J(x) = Vi(x)" = : : (2.25)
—— Vinx)T ——

Born in Potsdam (Germany) on December 10, 1804, and died in
Berlin on February 18, 1851, Jacobi taught at Konigsberg with
Neumann and Bessel. He contributed significantly to the theory
of elliptic functions, in competition with Abel. His work on
first-order partial differential equations and determinants are of
prime importance. Although introduced by Cauchy in 1815, the
determinant function is called Jacobian thanks to a long thesis
published by Jacobi in 1841. The determinant of the Jacobian
matrix (Definition 2.18) is called the Jacobian.

Figure 2.6: Carl Gustav Jacob Jacobi

2.3 Differentiability: the second order

We can perform the same differentiability analysis as that on the function f in Sec-
tion 2.2 for each of the functions V;f(x) of Definition 2.4. The jth partial derivative
of Vif(x) is the second derivative of f with respect to the variables i and j, because

dVif(x)  0(0f(x)/0xi)  d%f(x)

= . 2.26

an an aXian ( )
It is common to organize the second derivatives in an n X n matrix in which the
element of line i and column j is 3%f(x)/ 0x{0x;. This matrix is called Hessian and
gets its name from the German mathematician Otto Hesse (Figure 2.7).

Definition 2.19 (Hessian matrix). Let f: R™ — R be a twice differentiable function.
The function V2f(x) : R™ — R™ ™ is called the Hessian matrix or Hessian of f and
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is defined by

92f(x) 02f(x) 02f(x)
ox? 0x10%2 0%10%n
02f(x)  0%f(x) 02f(x)
vzf(x) — aXZaX1 ax% aXZaXn . (2'27)
92f(x) 02f(x) 02f(x)
0Xn0X1 0Xn0X2 oxZ

The Hessian matrix is always symmetric.

Note that the Hessian of f is the gradient matrix and the Jacobian matrix of Vf.

Example 2.20 (Hessian). Consider f(x1,x2,x3) = €™’ +x%xsfx1xz>c3. The Hessian
of f is given by

e +2x3 —x3 2x1 —X2
V2 (x1,x2,%3) = —x3 R . (2.28)
2X1 — X2 —X1 0

Just like the gradient, the Hessian gives us information about the convexity of the
function.

Theorem 2.21 (Convexity by the Hessian). Let f : X C R™ — R be a twice
differentiable function on an open convez set X. If V>f(x) is positive semidefinite
(resp. positive definite) for all x in X, then f is convez (resp. strictly convez)
on X.

Proof. Consider x and y in X. We utilize (C.4) of Taylor’s theorem (Theorem C.2)
to evaluate the function in y by using the information in x. By writing d =y —x, we
have

1Y) = 09 + (y —x)T VI0) + 7d7V21(x + ad)d. (2.29)

If0 < o« < 1, x+od € X by convexity (Definition B.2) of X, and the matrix V2f(x+xd)
is positive semidefinite (Definition B.8). Therefore,

d"Vf(x + «d)d > 0. (2.30)

Then, we have
fly) > f(x) + (y —x) " Vi(x). (2.31)

We now need only invoke Theorem 2.16 to prove the convexity of f. The strict
convexity is proven in a similar manner. [l
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It is interesting to analyze the second order information along a given direction
d. If we have a twice differentiable function f, a point x and a direction d, we can
calculate the derivatives in this direction by considering the function of one variable

g: Ry — R:a~ f(x+ ad). (2.32)
According to the chain differentiation rule, we have
g'(«x) = d"Vf(x + ad). (2.33)

Note that g’(0) is the directional derivative (Definition 2.7) of f at x along d. We
also have

9" (o) = d"V*(x + «d)d. (2.34)

Since the second derivative of a function of one variable gives us curvature informa-
tion, (2.34) provides us with information about the curvature of the function f in
the direction d. In particular, when o = 0, this expression gives information on the
curvature of f in x. To avoid the length of the direction influencing the notion of
curvature, it is important to normalize. We obtain the following definition.

Definition 2.22 (Curvature). Let f : R™ — R be a twice differentiable function.
Consider x, d € R™. The quantity

dTVv2f(x)d

o (2.35)

represents the curvature of the function f in x in the direction d.

In linear algebra, the quantity (2.35) is often called the Rayleigh quotient of V2f(x)
in the direction d. One should immediately note that the curvature of the function
X in the direction —d is exactly the same as in the direction d.

Example 2.23 (Curvature). Consider f(x) = %x% +2x2, and x = (1,17, as in
Examples 2.14 and 2.15. The curvature of the function in different directions is given
below:

d —d dTv2f(x)d/dTd

4)T (=1 —4)T 3.8235
(1 1)7 (=1 —1)7T 25
3 )7 (1 =3)" 37
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Otto Hesse was born in Konigsberg (currently Kaliningrad, Rus-
sia) on April 22, 1811, and died in Munich (Germany) on August
4, 1874. He was a student of Jacobi and in 1845 was appointed
Extraordinary Professor at Konigsberg, where he taught for 16
years. Kirchkoff and Lipschitz attended his courses. Hesse was
¥ also affiliated with the University of Halle, in Heidelberg and
# with Munich Polytechnicum. He worked mainly on the theory
of algebraic functions and the theory of invariants.

Figure 2.7: Ludwig Otto Hesse

2.4 Linearity and non linearity

A function f : R™ — R is said to be linear if its value is a linear combination of
variables.

Definition 2.24 (Linear function). A function f: R™ — R is said to be linear if it is
defined as

n
fix) =cTx = Z ©a3% ¢ (2.36)
i=1

where ¢ € R™ is a constant vector, i.e., independent of x. A function f: R™ — R™ is
linear if each of its components f; : R™ — R, i = 1,...,m, is linear. In this case, it
can be written as

f(x) = Ax, (2.37)

where A € R™*™ is a matrix of constants.
When a constant term is added to a linear function, the result is said to be affine.

Definition 2.25 (Affine function). A function f: R™ — R is said to be affine if it is
written as
n
fx) =c"x+d=) cxi+d, (2.38)
i=1
where ¢ € R™ is a vector of constants and d € R. A function f : R™ — R™ is affine
if each of its components f; : R™ — R, i =1,...,m, is affine. In this case, it can be

written as
f(x) =Ax+Db, (2.39)

where A € R™*™ is a matrix and b € R™ is a vector.
Note that minimizing (2.38) is equivalent to minimizing (2.36). Note that all

linear functions are affine. By abuse of language, a non linear function is actually a
function that is not affine.
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Definition 2.26 (Non linear function). Any function that is not affine is said to be
non linear.

The set of non linear functions is vast, and one needs to be a little more precise
in their characterization. Intuitively, the function shown in Figure 2.8 seems more
non linear than the one in Figure 2.9. The slope of the former changes quickly with
X, which is not the case for the latter. This is formally captured by the Lipschitz
continuity (Definition B.16) of the gradient.

3 T T T T
2.5
2
® 15
G
1
0.5
0 1 1 1 1
-5 -4 -3 -2 -1 0
X
Figure 2.8: Example of a non linear function
40 T T T
30 e
20 | f(x) = 755 +3x + 1 §
— 10} i
2
Y= 0 | _
-10 + i
20 + i
_30 1 1 1
-10 -5 0 5 10

Figure 2.9: Example of another non linear function
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Definition 2.27 (Lipschitz continuity of the gradient). Consider f: X C R™ — R™.
The gradient matrix of the function is Lipschitz continuous on X if there exists a
constant M > 0 such that, for all x,y € X, we have

|VF(x) — VF(y)|| <M|x—yl,,, (2.40)

nxm —

where || - ||nxm is @ norm on R™*™ and || - ||, is a norm on R™. The constant M is
called the Lipschitz constant.

Intuitively, the definition says that the slopes of the function at two close points
are close as well. And the more so when M is small. Actually, when f is linear, the
slope is the same at any point, and (2.40) is verified with M = 0. The value of M
for the function represented in Figure 2.9 is low, while it is large for the function
illustrated in Figure 2.8, where the slope varies dramatically with small modifications
of x.

The constant M can be interpreted as an upper bound on the curvature of the
function. The greater M is, the smaller the curvature is. If M = 0, the curvature is
zero, and the function is linear. Note that this constant is essentially theoretical and
that it is generally difficult to obtain a value for it.

Among the non linear functions, quadratic functions play an important role in
optimization algorithms.

Definition 2.28 (Quadratic function). A function f: R™ — R is said to be quadratic
if it can be written as

n

1 = 2
f(x) = ZxTQer g'x+c= ;;Qiﬁ(ix)‘ +) gxi+e, (2.41)

i=1

No|

where Q is a symmetric matrix n x n, g € R™ and ¢ € R. We have

Vi(x) =Qx+g and VZ(x) = Q. (2.42)

The presence of the factor 12 enables a simplification of the expression of Vf(x).

Note also that the fact that Q is symmetric is not restrictive. Indeed, if Q was not
symmetric, we would have

n

n n n 1
TQx=) Y Quxij=) Z 7 (Qu + Qji)xixg .

i=1j=1 i=1j=i

We now define the symmetric matrix Q' such that Q{; = Qj; = 3(Qij + Qji). We
obtain x"Qx = x"Q’x, and the same function can be written using a symmetric
matrix.
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2.5 Conditioning and preconditioning

In linear algebra, the notion of conditioning is related to the analysis of numerical
errors that can occur when solving a linear system (see Golub and Van Loan, 1996).

Definition 2.29 (Condition number). Let A € R™*™ be a non singular symmetric
matrix. The condition number for A is

K(A) = ||A[[|A7]]. (2.43)
If the matrix norm used is the norm 2, we have

_ 01
k2(A) = [IAfl AT, = o= (2.44)

On
where 07 is the largest singular value of A (Definition B.28) and oy, is the smallest. By
extension, the condition number of a singular matrix (i.e., such that oy, =0) is +oo0.

If A is symmetric positive semidefinite, the singular values of A are its eigenvalues
(Definition B.7).

We propose a geometric interpretation of the condition number. For this, we
consider a non linear function f : R® — R and a vector x € R"™. We assume that
the matrix V2f(x) is positive definite', and let A; be its largest eigenvalue and A, its
smallest. Let d; be an eigenvector corresponding to A;. We have

Ady =Ad;. (2.45)
By premultiplying by d1T and normalizing, we obtain

dTAd,
A= — ) 2.46
1 djlrd] ( )

According to Definition 2.22, the eigenvalue Ay corresponds to the curvature of
the function in the direction of the eigenvector d;. In addition, according to the
Rayleigh-Ritz theorem (Theorem C.4), this is the greatest curvature among all possi-
ble directions. A similar reasoning for the smallest eigenvalue allows us to determine
An as the smallest curvature of the function in all possible directions. The condition
number of the Hessian matrix at a point x is the ratio between the largest and the
smallest curvature among the directions when starting from x.

Definition 2.30 (Conditioning). Let f : R™ — R be a twice differentiable function,
and let us take a vector x € R™. The conditioning of f at x is the condition number
of V2f(x).

1 V2f(x) is always symmetric.
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By using this interpretation related to curvature, an ill-conditioned function is
characterized by a large difference in curvature between two directions. In the case of
a quadratic function with two dimensions (Figure 2.10(a)), this translates into level
curves forming elongated ellipses (Figure 2.10(b)). A well conditioned function is
characterized by a homogeneous curvature in the various directions. In the case of a
quadratic function with two dimensions (Figure 2.11(a)), this translates into nearly
circular level curves (Figure 2.11(Db)).

Example 2.31 (Conditioning). The quadratic function
f(x1,x2) = 2x5 + 9x3 (2.47)

is such that its condition number is 9/2 for all x, because

V2 f(x1,%x2) = ( g 108 ) (2.48)

We now apply the change of variables

<2>_<é3\0/§><2>> (2.49)
() -("% 4e) (3): o0

1 1
f(x],x3) = —x{2+—x£2, (2.51)
2 2
for which the Hessian is the identity matrix, and the condition number is 1, for all

(x],x5).

i.e.,

We obtain

We see that it is possible to reduce the condition by a change of variables. In
general, a change of variables is defined by an invertible matrix M.

Definition 2.32 (Change of variables). Consider x € R™. Let M € R™*™" be an
invertible matrix. The change of variables is the linear application defined by M that
transforms x into x’ = Mx.

Consider a function f(x) and apply to it the change of variables x’ = Mx to obtain
the function f(x’). We have, according to the chain differentiation rule (Theorem C.3),

Vix)=MTVEI M X)) (252)
VX)) =M TVAE(M I )M ! '
=M TV (x)M ™!
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f(x1,%2)

(a) Function

X2

X1

(b) Level curves

Figure 2.10: Function (2.47) of Example 2.31

The condition of f in x’ is the condition number of the matrix M~ TV2f(x)M !
(where M~T is the inverse of the transpose of M). Choosing a change of variables
such that the condition is as close as possible to 1 is called preconditioning.

Definition 2.33 (Preconditioning). Let f : R™ — R be a twice differentiable function,
and let us take a vector x € R"™. The preconditioning of f in x involves defining
a change of variables x’ = Mx and a function f(x’) = f(M~'x’), such that the
conditioning of f in Mx is better than the conditioning of f in x.

In the context of optimization, the matrix for the change of variables should be
positive definite in order to preserve the nature of the problem.
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f(x1,x2)

(a) Function

X2

X1

(b) Level curves

Figure 2.11: Function (2.51) of Example 2.31

If V2f(x) is positive definite, we can calculate the Cholesky decomposition (Defi-
nition B.18)
V2f(x) =LLT, (2.53)

where L is a lower triangular matrix. We now choose the change of variables

X =LTx &= x=L"Tx". (2.54)
In this case
V2i(x') = L'V f(x)LT according to (2.52)
=L 'L’ T according to (2.53)

=1.
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The conditioning of the function f in x’ is 1. According to Definition 2.29, k (Vz f(x’))
> 1 and the obtained conditioning is the best possible. The best preconditioning of f
in x consists in defining the change of variables based on the Cholesky factorization

of V2f(x).
Example 2.34 (Preconditioning). Consider

f(x1,x2) = lX%-F Z—SX%+3X1X2—12X1 —ﬁX2—6.

2 2
‘We have
. X1+ 3% —12
Viba,x2) = < 3x14+25%; — /T >
and -
1 3 1 0 1 0
vzf(""”):<3 25>:<3 4)(3 4) :
We define
x1\ _ (13 X1
x5 0 4 x2 )’
ie.,
X1 1 —-3/4 X1
X2 0o 1/4 x5
We obtain

. 1 3\ 25
foiog =5 (-3%) + 3 (

4 4
1 1 Nz
— T R 12x 4 <9T> -6

(2.55)

(2.56)

(2.57)

(2.58)

(2.59)

(2.60)

It is easy to verify that sz(x{,xé) = 1. Note that there are no longer any crossed

terms in x7 x5.
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2.6 Exercises

Exercise 2.1. Among the following functions, which are convex and which are con-
cave? Justify your answer.

x)=1—x2.

x)=x—1.

A
A
(x1,xz) \/x2+x3.
flx) =

(x1,xz,X3) =sin(a)x; + cos(b)x2 + e “x3, a,b,c € R.

Exercise 2.2. For each of the following functions:

« Calculate the gradient.

« Calculate the Hessian.

« Specify (and justify) whether the function is convex, concave, or neither.

« Calculate the curvature of the function in a direction d at the specified point .

o Make a change of variables to precondition the function, using the Hessian at the
specified point X. Please note that the matrix for a change of variables must be
positive definite.

1 9
1. f(x1,%x2) = zx% + zx%, X =(0,0)T.
2. f(x1,%2) = 23 +x3 —x1 —x2, % = (9, 1),

3
3. f(x1,x2) = (x1 —2)* + (x1 =223+ (x2 + 12, x=(2,-1)7".

4. f(x1,x2) =x3 + 2x1x2 + 2x3, x = (1,17,
5. f(x1,%2) = x§ —x1%X2 4+ 2x3 — 2x7 + €172 % = (0,0)7.

Exercise 2.3. Consider f : R™ — R, a point x € R™ and a direction d € R™, d # 0
such that f(x + ad) = f(x) for all « € R. What is the curvature of f in x in the
direction d? What is the conditioning of f in x?



Chapter 3

Constraints

Life would be easier without constraints. Or would it? In this chapter, we investigate
ways to remove some of them, or even all of them. And when some remain, they need
to be properly understood in order to be verified. As algorithms need to move along
directions that are compatible with the constraints, such directions are characterized
in various contexts. We put a special emphasis on linear constraints, which the
analysis simplifies significantly.
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In this chapter, we analyze the constraints of the optimization problem:
min,cgn f(x) subject to h(x) =0, g(x) < 0,x € X. A vector satisfying all constraints
is called a feastble point.

Definition 3.1 (Feasible point). Consider the optimization problem (1.71)—(1.74).
A point x € R"™ is said to be feasible if it satisfies all constraints (1.72)—(1.74). Note
that, in the literature, this concept is sometimes called a feasible solution or feasible
vector.
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3.1 Active constraints

The concept of active constraints is relevant mainly for inequality constraints. We
introduce the concept with an example.

Example 3.2 (Inequality constraints). Consider the optimization problem

2
min x (3.1)
subject to
x < 4
x > —=10. (3.2)

It is illustrated in Figure 3.1, where the inequality constraints are represented by
vertical lines, associated with an arrow pointed towards the feasible domain. The
solution to this problem is x* = 0. In fact, one could also choose to ignore the
constraints and still obtain the same solution. We say that the constraints are inactive
at the solution. When using the notation (1.73), the problem can be written as

2
minx (3.3)
subject to
gi(x) = x—4 < 0
g2x) = —~x—10 < 0. (3.4)

We have g7 (x*) = —4 and g(x*) = —10, and g;(x*) < 0 and g2(x*) < 0. The fact
that the inequality constraints are strictly verified characterizes inactive constraints.

-10 -5 0 5 10

Figure 3.1: Illustration of Example 3.2
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Example 3.3 (Inequality constraints II). Consider the optimization problem

L2
min x (3.5)
subject to
x < 4
x> 1 (3.6)

It is illustrated in Figure 3.2, where the inequality constraints are represented by
vertical lines, associated with an arrow pointed towards the feasible domain. The
solution to this problem is x* = 1. In this case, we can ignore the constraint x < 4.
However, the constraint x > 1 cannot be ignored without modifying the solution. It
is said to be active. Using the notation (1.73), the problem can be written as

2
min x (3.7)
subject to
gilx) = x—4 < 0
g2x) = 1—x < 0. (3.8)

We have g;(x*) = —3 and g2(x*) = 0, and g7(x*) < 0 and g2(x*) = 0. The first
constraint is verified with strict inequality and is inactive. The second constraint is
verified with equality and is active.

Figure 3.2: Illustration of Example 3.3

Definition 3.4 (Active constraints). Consider g : R™ — RP and h: R™ — R™. For
1 <1i < p, an inequality constraint

gi(x) <0 (3.9)
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is said to be actwe in x* if
gi(x*) =0, (3.10)

and tnactiwe in x* if
gi(x*) < 0. (3.11)

By extension, for 1 <1i < m, an equality constraint
hi(x) =0 (3.12)
is said to be active at x* if it is satisfied in x*, i.e.,
hi(x*) =0. (3.13)
The set of indices of the active constraints in x* is denoted by A(x*).
This concept of active constraints is attractive because in x* the active constraints
can be considered equality constraints, while the inactive constraints can be ignored.
In Example 3.2, the unconstrained optimization problem min,cp x> has exactly the

same solution as (3.1)—(3.2). In Example 3.3, the constrained optimization problem
min, g x* subject to x = 1 has exactly the same solution as (3.5)—(3.6).

Theorem 3.5 (Active constraints). Take a vector x* € R™. Consider the following
optimization problem Py

P f(x) (3.14)

subject to
g(x) <0, (3.15)
x €Y CR"Y, (3.16)

where g : R™ — R™ 1s continuous and Y s a subset of R™. If x* s feasible, i.e.,
g(x*) <0, and of A(x*) C{1,...,p} is the set of indices of the active constraints
mn x*, e,

A(x*) = {ilgi(x*) = 0}, (3.17)
we consider the following optimization problem P,
min f(x) (3.18)
subject to
gi(x) =0, i€ A(x"), (3.19)
x €Y CR™ (3.20)

Here, x* 1s a local minimum of Py if and only if x* is a local minimum of P,.
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Proof. Sufficient condition. By continuity of g, for each inactive constraint j, there
is a neighborhood of size ¢; around x* such that the constraint j is strictly verified in
the neighborhood. More formally, if g;j(x*) < 0, then there exists ¢; > 0 such that

gj(x) <0 Vx such that ||x —x*|| < 5, (3.21)

as illustrated in Figure 3.3. Consider two feasible neighborhoods around x*. The first
one is defined as

Vi(e) ={xlg(x) <O,x € Y and ||x —x"|| < &}, (3.22)

and contains neighbors of x* that are feasible for the problem P;. The second is
defined as

Va(e) ={x|gi(x) =0Vie A(x"),x € Y and ||x —x*|| < ¢}, (3.23)

and contains neighbors of x* that are feasible for the problem P5.

Since x* is a local minimum of Py, according to Definition 1.5, there exists € > 0
such that f(x*) < f(x), Vx € V1 (8&).

Consider the smallest neighborhood, and define

§ =min(g, min ¢&;). 3.24
( "jgA (x*) i) (3:24)

We show that
V2 (&) C I (). (3.25)

Indeed, take any x in ), (Z). In order to show that it belongs to ); (%), we need to
show that g(x) <0, x € Y, and ||x —x*|| < €. Since & < €, we have ||[x —x*|| < € <&,
and the third condition is immediately verified. The second condition (x € ) is
inherited from the definition of ) (&). We need only to demonstrate that g(x) < 0.
To do this, consider the constraints of A(x*) separately from the others. By definition
of ),, we have gi(x) = 0 for i € A(x*), which implies gi(x) < 0. Take j & A(x*).
Since & < ¢, we have g;(x) < 0 according to (3.21), which implies gj(x) < 0. This
completes the proof that g(x) < 0, so that x € Y (%€).

As a result of (3.25), since x* is the best element (in the sense of the objective
function) of );(€) (according to Definition 1.5 of the local minimum), and since x*
belongs to ), (&), it is also the best element of this set, and a local minimum of P,.

Necessary condition. Let X; be the set of feasible points of P; and X, the set of
feasible points of P,. We have X, C X;. Let x* be a local minimum of P,. We assume
by contradiction that it is not a local minimum of P;. Then, for any ¢ > 0, there
exists x € X; such that [|[x —x*|| < ¢ and f(x) < f(x*). Since x* is a local minimum
of P2, x cannot be feasible for P, and x ¢ X, C Xj, leading to the contradiction. O
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We have managed to eliminate some constraints. Unfortunately, this required know-
ing the solution x*. This simplification is thus relevant mainly in theory.

Figure 3.3: Strictly feasible neighborhood of x* when the inequality constraint j is
inactive

3.2 Linear independence of the constraints

The analysis of the structure of the constraints and their management in algorithms
is complex. It is therefore necessary to introduce assumptions that are general enough
not to be restrictive from an operational point of view, and that render it possible
to avoid pathological cases. In particular, the linear independence of the constraints
plays an important role. Even though this concept is relatively intuitive when the
constraints are linear, it is necessary to define it strictly for non linear constraints.

Start with the case where all constraints are defined by affine functions (see Def-
inition 2.25). In this case, when using the techniques of Section 1.2, it is always
possible to express the optimization problem as

min f(x) (3.26)
subject to

Ax = Db (3.27)

x > 0 (3.28)

by writing h(x) = b — Ax in (1.72), with A € R™ ™ x € R™ and b € R™, and
g(x) = —x in (1.73).
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Since the inequality constraints are simple, we analyze in more details the system
of equations Ax = b. Like any linear system, three possibilities may arise:

« the system is incompatible, and there is no x such that Ax = b;

o the system is underdetermined, and there is an infinite number of x such that
Ax = b;
« the system is non singular, and there is a unique x that satisfies Ax = b.

In an optimization context, incompatible and non singular systems have little rele-
vance because they leave no degree of freedom to optimize any objective. We thus
only consider underdetermined systems.

If the system is compatible, the rank of A (Definition B.29) gives us information
on the relevance of the various constraints. If the rank is deficient, this means that
certain rows of A form a linear combination of the others, and the corresponding
constraints are redundant. This is formalized by Theorem 3.6 and illustrated by
Example 3.7.

Theorem 3.6 (Redundant constraints). Consider a compatible system of linear
equality constraints Ax = b, with A € R™™ m < n. If the rank of A 1s
deficient, i.e., rank(A)=r < m, then there ezists a matriz A € R"™™" of full rank

(i.e., rank(A) =), composed exclusively of rows ly,...,0 of A such that
Ax=b < Ax =, (3.29)
where b is composed of elements {; yooeydy Of D.

Proof. Since the rank of A is r, this signifies that m — r rows of A can be written as
linear combinations of r other rows. Without loss of generality, we can assume that
the last m — r rows are linear combinations of the first r rows. By denoting a{ the
kth row of A, we have

T
ak:ZA{;aj k=r+1,...,mand Jj t.q. ?\L;«EO. (3.30)
=1

Moreover, since by hypothesis the system Ax = b is compatible, for each k = r +
1,...,m we have

by = alx
= Y 1Aafx (3.31)
)
= Zj:] Aibi'
Denote A the matrix composed of the first r rows of A, and b the vector composed
of the first r components of b. Then, {; =1,i=1,...,r.

— Consider x such that Ax = b. According to the definition of A, we have that x
satisfies the first v equations of the system, i.e., a]x =b; for i =1,...,7. Select
k as an arbitrary index between r+ 1 and m, and demonstrate that x satisfies the
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corresponding equation. We have

.
apx = Z ?\La]-Tx according to (3.30)
=1
r .
= Z AL b; because Ax =b
j=1
= by according to (3.31).

&= Let x be such that Ax = b. x satisfies all equations of the system, particularly
the first r ones. Then, it satisfies Ax = b.

O
Example 3.7 (Redundant system). Take the constraints
x1+x2+x3 = 1
X1 —%x2+x4 = 1 (3.32)
X7 —5x2 —2x3+3x4 = 1
ie.,
1 1 10 1
A=[1 =1 o1 | b=[1]. (3.33)

1 -5 -2 3 1

The rank of A is equal to 2, but there are 3 rows (the determinant of any squared
submatrix of dimension 3 is zero). This means that one of the rows is a linear
combination of the others. Since the system is compatible (for instance, x1 = 2/3,
x2 = 0,x3 = 1/3, x4 = 1/3 is feasible), one of the constraints must be redundant. In
this case, if aiT represents the ith row of A, we have

az = —2a7 + 3a. (3.34)
We can remove the 3rd constraint, and the system

X1 +x2+x3 = 1

3.35
X1 —X2+x4 = 1 ( )

is equivalent to the constraint system (3.32).

To generalize this result to non linear constraints h(x) = 0, we must linearize
them by invoking Taylor’s theorem (Theorem C.1) around a point x*, i.e.,

h(x) = h(x") + Vh(x )T (x = x*) + o(||(x —xT|)).
In this case, by ignoring the term o of (C.1), h(x) = 0 can be approximated by

h(x") + Vh(x")Tx — Vh(x")Tx" =0
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or by
Vh(xt)Tx = Vh(x")Tx* —h(xt).

Therefore, the gradients of equality constraints play a similar role as the rows of
the matrix A in (3.27). As for the inequality constraints, we saw in Section 3.1 that
those that are inactive at x* can be ignored, and that those that are active can be
considered equality constraints. Consequently, we can define the condition of linear
independence as follows.

Definition 3.8 (Linear independence of the constraints). Consider the optimization
problem (1.71)—(1.73) minyegn f(x) subject to h(x) =0 and g(x) <0, and x* a feasi-
ble point. The linear independence of the constraints is satisfied in x* if the gradients
of the equality constraints and the gradients of the active inequality constraints in
xT are linearly independent. By abuse of language, it is sometimes simply said that
the constraints are linearly independent.

Example 3.9 (Linear independence of constraints). Take an optimization problem
in R? with the inequality constraint

glx) =x7 + (x2—1)*=1<0 (3.36)

and the equality constraint
h(x) =x2 —x§ = 0. (3.37)

We have

X2

-2 -15 -1 -056 0 05 1 15 2
X1

Figure 3.4: Linear independence of the constraints
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Consider the point x* = (1,1)T, that is feasible, and for which the constraint
(3.36) is active. We have

Vg(x%) = ( é > and Vh(x®) = ( 7? > .

These two vectors are linearly independent, and the linear independence of the con-
straints is satisfied in x®. Figure 3.4 represents the normalized vectors

Do) (1) ana TR (5
Vo ~ \ 0 VRGOl ~ \ 5 )

Consider the point x® = (0,0)T, that is also feasible, and for which the constraint
(3.36) is active. We have

Vg(x®) = ( 72 > and Vh(x?) = ( (1) >

These vectors are represented as normalized in Figure 3.4. They are linearly depen-

dent because Vg(x®) = —2Vh(x?), and the linear independence of the constraints is

not satisfied in xP.

3.3 Feasible directions

A major difficulty when we develop optimization algorithms is to move within the
feasible set. The analysis of the feasible directions helps us in this task.

Definition 3.10 (Feasible direction). Consider the general optimization problem
(1.71)=(1.74), and the feasible point x € R™. A direction d is said to be feasible in x
if there exists 1 > 0 such that x + «d is feasible for any 0 < o < 1.

In short, it is a direction that can be followed, at least a little bit, while staying
within the feasible set. Some examples are provided in Figure 3.5, where the feasible
set is the polygon represented by thin lines, feasible directions are represented with
thick plain lines, and infeasible directions with thick dashed lines.

3.3.1 Convex constraints

When the set X of the constraints is convex, the identification of a feasible direction
in x € X depends on the identification of a feasible point y € X, other than x.
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-

Figure 3.5: Feasible (plain) and infeasible (dashed) directions

Theorem 3.11 (Feasible direction in a convex set). Let X be a convezx set, and
consider x,y € X, y #x. The direction d =y —x 15 a feasible direction in x and
x4+ ad =x+ x(y —x) is feasible for any 0 < o < 1.

Proof. According to Definition B.2 of a convex set. O

Figure 3.6: Feasible direction in a convex set

Corollary 3.12 (Feasible directions in an interior point). Let X C R™ be a subset
of R™ and x € R™ an wnterior point of X. Here, any direction d € R™ s feasible
m X.

Proof. According to the definition of an interior point (Definition 1.15), there exists
a (convex) neighborhood V = {z such that ||z —x|| < ¢} such that V C X and ¢ > 0.
Consider an arbitrary direction d, and let y = x + e¢d/||d|| be the point where the
direction intersects the border of the neighborhood. Since ||y —x|| = ¢, theny € V.
Since V is convex, Theorem 3.11 is invoked to demonstrate that d is feasible. [l

This result is particularly important. The fact that all directions are feasible at
an interior point gives freedom to algorithms in the selection of the direction. This
is what motivates the method of interior points, as described in Chapter 18.
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3.3.2 Constraints defined by equations-inequations

Here we consider the problem (1.71)—(1.73). Since we have at our disposal analytical
expression of constraints, we characterize the set of feasible directions directly from
these expressions. When the constraints are linear, the characterization is simple.

Theorem 3.13 (Feasible directions: linear case). Consider the optimization prob-
lem (8.26)—(8.28) minf(x) subject to Ax =b and x > 0, and let x* be a feasible
point. A direction d is feasible in x* if and only if

1. Ad =0, and

2. d; > 0 when x{” =0.

Proof— Direct implication. Let d be a feasible direction in x*. According to
Definition 3.10, there exists 1 > 0 such that x* + «d is feasible for any 0 < o« <.
It satisfies the constraint (3.27), i.e.,

b=AKx"+ad) =Ax" + aAd =b + xAd.

We have that Ad = 0 because « > 0. Comnsider i such that xi+ = 0. Since x™ + ad
is feasible, we have
x; +adi = adi >0

and the second condition is satisfied.

<= Inverse implication. Let d be a direction satisfying the two conditions. Consider
the point x* + «d. It satisfies the constraints (3.27) because Ad = 0. For the
constraints (3.28), we consider three types of indices:

— Consider i such that x;” = 0. In this case, x; + «d; is non negative because
di > 0 by hypothesis.
— Consider 1 such that xi+ > 0 and d; > 0. The same conclusion.

— Consider i such that x;” > 0 and d; < 0. These are the only indices for which
chances are that xf + «d; is non feasible. In this case, we have to determine
the step to take in direction d in order to stay feasible. Define

. Xi
= min —— >0.
ilx{">0 and d; <0 di
If we choose « < 1, we have
x
ocgng—d—‘ Vit.q. x{ >0and d; <0,
i
and
x{ +adi >0

because d; < 0.
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Then, x™ + «ad is feasible if o« < . Since m is positive, d is a feasible direction
according to Definition 3.10.
O

Corollary 3.14 (Combination of feasible directions: linear case). Consider the
optimization problem (8.26)—(3.28) minf(x) subject to Ax = b and x > 0. Let
xT be a feasible point and di,...,dy feasible directions in x*. Then, the conver
cone generated by these directions contains feasible directions. That is, any
linear combination with non negative coeffictents of these directions, t.e.,

k
d=) o5dj o >0Vj, (3.38)
j=1

1s a feastble direction.

Proof. The two conditions of Theorem 3.13 are trivially satisfied for d. O

To switch to the non linear case, we must use the gradients of the constraints.
Before this, we propose to interpret Theorem 3.13 in terms of gradients.

The first condition of the theorem concerns equality constraints. We have seen
that the rows of the matrix A are the gradients of the constraints, i.e. Vhi(x) = aj,
with

hi(x) = aiTx —b; =0.

In the linear case, the first condition can be written as
Vhix)Td=0 i=1,...,m.
The inequality constraints can be written as
gix)=—x <0 i=1,...,p,

and

Vgi(x)=1] -1 and Vg;(x)'d = —d;.

0
The second condition of the theorem can be expressed as follows: “If the constraint
gi(x) is active at x*, then Vg;(x*)Td < 0.” We should also note that if an inequality

constraint is not active at x™, it does not involve any condition on the direction for
the latter to be feasible.
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Unfortunately, the generalization of these results to the non linear case is not
trivial. We develop it in two steps. We first see how to characterize feasible directions
for an inequality constraint. We treat the equality constraint later.

We observe that the gradient of an inequality constraint at a point where it is
active points toward the outside of the constraints, as shown by Example 3.15.

Example 3.15 (Constraint gradients). Consider the subset of R? defined by the
constraint

1 1 1
—(x1 =14+ =(x2—1)% < =
2(X1 )T+ Z(Xz )7 < >
and represented by Figure 3.7. Considering the formulation (1.73), we have
1 5 1 5 1
9(x) = 501 =12+ 52— 1) = 3,

and

v = (27} ).

If we evaluate the gradient at different points along the border of the constraint, we
obtain directions pointing towards the outside of the feasible domain, as shown in
Figure 3.7.

Figure 3.7: Constraint gradient
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Intuitively, the gradient direction and the directions that form an acute angle with
it cannot be considered as feasible directions.

Theorem 3.16 (Feasible directions: an inequality constraint). Let g: R™ — R be
a differentiable function, and consider x* € R™ such that g(x*) < 0.

1. If the constraint g(x) < 0 is tnactive at x", all directions are feasible in x.

2. If the constraint is active at x*, and Vg(x") #0, a direction d is feasible in
xT aif
Vg(xt)Td < 0. (3.39)

Proof. 1.If the constraint is inactive at x*, then x™ is an interior point, and Corol-
lary 3.12 applies.

2. Consider the case where the constraint is active at x™, that is g(x*) = 0. Let d be
a direction satisfying (3.39). According to Definition 2.10, d is a descent direction
for g in x". We can apply Theorem 2.11 to determine that there exists n > 0 such
that

gixt +ad) < g(x") =0, V0O<a<n,

and conclude that d is feasible.
O

It is important to note that (3.39) is a sufficient condition in order to obtain a
feasible direction when the constraint is active, but it is not a necessary condition.
Indeed, in the linear case, we have a similar condition, with a non strict inequality. We
still have to discuss the case where Vg(x*)"d = 0, which occurs when the gradient is
zero, or when the direction d is perpendicular to the gradient. In this case, we invoke
Theorem C.1 (Taylor’s theorem) to obtain

gx* +ad) = g(x") +ad"Vg(x") +o(«fd]|) = o(«).

In this case, nothing can guarantee that there exists « such that x* + «d is feasible.
However, we can make the infeasibility as little as desired by choosing a sufficiently
small «.

We now analyze the feasible directions for an equality constraint

h(x) =0.
We can express this constraint in an equivalent manner as
0
0.
If x* is feasible, these two inequality constraints are active. However, no direction d

can simultaneously satisfy (3.39) for the two inequalities. This condition is unusable
for equality constraints.
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Since the equality constraints pose a problem, we address the problem in the other
direction. Instead of positioning ourselves on a feasible point x* and wondering how
to reach another one, we attempt to identify the ways to reach x* while remaining
feasible. To do this, we introduce the concept of feasible sequences.

Definition 3.17 (Feasible sequences). Consider the optimization problem (1.71)—
(1.74), and a feasible point x* € R™. A sequence (xk)ken, With xi € R™ for any k is
said to be a feasible sequence in x* if the following conditions are satisfied:

1. limy oo X = X7,
2. there exists ko such that xy is feasible for any k > ko,
3. xx #x* for all k.

The set of feasible sequences in x* is denoted by S(x™).

Example 3.18 (Feasible sequence). Consider the constraint in R?
h(x) = x% —x2 =0,

and the feasible point x* = (0,0)". The sequence defined by

1
=

satisfies the three conditions of Definition 3.17 and belongs to S(x*). It is illustrated
in Figure 3.8.

X2

X1

Figure 3.8: Example of a feasible sequence
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Given that the sequence (xy)x is feasible in x*, we consider the directions con-
necting xx to x by normalizing them:

Xk — X"

dy = 77—
e =+l

(3.40)

We should keep in mind that these directions are generally not feasible directions.
We are looking at what happens at the limit.

Example 3.19 (Feasible direction at the limit). We consider once again Exam-
ple 3.18. We have xj — x = xx,

Ly VK21
[xk =x7|| = —5—
kz
and
k
dy = ( \/k12+1 ) .
VkZ4+1

At the limit, we obtain

. 1
d_khfiodk_<o )

These directions are illustrated in Figure 3.9. Note that

Vh(x") = ( ﬂ ) and Vh(x")"d =0.

X1

Figure 3.9: Example of a feasible direction at the limit

Unfortunately, it is not always possible to position oneself at the limit, as shown
in Example 3.20 where the sequence is not convergent, and contains two adherent
points. In this case, we should consider the limit of subsequences in order to identify
the feasible directions at the limit.
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Example 3.20 (Feasible direction at the limit). As for Example 3.18, we consider
the constraint in R?:

h(x) = x% —x2 =0,

and the feasible point x* = (0,0)". The sequence defined by

(=D*
Xk = ]f
kZ

satisfies the three conditions of Definition 3.17 and belongs to S(x™). The calculation

of the directions gives
(=D*k
dy = ( \/k12+1 >
VkZ+1)?

and limy_,, dx does not exist. However, if we consider the subsequences defined by
the even and odd indices, respectively, we obtain

d’ = lim de—< ] )
k—o0 0

and
. -1
= im dee = ('),

as illustrated in Figure 3.10. Note once again that Vh(x*)"Td’ = Vh(x")Td” = 0.

X1

Figure 3.10: Example of a feasible sequence

We can now formally define the notion of a feasible sequence at the limit.
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Definition 3.21 (Feasible direction at the limit). Consider the optimization problem

(1.71)—(1.74), and a feasible point x™ € R™. Let (xyx)xen be a feasible sequence in

xT. The direction d # 0 is a feasible direction at the limit in x* for the sequence

(1 )ken if there exists a subsequence (xy, )ien such that
d Xk, — X

—— = lim

lim 5= (3.41)
ldll - imoo [Jxi, —xF]|

Note that any feasible direction d is also a feasible direction at the limit. Just
take the feasible sequence xi = x* + %d in Definition 3.21.

Definition 3.22 (Tangent cone). A feasible direction at the limit is also called a

tangent direction. The set of all tangent directions in x* is called the tangent cone
and denoted by 7 (x™).

We can now make the connection between this concept and the constraint gradient.
According to Theorem 3.16 and the associated comments, we consider all directions
that form an obtuse angle with the active inequality constraint gradients and those
that are orthogonal to the equality constraint gradients.

Definition 3.23 (Linearized cone). Consider the optimization problem (1.71)—(1.74),
and a feasible point x* € R™. We call the linearized cone in x*, denoted by D(x"),
the set of directions d such that

d"Vgi(x") <0, Vi=1,...,p such that g;(x") =0, (3.42)

and
d"Vhix") =0, i=1,...,m, (3.43)

and of all their multiples, i.e.,

{aed|oc > 0 and d satisfies (3.42) and (3.43)}. (3.44)

Theorem 3.24 (Feasible directions at the limit). Consider the optimization prob-
lem(1.71)-(1.74), and a feasible point x*™ € R™. Any feasible direction at the
limit in x™ belongs to the linearized cone in x*+, that is

T(x") € D(xH). (3.45)
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Proof. Let d be a normalized feasible direction at the limit, and xy a feasible sequence

such that N
. Xk — X
d=1 _— 3.46
e o (3.46)

1. Consider an active inequality constraint, i.e.,
gi(x") =0.
For a sufficiently large k such that xy is feasible, we can write
gi(x") + (x —=x")TVgi(x™) + o(|lxi — x ™) = gi(xi) <0
invoking Theorem C.1 (Taylor’s theorem), and

(xk —=xT)TVgi(x™)  of[xk —xT|)

3 —xT| [ —x*|

<0.

We now only have to position ourselves at the limit, and utilize (3.46) and Defi-
nition B.17 to obtain (3.42).

2. Consider an equality constraint,
hi (X+) =0.
This constraint is equivalent to two inequality constraints

hi(x*) < 0
—hi(x*) < 0
which are both active at x*. According to the first point already demonstrated,
we have 0 < d"Vh;(x") and 0 < —d"Vh;(x"), and obtain (3.43).

O

Example 3.25. Illustration of Theorem 3.24 Returning to Example 3.20, we can
observe in Figure 3.11 that the two feasible directions at the limit are orthogonal to
the constraint gradient in x*, i.e.,

Vh(xt) = ( 7(1) >

Theorem 3.24 does not yet provide a characterization of feasible directions at the
limit. Nevertheless, such a characterization is important, especially since the notion
of linearized cone is easier to handle than the concept of feasible direction at the limit.
Unfortunately, such a characterization does not exist in the general case. Therefore,
it is useful to assume that any element of the linearized cone is a feasible direction at
the limit. This hypothesis is called a constraint qualification.®

1 Several constraint qualifications have been proposed in the literature. This one is sometimes

called the Abadie Constraint Qualification, from the work by Abadie (1967).
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X2

-1 -0.5 0 0.5 1

X1

Figure 3.11: Gradient and feasible directions at the limit

Definition 3.26 (Constraint qualification). Consider the optimization problem
(1.71)—(1.74), and let x* be a feasible point. The constraint qualification condi-
tion is satisfied if any element of the linearized cone in x* is a feasible direction at
the limit in x*, that is if

T =D(x"). (3.47)

This hypothesis, seemingly restrictive, is satisfied in a number of cases. In par-
ticular, when the constraints are defined solely by equations and inequations, each of
the following is sufficient for a constraint qualification.

o If the constraints (1.71)—(1.73) are linear, the constraint qualification is satisfied
at all feasible points.

o If the constraints are linearly independent in x* (Definition 3.8), the constraint
qualification is satisfied at x*.

o If there exists a vector d € R™ such that

1. Vhi(x")Td =0, foranyi=1,...,m,
2. Vgi(x*)"d < 0 for any i = 1,...,p such that g;(x*) =0

and such that the equality constraints are linearly independent in x*, then the
constraint qualification is satisfied at x* (Mangasarian and Fromovitz, 1967).

o If there is no equality constraint, the functions g; are convex, and there exists a
vector x~ such that

gi(x~) <0 for any i =1,...,p such that g;(x") =0,

the constraint qualification is satisfied at x* (Slater, 1950).

We develop the proof for the two first conditions.
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Theorem 3.27 (Characterization of feasible directions at the limit — I). Consider
the optimization problem (1.71)—(1.73), and a feasible point x* € R™ such that
all active constraints in x* are linear. Every direction d such that ||d|| = 1 is
feasible at the limit in x* if and only if it belongs to the linearized cone D(x"),
that 1s

T =Dx"). (3.48)

Proof. Theorem 3.24 shows that 7(x") C D(x"). To demonstrate that D(x") C
T (x*), consider a normalized direction? d that belongs to the linearized cone D(x*).
We need to create a feasible sequence (xy )k, such that (3.41) is satisfied.

For each inequality constraint 1 active at x*, we have

gi(x) = a{x — by, (3.49)
and for each equality constraint, we have
hi(X) = C_IIX — Bi. (350)

Following the arguments developed in Theorem 3.5, there exists ¢ such that all
constraints that are inactive at x* are also inactive in any point of the sphere of
radius ¢ centered in x™. Consider the sequence (xi )i with

xk:x++%d K=1,2,... (3.51)
Each xy is situated in the sphere mentioned above, and satisfies the inequality con-

straints that are inactive at x™. For the inequality constraints that are active at x*,
we have

gi(xk) = gi(xi) — gi(x™) because gi(x") =0
=alxk —bi —alx" + by according to (3.49)
= al (xi —x1)
= %ade according to (3.51).

Since d is in the linearized cone at x*, Vg;(x*)"d = ade < 0, and xy is feasible for
any inequality constraint. For the equality constraint, we obtain in a similar manner
€ _
hi(Xk) = Eale
Since d is in the linearized cone at x*, Vhi(x*)"d = dde = 0, and xi is feasible
for any equality constraint. The sequence (xy)x is indeed a feasible sequence, in the
sense of Definition 3.17.

2 ie., such that ||d|| =1.
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Finally, we now need only deduce from |/d|| =1 that, for any k,

X —x (e/k)d _3

I —x*H||  e/k

to conclude that d is indeed a feasible direction at the limit. O

Theorem 3.28 (Characterization of feasible directions at the limit — II). Consider
the optimization problem(1.71)-(1.78), and a feasible point x* € R™ for which
the constraints are linearly independent. Any d such that ||d|| =1 is feasible at
the limit at x* if and only if it belongs to the linearized cone D(x*t), that is

T(x") =D(x"). (3.52)

Proof. Theorem 3.24 shows that 7(x") C D(x"). To demonstrate that D(x") C
T (x*), consider a normalized direction d that belongs to the linearized cone D(x™).
We create a feasible sequence (x )k, such that (3.41) is satisfied. We create it implic-
itly and not explicitly.

To simplify the notations, we first assume that all constraints are equality con-
straints. We consider the Jacobian matrix of constraints in x*, Vh(x*)" € Rmx™,
for which the rows are constraint gradients in x* (see Definition 2.18). Since the
constraints are linearly independent, the Jacobian matrix is of full rank. Consider a
matrix Z € R™*(™~™) for which the columns form a basis of the kernel of Vh(x")T,
i.e., such that Vh(x")TZ = 0. We apply the theorem of implicit functions (Theo-
rem C.6) to the parameterized function F: R x R™ — R™ defined by

h(x) — uVh(x*t)Td ) ' (3.53)

F =

(I“L)X) < ZT(X—X+—Hd)

The assumptions of Theorem C.6 are satisfied for p = 0 and x = x*. Indeed,
ViF(w,x) = (Vh(x) Z)

is non singular since the columns of Z are orthogonal to those of Vh(x), and since
the two submatrices are of full rank. Then, we have a function ¢ such that

xt = ¢(0) (3.54)

and, for u sufficiently close to zero,

(3.55)

_ T
F () < h($(w) — uVhix")d ) o

ZT(dp(u) —x —ud)
Since d is in the linearized cone, we deduce from the first part of (3.55)

(W) = uVh(x")Td =0 (3.56)
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and ¢(p) is feasible. We use ¢ to build a feasible sequence. To do so, we show that
¢(n) #xT when p # 0. Assume by contradiction that ¢(n) = x™. In this case,

h(x") — uVh(x*)Td —uVh(xt)Td
Fp,x") = ( éﬁ(}d _ux+ (_Xu)d) ) = ( u_H(ZXTd) ) =0. (3.57)

If 1 # 0, and since the matrices Vh(x*)T and Z are of full rank, we deduce that d = 0,
which is impossible since ||d|| = 1. Then, if n # 0, we necessarily have ¢(n) # x".

We are now able to generate a feasible sequence. To do so, we consider a sequence
(i )k such that limy o (i )x = 0. Then, the sequence

Xk = d(px) (3.58)

satisfies all conditions to be a feasible sequence (see Definition 3.17). We now need
to demonstrate that d is a feasible direction at the limit.

For a sufficiently large k, such that py is sufficiently close to zero, we use a Taylor
series of h around x*

h(xk) h(x*) + Vh(x") T (xx —x) + o(|[xx —xT||)

Vh(xH)T (xx —xF) + o(||xk —xF|)

in (3.55) to obtain

0 = Fluk,xx)
Vh(x™)T(xk —x) + of|jxk —xF[|) — i Vh(x+)Td
( ZT (x —xt — pid)
_ ( Vh(x") T (xie —xT — wed) 4 o(fxic —xF]) )
ZT (x —x* — pid)

.
Vh(ZXTﬂ ) (xk —x* — pied) + o(||xic — x|

_ ( Vh(x)T ) (p=x e ) o el

ydl Txe—xFT " Thac—x71] [l —xF|

Then, since the matrices Vh(x; )" and ZT are of full rank, we have

. Xk —x* 9873 >
lim — d] =0. 3.59
i <|xkx+|| o — <] (3.59)
Define N
d=lim X" andc= lim — "%
k—o0 ka —X+H k—o0 ka —X+H

and (3.59) is written as

d =cd.
Since ||d|| = ||d|| = 1, we have ¢ = 1 and
Xk —x T

lim d.

k—oo ||xkx — x| -
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Then, d is indeed a feasible direction at the limit.

To be completely accurate, we must consider a case with inequality constraints.
For those that are active at x*, the reasoning is identical, with the exception of (3.56)
which becomes

g(d(n) =pvgx)Td<o

from which we deduce the feasibility of ¢ (). Inactive constraints do not pose a prob-
lem, since there is a sphere around x* such that all elements satisfy these constraints.
Since Definition 3.17 is asymptotic, we can always choose k sufficiently large such
that xy belongs to this sphere. O

Feasible directions at the limit are an extension of the concept of a feasible direction.
It enables us to identify in which direction an infinitesimal displacement continues
to be feasible. Unfortunately, the definition is too complex to be operational. The
linearized cone, based on the constraint gradients, is directly accessible to the calcu-
lation. We usually assume that the constraint qualification is satisfied.

3.4 Elimination of constraints

Optimization problems without constraint are simpler than those with constraints.
We now analyze techniques to eliminate constraints.

We start with the optimization problem (3.26)—(3.28) min f(x) subject to Ax =b
and x > 0, where the constraints are linear. We assume that we have a system
of constraints of full rank, obtained after eliminating any redundant constraint (see
Theorem 3.6). It is then possible to simplify the problem by eliminating certain
variables, as shown in Example 3.29.

Example 3.29 (Elimination of variables). Counsider the following optimization prob-

lem:
min f(x1,X2,X3,X4) :X%+Sin(X3*X2) + x4 + 1 (3.60)
subject to
= 1
¥1otxz 4% (3.61)
X1 —Xx2 +xq4 = 1.

We can rewrite the constraints in the following manner:

X3 = 1—X1 — X2

x4 = 1 —%x1+x%2. (3.62)

Thus, the optimization problem can be rewritten so as to depend only on two variables
x7 and x7 :

min f(xq,x2) = x% +sin(—x1 —2x2 +1) —x1 +%x2+2 (3.63)

without constraint.
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To generalize Example 3.29, we consider the constraints
Ax=Db (3.64)

with A € R™*™ m < n, x € R" and b € R™ and rank(A) = m. We choose m
columns of A that are linearly independent corresponding to the variables that we
wish to eliminate. Apply a permutation P € R™*™ of the columns of A in such a way
that the m selected columns are the leftmost columns:

AP = (BN) (3.65)

where B € R™*™ contains the m first columns of AP, and N € R™*("~™) contains
the n —m last ones. Recalling that PPT = I, we write (3.64) in the following manner

Ax = AP(PTx) =Bxg + Nxny = b (3.66)

where xg € R™ contains the m first components of PTx, and xn € R™™ contains
the n — m last ones. Since the m first columns of AP are linearly independent, the
matrix B is invertible. We can write

xg = B~ (b — Nxn). (3.67)

By adopting this convention, we consider the optimization problem with linear

equality constraints
min f (P ( B )) (3.68)
XB,HyXN XN

Bxg + Nxn = b. (3.69)

subject to

It is equivalent to the unconstrained problem

min f (P( B~ (b —Nxw) )) (3.70)

XN XN

The variables xp are called basic variables, and the variables xN non basic variables.

Example 3.30 (Elimination of variables — II). In Example 3.29, we have

1 110 1
A‘<1 -1 0 1) b_<1>'

The variables to eliminate are x3 and x4. They correspond to the last two columns
of the constraint matrix, and we choose the permutation matrix to make them the
first two, that is

0 01T 0
0 0 0 1
P= 1.0 00
01 00



Constraints 44

to obtain

T o1 1 10 1T 1
AP:(B“\”:(o 1‘1 1) BZ(O 1> N:<1 1)
we(2) -

and

Il
I~ W
o —
— o
~_
N
7N
N~
|
7N
L.
N~~~
7N
x X
N -
~~_
N~~~

which is exactly (3.62).

It is relatively easy to remove linear equality constraints. However, note that the
calculation of the matrix B~' can be tedious, especially when m is large, and it is
sometimes preferable to explicitly maintain the constraints for the problem.

The elimination of non linear constraints can be problematic. An interesting
example, proposed as an exercise by Fletcher (1983) and again by Nocedal and Wright
(1999), illustrates this difficulty.

Example 3.31 (Elimination of non linear constraints). Consider the problem
min f(x1,%2) = X + X3
x

subject to

(a =1 =3

shown in Figure 3.12.

X%I (X] I— ])3

X2
o

83 -2 -1 0 1 2 3
X1

Figure 3.12: The problem in Example 3.31



78 Linear constraints

The solution to this problem is (1,0). If we eliminate x,, we obtain an optimization
problem without constraint

min f(x7) :xf + (x1 —1)3.
X1

However, this new problem has no solution since f is unbounded, i.e.,

lim f(x1) = —o0,
X1 ——00

as shown in Figure 3.13. The problem is that the substitution can only be performed

if x; > 1, since x% must necessarily be non negative. This implicit constraint in the

original problem should be explicitly incorporated in the problem after elimination.
It plays a crucial role since it is active at the solution.

20 : : :

10 |

0

-10

Z 20
e

-30

-40

-50

-60 1 1 I 1 1

Ix%+(x1 —-1)3

3

X1

Figure 3.13: The problem without constraint in Example 3.31

One must thus be cautious when eliminating non linear constraints.

3.5 Linear constraints

When the constraints are linear, a more detailed analysis can be performed. We first
give a geometric description of the constraints. Then, geometric concepts have their
algebraic counterparts.

3.5.1 Polyhedron

We analyze the linear constraints (3.27)—(3.28) from a geometrical point of view. The
central concept in this context is the polyhedron.
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Definition 3.32 (Polyhedron). A polyhedron is a set of points of R™ delimited by
hyperplanes, i.e.,
{x e R"|Ax < b}, (3.71)

with A € R™*™ and b € R™.

By employing the techniques discussed in Section 1.2, it is always possible to
transform an optimization problem with general linear constraints into a problem
with the constraints Ax < b. Thus, the set of feasible points in an optimization
problem with linear constraints is a polyhedron. To make the most of the technique
of elimination of variables mentioned above, it is helpful to use the representation of
a polyhedron called representation in standard form.

Definition 3.33 (Polyhedron represented in standard form). A polyhedron repre-
sented in standard form is a polyhedron defined in the following manner

{x e R"|Ax =b, x > 0}, (3.72)

where A € R™*™ and b € R™.

Note that according to Theorem 3.6, the matrix A is assumed to be of full rank
without loss of generality.

The identification of vertices or extreme points of a polyhedron is possible thanks
to the technique of elimination of variables described above. We begin by formally
defining a vertex.

Definition 3.34 (Vertex). Let P be a polyhedron. A vector x € P is a vertex of P
if it is impossible to find two vectors y and z in P, different from x such that x is
a convex combination (Definition B.3) of y and z, i.e., such that there exists a real
number 0 < A < 1 such that

x =AYy + (1 —A)z. (3.73)

The Definition 3.34 is illustrated by Figure 3.14, where x is a vertex. If we choose
y € P, it is impossible to find a z in P such that x is a convex combination of y and
z. On the other hand, X is not a vertex, and represents a convex combination of {j
and Z.

We can identify the vertices of a polyhedron represented in standard form by using
the following procedure:

1. Choose m variables to eliminate.
2. Identify the matrix B that contains the corresponding columns of A.
3. Take xn = 0.

4. In this case, (3.67) is expressed as xg = B~'b. If xg > 0, then x = (x
vertex of the polyhedron.

T T)T

B XNn) isa
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Figure 3.14: Illustration of Definition 3.34

We formalize this result with the following theorem.

Theorem 3.35 (Identification of vertices). Let P = {x € R™"|Ax = b,x > 0} be
a polyhedron represented in standard form, with A € R™*™ of full rank and
b € R™ and n > m. Consider m linearly independent columns of A, and call
B the matriz containing these m columns, and N the matriz containing the
remaining n — m columns, such that

AP = (B|N) (3.74)

where P 1s the appropriate permutation matriz. Consider the vector

x_P< e ) (3.75)

O]Rn —m

IfB~'b > 0, then x is a vertex of P.

Proof. Without loss of generality, and to simplify the notations in the proof, we
assume that the m columns chosen are the m first ones, such that the permutation
matrix P = I. We assume by contradiction that there exists y,z € P,y # x, z # x
and 0 < A < 1 such that

x =AY+ (1 —2A)z. (3.76)
After decomposition, we obtain
xg = Ayp + (1 —A)zg, (3.77)
and
XN = AYN + (1 —A)zn. (3.78)

Since y and z are in P, we have yn > 0 and zn > 0. Since 0 < A < 1, the only way
for xy = 0 is that yn = zn = 0. Then,

ys =B '(b—Nyn) =B b =xs, (3.79)
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and
zg =B (b—Nzn) =B 'b = xg. (3.80)

We obtain x =y = z, which contradicts the fact that y and z are different from x,
and proves the result. O

It then appears that the vertices can be characterized by the set of active con-
straints.

Theorem 3.36 (Vertices and active constraints). Let P = {x € R"|Ax = b,x > 0}
be a polyhedron represented in standard form, with A € R™*™ and b € R™ and
n>m. Let x* € P, and

A(x) = (il = 0}

be the set of indices of the active constraints. x* is a vertex of P if and only if
the linear manifold

Lx*)={xeRYAx =b and x; =0Vie A(x")} (3.81)

is zero-dimensional, i.e., L(x*) = {x*}.

Proof. = Direct implication. Let x* be a vertex. Assume by contradiction that
L(x*) is not zero-dimensional. There is then a straight line in £(x*) characterized
by the equation

x*+Ad, AeR

with d € R™,d # 0 and Ad = 0 such that d; = 0 for any i € A(xo) (see
Theorem 3.13). For every i such that d; # 0, we define

X
Xi = -,

d;
According to Definition (3.81) of linear manifold, o; # 0, for any i. Indeed, if
di #0, then i € A(x*), and x{ > 0. We are now able to find two points of the
polyhedron such that x* is a convex combination of these points, contradicting
the fact that it is a vertex.
Consider o = mini{ai|oe; > 0}. If no «; is positive, we take oy = 1. Similarly,
oy = maxi{oi|og < 0}, If no oy is negative, we take &« = —1. Then, the points
Yy = x* + a1d and z = x* + a,d belong by construction to the polyhedron P.
Moreover x* = Ay + (1 — A)z, with
—o
A= —2
X1 — X2
Since o1 > 0 and «y < 0, we have 0 < A < 1, and x* is a convex combination of
Yy and z.

< Inverse implication. Consider x* € P such that £(x*) = {x*}. We assume by
contradiction that x* is not a vertex of the polyhedron P. There then exists y
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and z in P such that x* = 12(9 +z), by arbitrarily taking A = 17 in Definition 3.34.
For all indices 1 such that x{ = 0, the corresponding indices of y and z are also
necessarily zero, because y > 0 and z > 0. Then, y and z belong to £(x*), which
contradicts the fact that x* is the only element.

O

The characterization of vertices by active constraints is particularly useful when
developing algorithms. A more explicit representation than linear manifold is desir-
able. This is the concept of a feasible basic solution. Before introducing this notion,
we demonstrate that a non empty polyhedron represented in standard form always
contains at least one vertex.

Theorem 3.37 (Existence of a vertex). Let P = {x € R"|Ax = b,x > 0} be a
polyhedron represented in standard form, with A € R™*™ and b € R™ and
n > m. If P is non empty, it has at least one vertez.

Proof. We construct a finite number of points belonging to linear varieties (defined
by (3.81)) of decreasing dimension. The last one is the vertex of P, then proving its
existence.

Since P is non empty, there exists xo € P. If dim L(xo) = 0, xo is a vertex
according to Theorem 3.36. Otherwise, there exists a straight line contained in £(x¢)
characterized by

xo+Ad, AeR

with d € R™,d # 0 and Ad = 0 such that d; = 0 for any 1 € A(xp). For each i such
that d; # 0, we define

According to Definition (3.81) of linear manifold, o; # 0, for all i. Indeed, if d; # 0,
then i € A(xp), and (xo)i > 0. Without loss of generality, we can assume that there
exists at least one o > O (if this is not the case, they are all non positive, and we
can utilize the same approach using the straight line defined by —d). We define

o« = min oy
ild; >0
and j an index for which the minimum is reached, i.e., «* = o;. The point x; = x¢ +
a*d belongs to the polyhedron by construction. Moreover, (x7); = 0 and (x0); > 0.
Then, the dimension of £(x1) is strictly inferior to that of L(x¢). We now need
only repeat the procedure to obtain, after a certain number of iterations k at most
equal to the dimension of £(x¢), a point x; such that dim £(xx) = 0. According to
Theorem 3.36, xj is a vertex of P. This proof is illustrated in Figure 3.15, where
the linear manifold {x|]Ax = b} is shown. In this example, £(xo) is the represented
plane, £(x71) is the straight line corresponding to the second coordinate axis, and
L(x2) = {x2}. a
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X0

X1

X2 = Xk
Figure 3.15: Illustration of the proof of Theorem 3.37

3.5.2 Basic solutions

The notion of a vertex is a purely geometric concept. By invoking Theorem 3.35, it
is possible to characterize it algebraically. In this case, we speak of a feasible basic
solution.

Definition 3.38 (Basic solution). Let P ={x € R"|Ax = b,x > 0} be a polyhedron
represented in standard form, with A € R™*™ and b € R™ and n > m. A vector
x € R™ such that Ax = b is along with a set of indices ji,...,jm said to be a basic
solution of P if

1. the matrix B = (Aj, --- A;,,) composed of columns ji,...,jm of the matrix A is
non singular and

2%, =0 i£§1,. ) jm.

If, moreover, xg = B—'b > 0, the vector x is called a feasible basic solution.

It is common to say that the variables ji,...,jm in Definition 3.38 are basic
variables, and that the others are non basic variables. Example 3.39 identifies the
basic solutions of a polygon, written in the form of a polyhedron represented in
standard form.

Example 3.39 (Basic solutions). Consider a polyhedron represented in standard
form
X1
P={x=| 2 |[Ax =b,x >0 (3.82)
X3
X4

with

} ) . (3.83)
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X2

d
d 1
3 \ X1 +x2=1

X1

4/1

Figure 3.16: Feasible domain of Example 3.39

In order to view it in R?, we represent the polygon

73_{(11 >|X1+X2§1,X1X2§1,X120>X220} (3.84)
2

in Figure 3.16. Note that if (x1,x2,x3,x4)T € P, then (x1,x2)7 € P. Furthermore,

if (x1,x2)7 € 75, then (x1,%x2,1—x71 —x2,1—x%7 +x2)" € P. The variables x3 and x4
are slack variables (Definition 1.4).

Each basic solution is obtained by selecting 2 variables out of 4 to be in the basis.
There is a total of 6 possible selections of basic variables.

1. Basic solution with x7 and x; in the basis (j; =1, j2 = 2).

(T TN pr Yoo et (TN
(] e ()

This basic solution is feasible and corresponds to point 2 in Figure 3.16.

[STENTE
o © o =
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2. Basic solution with x; and x3 in the basis (j; =1, j2 = 3).

f11.71f01.77171.f
p= (1o )= pammv (g )

This basic solution is feasible and also corresponds to point 2 in Figure 3.16.

S O o =

3. Basic solution with x; and x4 in the basis (j; =1, j2 =4).

f10.717 ]O.f717].f
D A VA

This basic solution is feasible and also corresponds to point 2 in Figure 3.16.

S © o =

4. Basic solution with x, and x3 in the basis (j1 =2, j2 = 3).

0

_ T 1N, (0 =1\ _ 4 (=1 _ | -1
b=y o )it = () ) Je=nto=( T )ix=|

0

This basic solution is not feasible because B~'b # 0. It corresponds to point 4 in
Figure 3.16.

5. Basic solution with x, and x4 in the basis (j; = 2, j2 =4).

o T ON o (1T O _ o (TN
B—<1 1>,B _<1 1>,XB_B b—<2>,x—

This basic solution is feasible and corresponds to point 3 in Figure 3.16.

N O = O

6. Basic solution with x3 and x4 in the basis (j1 = 3, j2 =4).

B_B1_<(]) ?);XB—B%—(:);X—

This basic solution is feasible and corresponds to point 1 in Figure 3.16.

The notion of a basic solution (Definition 3.38) enables us to analyze the poly-
hedron in terms of active constraints of the optimization problem (Definition 3.4).
Let x be a feasible basic solution such that xg = B~'b > 0. We say that it is non
degenerate. In this case, there are exactly n active constraints in x: the m equal-
ity constraints and the n — m non basic variables which are 0, and which make the
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constraints of type x; > 0 active. The constraints x; > O corresponding to the basic
variables are all inactive because xg > 0. According to Theorem 3.5, the feasible
basic solution is defined by n equations. If A is of full rank and xg > 0, there is then
a bijective relationship between the vertices of the polyhedron and the feasible basic
solutions. This equivalence between an algebraic and a geometric concept is useful

when developing algorithms.

Theorem 3.40 (Equivalence between vertices and feasible basic solutions). Let P =
{x € R"Ax = b,x > 0} be a polyhedron. The point x* € P s a vertex of P if and
only if it s a feasible basic solution.

Proof. = Let x* be a vertex of P. We assume that x* is not a feasible basic solution.
We can assume without loss of generality that the matrix A is of full rank (by
removing redundant constraints). As x* is not a feasible basic solution, there are
strictly more than m non zero components in x*. Consider m linearly indepen-
dent columns of A, corresponding to non zero components of x*, which form an
invertible matrix B, and where the remaining n — m columns form a matrix N.
Here, x* can be decomposed (see Section 3.4) into one basic component xg and
one non basic component xyn such that

xg = B71(b — Nxn).

Since x* is not a feasible basic solution, there exists at least one component k of
xn that is not zero. We construct the direction d for which the basic component
is

dg = —B A,

where Ay is the kth column of A, and the non basic component for all zero
components, except the kth one which equals 1. Therefore,

Ad=Bdp+Ndn =—BB 'Ax+ )  Ajdj=—Ax+Ax =0.

jnon basic
Then, for all «,
Ax*+ad) = Ax* +axAd = Ax* =b.
Since xj > 0, it is possible to choose o7 > 0 and «; > 0 sufficiently small so that
X7 =x*+o1d and x2 = x* — o d are in P. We take
X2
o+ o

We have 0 < A < 1 and x* = Axq + (1 — A)x;, which contradicts the fact that x*
is a vertex of the polyhedron.
&= Theorem 3.35.
O

It is important to note that Theorem 3.40 does not guarantee a bijective rela-
tionship between the vertices of the polyhedron and the feasible basic solutions in all
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cases. Indeed, when some of the components of xg = B~'b are zero, there are more
than n active constraints, and the feasible basic solution is defined by more than n
equations in a space of n dimensions. We say in this case that we are dealing with a
degenerate feasible basic solution.

Definition 3.41 (Degenerate feasible basic solution). Let P = {x € R"|Ax = b,x >
0} be a polyhedron represented in standard form, with A € R™*™ and b € R™ and
n > m. A basic solution x € R™ is said to be degenerate if more than n constraints
are active at x, i.e., if more than n — m components of x are zero.

In the presence of degeneracy, a vertex may correspond to multiple feasible basic
solutions. In Example 3.39, three constraints are active at vertex 2 (Figure 3.16), even
though we only need two constraints to characterize it. Then, the first three basic
solutions identified in the example all correspond to this vertex and are degenerate.

3.5.3 Basic directions

If x is a feasible basic solution, the feasible directions in x (there are infinitely many)
can be characterized by a finite number of directions, called basic directions, and
which correspond to the edges of the polyhedron of the constraints adjacent to the
vertex corresponding to the feasible basic solution x.

To define these basic directions, we consider a feasible basic solution

()%

where we assume, without loss of generality, that the indices of the basic variables are
the m first ones, and that B consists of the m first columns of the matrix A. Consider
a non basic variable, for instance the variable with index p, and define a direction
that gives positive values to this non basic variable, all the while maintaining the
other non basic variables at zero. Then

d; dy

dm dm

dm+1 0

d:< de ) _ : | . (3.86)

dn dp71 0

d, 1

dpiy 0

dn 0

Since part dn of the direction is defined, we now need only define dg. For this, we
invoke Theorem 3.13. To ensure that such a direction is feasible, the first condition
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is that Ad = 0. Then, by denoting A; the jth column of A, we obtain

n
Ad=Bdp +Ndny =Bdsg+ ) Ajdj=Bdp +A, =0, (3.87)
j=m+1
that is,
dg = —B'A,. (3.88)

Definition 3.42 (Basic direction). Let P ={x € R™|Ax = b,x > 0} be a polyhedron
represented in standard form, with A € R™*™ and b € R™ and n > m and let x € R™
be a feasible basic solution of P. A direction d is called the pth basic direction in x
if p is the index of a non basic variable, and

dp=P<d% ) (3.89)
dn,,

where P is the permutation matrix corresponding to the basic solution x, dg, =

—B~'A;, and dy, is such that
0
Ple, = :
ep ( dn, >> (3.90)

i.e., that all the elements of dn,, are zero, except the one corresponding to the variable
p, which is 1.

Note that these directions are not always feasible, as discussed later. But first, we
illustrate the concept with Example 3.39.

Example 3.43 (Basic directions). Consider the polygon in Example 3.39, and the
feasible basic solution where x, and x4 are in the basis. Then

0

X = ! and P =

00
10
0 00
01

The basic direction corresponding to the non basic variable x; is

oy (D)) L3 (
d; =P 1 —P —p =

1 1 o]’
0 0 0 -2

and the basic direction corresponding to the non basic variable x3 is

ey 00 Ge)) (S (9
d; =P 0 —P —P =

1 0 0 1
1 1 —1
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These two directions are shown in Figure 3.16, from the feasible basic solution 3.
We now consider the feasible basic solution where x; and x4 are in the basis (point
2 in Figure 3.16). Then,

and P =

S o =
S O o =
— O © O
S © = O
o = O O

0

The basic direction corresponding to the non basic variable x; is

5 (o)) ()
d; =P 1 =P =P = ,
0 1 1 0
0 0 2
and the basic direction corresponding to the non basic variable x3 is
(D) (Y [
1 1 1

These directions are not represented in Figure 3.16. Finally, consider the feasible
basic solution where x; and x, are in the basis. Then,

and P =

o O o =
S O O =
o © = O
o = O O
— O O O

The basic direction corresponding to the non basic variable x3 is

: 1 1 1 1
ey (1)) (T
d; = 1 — 2 2 — 2

0 1 1|’
0 0
and the basic direction corresponding to the non basic variable x4 is
1 1 1
. AW -1
o (P (D0 [
— — 2 2 — 2
B ? 0 0
1 1

These two directions are shown in Figure 3.16. Note that 34 is a feasible direction,
whereas d3 is not.
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Theorem 3.44 (Feasible basic directions). Let P = {x € R"|Ax = b,x > 0} be
a polyhedron represented in standard form, with A € R™™ and b € R™ and
n > m, and let x € R™ be a feasible basic solution of P. If x s non degenerate
(in the sense of Definition 3.41), then any basic direction is a feastble direction
mn X.

Proof. Let k be an arbitrary index of a non basic variable. According to Defini-
tion 3.42, we have Adx = 0. Moreover, since x is non degenerate, only its non
basic components are zero. The corresponding components of dy are non negative by
definition. Theorem 3.13 can be applied to prove the feasibility of dy. O

The following theorem enables us to consider only the feasible basic directions in
order to characterize any feasible direction.

Theorem 3.45 (Combination of basic directions). Let P ={x € R"|Ax = b,x > 0}
be a polyhedron represented in standard form, with A € R™ ™ and b € R™ and
n > m, and let x € R™ be a feastble basic solution of P. Any feasible direction d
n x can be written as a linear combination of the basic directions, i.e.,

d=) (d);d;, (3.91)

jJEN

where N is the set of indices of the non basic variables, dj € R™ the jth basic
direction, and (d); € R, the jth component of d.

Proof. Consider a feasible direction d, and assume without loss of generality that the
basic variables are the m first ones. According to Theorem 3.13, we have

Ad =Bdg + Ndn =0

and
n

dp=-B '"Ndny=— ) (d)B'A; (3.92)
j=m+1
where (d); € R is the jth component of the vector d. By decomposing dn in the
canonical basis, we can also write

n

dv= ) (d)jem (3.93)

j=m+1

where e, € R"™™ is a vector for which all the components are zero, except the kth
one, which is 1. According to Definition 3.42, (3.92) and (3.93) are written as

d - —B1A; o
= (E)- S (TS wa e
j=m+1 rR—

where d; is the jth basic direction. We obtain (3.91). O
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The proof of Theorems 3.27 and 3.28 is inspired by Nocedal and Wright (1999).
That of Theorems 3.36 and 3.37 is inspired by de Werra et al. (2003).

3.6 Exercises

Exercise 3.1. Take the feasible set defined by the constraints

X1 — X2 4+ 2x3 — 2x4 + 3x5 = 3
X1 +  x3 + 2x5 = 1
X2 — X3 + 2x4 — x5 = -2

1. Identify a feasible point.

2. Verify whether the constraints are linearly independent.

Exercise 3.2. Take the feasible set defined by the constraints

_ (x1 —1)2+x3—1 _
) = (0T8T 0
Q(Xth) — _esin(x1)+cos(xz) —X% —X% < 0

1. Determine the set of feasible points.

2. For each one, determine the active constraints.

3. For each one, verify whether the condition of independence of the constraints
(Definition 3.8) is satisfied.

Exercise 3.3. Take the feasible set defined by the constraints

X1 + x2 < 3
X1 + x3 < 7
X1 > 0
X2 > 0

x3 > 0

1. Take the point x = (3 04)". Characterize the linearized cone in x.
2. Express the constraints in standard form.
3. Identify the basic solutions, and among them, those that are feasible.
4. For each point corresponding to a feasible basic solution,
(a) characterize the linearized cone,
(b) identify the basic directions,

(c) verify whether the basic directions are in the linearized cone.

Exercise 3.4. Take the feasible set defined by the constraints

—x1 + x2 <1
X1 + 2xy <4

1. Provide a graphic representation of this feasible set.
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2. Express the constraints in standard form.

3. List the basic solutions, and represent them on the graph.

4. For each feasible basic solution, list the basic directions and represent them on
the graph.

Exercise 3.5. Consider the feasible set defined by the following constraints:

X1 — x2 > -2
2x1 +  x2 < 8
x1 + x2 < 5
X1 + 2x2 < 10
X1 > 0

X2 > 0

1. Provide a graphic representation of this feasible set.

2. Enumerate the vertices of D.

3. List the basic solutions and represent them on the graph.

4. For each feasible basic solution, list the basic directions and represent them on
the graph.

5. Reformulate the same set of constraints using a minimum number of constraints
(use the graphical representation to identify them).

Exercise 3.6. Take the feasible set defined by the constraints

(x1+1)2+x3 < 1
(X]-])z—I—X% < 1.

For each x and d below,

1. verify that x is feasible,
2. specify whether the direction d is feasible in x (justify!),
3. specify whether the direction d is feasible at the limit in x (justify!).

X d X d
0 0|-1 -1{1 0]-1
0O o1 140 1]-1 1
1 00 1/0 1(-1 -1
1 00 -1/0 11 1
1 0|1 00 11 -1

Exercise 3.7. Take the optimization problem min, .2 X7 +x; subject to x% +X% =2,
and the point X = (—v/2,0)7. Identify the feasible directions at the limit in X by
employing the following sequences:

: -

First verify that they are indeed feasible sequences.



Chapter 4

Introduction to duality

There are those who are subject to constraints and others who impose them. We
now take the point of view of the second category in order to analyze an optimization
problem from a different angle.

Contents
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In Section 3.4, we attempted to explicitly eliminate the constraints of the optimiza-
tion problem by expressing one set of variables as a function of the others. In this
chapter, we use another technique to remove constraints. This technique, called con-
straint relaxation, plays an important role both theoretically and algorithmically. In
addition, it enables us to introduce the concept of duality.

4.1 Constraint relaxation

Here we introduce the concept of constraint relaxation with a simple example.

Example 4.1 (The mountaineer and the billionaire). A billionaire decides to offer a
mountaineer a prize linked to the altitude he manages to climb, at a rate of €1 per
meter. However, for reasons only he knows, the billionaire requires the mountaineer
to stay in the Alps. The mountaineer immediately takes on the optimal strategy. He
climbs Mont Blanc and pockets €4807 (Figure 4.1(a)).

However, the mountaineer loves freedom and does not easily accept constraints.
After some negotiation, the billionaire allows the climber to go elsewhere than in the
Alps if he so desires, but must then pay a fine. A problem arises for the billionaire.
If the fine is too low, the climber will want to go to the Himalayas and climb Mount
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(a) Mont Blanc (4,807 m) (b) Mount Everest (8,848 m)

Figure 4.1: Solutions for Example 4.1

Everest, culminating at 8,848 meters (Figure 4.1(b)). The billionaire thus decides to
set the fine at €4,041. In this case, climbing Everest would give the mountaineer
8,848 — 4,041 = €4,807, which is exactly the same amount as if he decided to climb
Mont Blanc. Therefore, the mountaineer has no interest in violating the constraint,
and the final solution to the problem is the same as with the constraint.

We can model the problem of the climber by calling his position (longitude/latitude)
x and the corresponding altitude f(x). The first problem is a constrained optimization
problem:

max f(x)
X

subject to

x € Alps.

The fine imposed by the billionaire is denoted by a(x), and depends on the position
x. In particular, a(x) = 0 if x € Alps. The optimization problem is now without
constraints and can be expressed as

mfxf(x) —a(x).

Although somewhat imaginative, Example 4.1 shows us that an optimization prob-
lem can be seen from two points of view. From the viewpoint of the one solving the
problem (the mountaineer) and of the one who defines the rules of the game (the
billionaire). If we would like a constraint relaxation in order to remove them, we
must put ourselves in the place of the billionaire, so that the new rules are consistent
with the old ones. We now apply the same approach to another simple optimization
problem.
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Janos von Neumann was born on December 28, 1903, in Bu-
dapest. Originally, his name did not have the noble prefix “von”.
In 1913, his father bought a title of nobility. Janos took the
name John von Neumann when he became an American in 1937.
Although holder of a chemistry degree from ETH (Swiss Federal
Institute of Technology) in Ziirich, he quickly turned to math-
ematics. The results by Godel on incompleteness gave him the

incentive to abandon his work on axiomatization of set theory.
Within the framework of quantum mechanics, he unified the theories of Schrédinger
and Heisenberg. He is considered the father of game theory. It is in this context that
he developed the principle of duality. One of his most famous quotes is “If people
do not believe that mathematics is simple, it is only because they do not realize
how complicated life is!” Von Neumann died on February 8, 1957, in Washington, DC.

Figure 4.2: John von Neumann

Example 4.2 (Constraint relaxation). Consider the optimization problem

min 2x1 + x2 (4.1)
x€R2

subject to
1—%x1—%x2=0
x1 >0 (4.2)
x2 >0

for which the solution is x* = (0,1)7 with an optimal value 1. We now relax the
constraint 1 —x; — x2 = 0 and introduce a fine that is proportional to the violation
of the constraint, with a proportionality factor A. This way, the fine is zero when the
constraint is satisfied. We obtain the following problem:

min 2x7 +x2 + A(1 —x3 —x2) (4.3)
xER2
subject to
x1 >0
(4.4)
x2 >0

We examine different values of A.

o If A = 0, (4.3) becomes 2x; + x, and the solution to the problem is x* = (0,0)"
with an optimal value of 0 (Figure 4.3). This solution violates the constraint of
the original problem, and the optimal value is lower. It is a typical case where
the penalty value is ill-suited, and where it becomes interesting to violate the
constraint.
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30

20

10

2x+y 0
-10

-10

Figure 4.3: Objective function of Example 4.2: A =0

-10 -5 0 -10
X1 5 10

Figure 4.4: Objective function of Example 4.2: A =2

o If A =2, (4.3) becomes 2 — x, and the problem is unbounded, because the more
the value of x, increases, the more the objective function decreases (Figure 4.4).
It is imperative to avoid such values of the penalty parameter, which generate
unbounded problems.

« Finally, if A = 1, (4.3) becomes x; + 1, and each x such that x; = 0 is a solution
to the problem, with an optimal value of 1 (Figure 4.5). In this case, regardless of
the value of x;, there is no way to get a better value than the optimal value of the
initial problem. The penalty parameter acts as a deterrent, and there is nothing
to be gained by violating the constraint.
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30
20
10
T4+ x 0
-10
-20
-30

-10

Figure 4.5: Objective function of Example 4.2: A =3

Consider the optimization problem (1.71)—(1.73). We generalize this idea to in-
corporate constraints in the objective function. The function thus obtained is called
Lagrangian or the Lagrangian function.

Definition 4.3 (Lagrangian function). Consider the optimization problem (1.71)—
(1.73) min f(x) subject to h(x) = 0 and g(x) < 0, and consider the vectors A € R™
and u € RP. The function L : R**™*P — R defined by

LA 1) = f(x) +ATh(x) + 1" g(x)

m P
— 100+ Y A0+ Y wesx) (45)
i=1 =1

is called Lagrangian or the Lagrangian function of the problem (1.71)—(1.73).

As we did in Example 4.2, we can minimize the Lagrangian function for each fixed
value of the parameters A and p. Indeed, the Lagrangian function now depends only
on x. The function that associates a set of parameters to the optimal value of the
associated problem is called a dual function.

Definition 4.4 (Dual function). Consider the optimization problem (1.71)—(1.73)
and its Lagrangian function L(x,A, 1) defined by (4.5). The function q : R™*? — R
defined by

(A w) = min Lx, A 1) (4.6)

is the dual function of the problem (1.71)—(1.73). The parameters A and p are called
dual variables. In this context, the variables x are called primal variables.
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If we take Example 4.1, —q(A, u) represents the mountaineer’s prize' if the bil-
lionaire imposes a fine for violation of the constraints ATh(x) + ug(x).

For inequality constraints, since only non negative values of g(x) should be avoided
and result in a fine, it is essential that u > 0. Indeed, the term pu' g(x) is non negative,
and thus penalizing, only when g(x) > 0.

Theorem 4.5 (Bound from dual function). Let x* be the solution to the opti-
mazation problem (1.71)—(1.73), and let (A, 1) be the dual function to the same
problem. Consider A € R™ and n € RP?, u> 0. Then,

q(A, u) < f(x*), (4.7)

and the dual function provides lower bounds on the optimal value of the problem.

Proof.
qAp) = m]%n L(x, A, 1) according to (4.6)
XERM
< L(x", A, 1)
= f(x*) + ATh(x*) + u"g(x*) according to (4.5)
= f(x*) + ' g(x*) h(x*) =0
< f(x*) g(x*) <0and p>0.

O

Corollary 4.6 (Objective functions of the primal and dual). Let x be a feastble
solution of the optimization problem (1.71)-(1.78), and let q(A, 1) be the dual
function to the same problem. Consider A € R™ and p € RP, u > 0. Then,

q(A, u) < f(x). (4.8)

Proof. Denote x* the optimal solution of the primal problem. As x is primal feasible,
we have f(x*) < f(x). The results follows from Theorem (4.5). O

If we take the point of view of the billionaire, the problem is to define these fines
in such a manner that the mountaineer wins as little as possible with the new system.
He tries to optimize the dual function, ensuring that the considered parameters A and
i > 0 do not generate an unbounded problem. This optimization problem is called
the dual problem.

1 The sign of q is changed because the problem with the mountaineer is one of maximization and

not minimization.
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Definition 4.7 (Dual problem). Consider the optimization problem (1.71)—(1.73)
and its dual function q(A, u) defined by (4.6). Let Xq4 € R™*P be the domain of q,
ie.,

Xq={AurlqAp >—oo}. (4.9)
The optimization problem
max q(A, ) (4.10)
A1
subject to
w>0 (4.11)
and
(A1) € Xq (4.12)

is the dual problem of the problem (1.71)—(1.73). In this context, the original problem
(1.71)—(1.73) is called the primal problem.

Example 4.8 (Dual problem). Take again Example 4.2:

min 2x7 + X2 (4.13)
x€R2

subject to
hi(x)=1T—-x1—=x2=0 (A)

gi(x)= —x1 <0 (w) (4.14)
g2(x) = —x2<0  (n2).
The Lagrangian function of this problem is

L(x1,%2, A, 1, H2) = 2%1 + X2 + A1 — %1 —X2) — X1 — H2X2
=2-A—wlx1+ (1 —A—p)x2 +A.

In order for the dual function to be bounded, the coefficients of x; and x, have to be
zero, and
2—A—w =0, T—A—w =0,

or
w =2—A, m=1—A. (4.15)

Therefore, we can eliminate ; and p, so that
Xq = {)\I)\ < 1} ,

and the dual function becomes
qA) =A
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The dual problem is written as

maxA

subject to
A<,

for which the solution is A* = 1. According to the equalities (4.15), we have pj =1
and uj =0.

As a direct consequence of Theorem 4.5, the optimal value of this problem can
never exceed the optimal value of the original problem. This result is called the weak
duality theorem.

Theorem 4.9 (Weak duality). Let x* be the optimal solution to the primal prob-
lem (1.71)—(1.73) and let (A*, u*) be the optimal solution to the assoctated dual
problem (4.10)-(4.12). Then

OV, 1) < F(x). (4.16)

Proof. This theorem is a special case of Theorem 4.5 for A = A* and p = p*. O

Corollary 4.10 (Duality and feasibility). Consider the primal problem (1.71)-
(1.78) and the associated dual problem (4.10)—(4.12).

o If the primal problem is unbounded, then the dual problem is not feasible.

o If the dual problem 1s unbounded, then the primal problem is not feasible.

Proof. If the optimal value of the primal problem is —oo, there is no dual variable
(A, u) that satisfies (4.16) and the dual problem is not feasible. Similarly, if the
optimal value of the dual problem is +o0o, there is no primal variable x that satisfies
(4.16) and the primal problem is not feasible.

O

Corollary 4.11 (Optimality of the primal and the dual). Let x* be a feastble so-
lution of the primal problem (1.71)—(1.73) and let (A*, u*) be a feasible solution
of the associated dual problem (4.10)-(4.12). If q(A*,u*) = f(x*), then x* s
optimal for the primal, and (A*, u*) s optimal for the dual.

Proof. Consider any x feasible for the primal. From Theorem 4.5, we have

f(x) = q(A%, w*) = f(x7),
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proving the optimality of x*. Similarly, consider any (A, 1) feasible for the dual. From
the same theorem, we have

qA, ) < f(x*) = q(A", u*),

proving the optimality of (A*, u*). O

Corollary 4.12 (Duality and feasibility (II)). Consider the primal problem (1.71)-
(1.73) and the associated dual problem (4.10)—(4.12).

o If the primal problem is infeasible, then the dual problem is either unbounded
or infeasible.

o If the dual problem 1is infeasible, then the primal problem is either unbounded
or wnfeasible.

Proof. We show the contrapositive. If the dual problem is bounded and feasible, it
has an optimal solution. From Corollary 4.11, the primal problem has also an optimal
solution, as is therefore feasible. The second statement is shown in a similar way. [

The dual problem has interesting geometric properties. Indeed, the objective
function to maximize is concave, and the domain X, is convex.

Theorem 4.13 (Concavity-convexity of a dual problem). Let (4.10)—(4.12) be the
dual problem of an optimization problem. The objective function (4.10) is con-
cave, and the domain of the dual function (4.9) is convez.

Proof. Consider x € R™, v = (A,u) and ¥ = (A,i) € R™*P  such that u,i > 0,
Y,Y € Xq and v # y. Consider also « € R such that 0 < o« < 1. According to
Definition 4.3, we have

L(x, o7 + (1= 0)7) = aL(x,v) + (1 - @)L, 7).
Taking the minimum, we obtain

minL(x, oy + (1— oc)f/) > ominl(x,y)+ (1 — o) min L(x,y) (4.17)

x

or
q(oy + (1= a)y) > aq(y) + (1 — )q(¥), (4.18)

which demonstrates the concavity of q (Definition 2.3). Since y and y are in X, then
q(y) > —oo and q(y) > —oo. According to (4.18), we also have q(ay+(1—a)y) > —o0
and this way «y+ (1—«)y is in X, proving the convexity of X4 (Definition B.2). O
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Giuseppe Lodovico Lagrangia, born in Turin on January 25,
1736, is often considered a French mathematician, despite his
Italian origin, and is known under the name Joseph-Louis La-
grange. It was he himself who in his youth took the French ver-
sion of the name. In 1766, he succeeded Euler as director of the
mathematics section of the Academy of Sciences in Berlin. He
was the first professor of analysis at the Ecole Polytechnique in
R Paris (founded 1794 under the name “Ecole Centrale des Travaux
Publics.” He was a member of the Bureau des Longitudes, created on June 25, 1795.
Napoleon presented him with the Legion of Honor in 1808 and the Grand Cross of
the Imperial Order of Reunion on April 3, 1813, a few days before his death. He
contributed significantly to diverse areas, such as calculus, astronomy, analytical me-

chanics, probability, fluid mechanics and number theory. He oversaw the introduction
of the metric system, working with Lavoisier. He died on April 10, 1813, and is buried
in the Pantheon, in Paris. The funeral oration was given by Laplace.

Figure 4.6: Joseph-Louis Lagrange

4.2 Duality in linear optimization

We now analyze the dual problem in the context of linear optimization. We consider
the following (primal) problem:

minc'x (4.19)
subject to
Ax =
(4.20)
x>0

and we have
h(x) =b—Ax and g(x) =—x.
Therefore, the Lagrangian function (4.5) can be written as
Lix, A, u) =c"x+AT(b—Ax) —pu'x
. 1 (4.21)
=(c—A"A—p) x+A'Db.

The Lagrangian function is linear in x. The only possibility for it to be bounded is if
it is constant, i.e.,

c—A"TA—p=0.
In this case, the dual function is q(A, ) = ATb and the dual problem is written as

maxA'b (4.22)
A
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subject to
p=>0

p=c—ATA.
By eliminating p, renaming A x, and changing the maximization to a minimization,
we obtain

(4.23)

min—b'x (4.24)

X
subject to
ATx <c. (4.25)

This is another linear optimization problem. We calculate its dual problem. Since
there are no equality constraints, we have

Lix,u) =—b"x+p"(ATx —¢)
=(—b+Au) ' x—pu'c.

Again, for this linear function to be bounded, it has to be constant, i.e., —=b+Apn =0.

The dual function is q(n) = —p'c and the dual problem is written as
max —p' ¢
w
subject to
u=>0
Ap=b.

By replacing p by x, and transforming the maximization into a minimization, we
obtain the original problem (4.19)—(4.20). The dual of the dual problem is the primal
problem. We can now generalize these results.

Theorem 4.14 (Dual of a linear problem). Consider the following linear problem:
minc]xy +cixz +cix3 (4.26)
x

subject to
A1x1 +Bixo + Cix3 = by

Aoxy + Boxs + Coxs < by
Asx1 + B3xy + C3x3 > b3
x1 >0
x2 <0
x3 € R™
where x1 € R™', x € R™2, x3 € R™3, by € R™, by, € RPi and bz € RPs. The

matrices Ai, Bi, Ci, 1 =1,2,3, have appropriate dimensions. The dual of this
problem 1is

(4.27)

man‘yTb =vib1 +viba+vib; (4.28)
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subject to
(y1 € R™)
Y2 <0
>0
R i (29)
(Afvi+Av2+ A3y =) Aly<c
(Bivi+Biy2+Blys=) B'y>c;
(Clv1+Civ2+Ciys=) Cly=c3
with v = (yT vI y1)" € R™PHps and A = (AT AT AT)' €

R(M+Pi+Ps) X1 The matrices B and C are defined in a similar manner.

Proof. The Lagrangian function is written as

L(%, Ay 12y K3y By s Bx,y ) = CTX1 + Cng + C;,rx_?,

+AT(by — A1x7 —Bixz — Ci1x3)
+ 13 (A2x7 + Baxa + Caxz — by)
+ ud (b3 — Azx; — B3xa — C3x3)

e
- H'XIX1
T
+ Hx, X2

with p2, 13, Hx,, Hx, > 0. By combining the terms, we obtain

L%, Ay 2y 13y Hxy s Bxy ) = )\Tbl - H-zrbz + H;,rbg

.
+(c1 =AM+ AT — Az — 1y, ) X
T
+(C2*BT7\+BIH2*B§LL3+HX2) X2
T
+ (c3— CIA+Copz —Cinz) x3.

Define y1 = A, v2 = —p» and y3 = pu3. We immediately deduce that y; € R™,

v2 <0 and y3 > 0. We obtain the Lagrangian function

L(%, Yy by b ) =YD
+(e1 = ATy — 1) 1
+ (2= BTy +1,) %2
+ (3 — CTy)TX3 )

This is a linear function. For it to be bounded, is needs to be constant and

b, =c1 — ATy
Ux, = BT‘Y —C2
CTV =C3.

We now need only use i, > 0 and py, > O to obtain the result.
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Note that the problem (4.26)—(4.27) combines all the possibilities of writing the
constraints of a linear problem: equality, lower inequality, upper inequality, non pos-
itivity, and non negativity. The result can be summarized as follows:

o For each constraint of the primal there is a dual variable

Constraint of the primal | Dual variable

free
<0
>0

VA I

o For each primal variable there is a dual constraint
Primal variable | Dual constraint
>0
<0
free

IV IA

Theorem 4.15 (The dual of the dual is the primal). Consider a (primal) linear
optimization problem. If the dual is converted into a minimization problem, and
we calculate its dual, we obtain a problem equivalent to the primal problem.

Proof. In the problem (4.28)—(4.29) of Theorem 4.14, we replace v by —x and the
maximization by a minimization:

min x{by +x3bs +x3b3

X1,X2,X3

subject to
x1 € R™
x2 >0
x3 <0
A1Tx1 + Azxz + Agm > —C
Bixi +Bix2 +Bixs < —ca
C1Tx1 + szz + Cg><3 =—C3.

According to Theorem 4.14, the dual of this problem is

max —C1Y1 —C2Y2 —C3Y3
Y1,Y2,Y3

subject to
A1v1 +Biy2 + Ciyz = by

A2v1+Baya + Coys; < by
A3v1+Bsyz2+ C3ys > bs
Y120
v2<0
v3 € R™3,
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We now need only replace v by x, and convert the maximization into a minimization
to obtain (4.26)—(4.27) and prove the result. O

Example 4.16 (Dual of a linear problem). Consider the linear optimization problem
minx; + 2x2 + 3x3

subject to
—X1 +3x, =5
2x1 —Xx2+3x3 > 6
x3 <4
x1 >0
x2 <0
x3 € R.

The dual problem is
max 5yt + 6y2 +4v3

subject to
i €R
Y2 >0
Y3 <0
—Y1+2v2 <1
3Y1i— v2 >2
3y, +v3=3.

This is also a linear problem. We write it as a minimization problem and rename the
variables x.

min —5x7 — 6x2 — 4x3

subject to
X1
x2 >0
x3 <0
X1 — 2X2 > —1
—3x1 4+ X2 <=2
—3%x2 —x3 =—3

We can calculate its dual :

max —y1 — 2y2 — 3v3
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subject to
Y1 —3y2=-5
—2y1+v2—3y3 <6
—y3>—4
Y120
v2<0
v3 €R.

It is easy to verify that this problem is equivalent to the original problem.

We conclude this chapter with an important result in linear optimization, called
the strong duality theorem.

Theorem 4.17 (Strong duality). Consider a linear optimization problem and its
dual. If one problem has an optimal solution, so does the other one, and the
optimal value of their objective functions are the same.

Proof. Consider A € R™* ™, b € R™, c € R", x € R™ and A € R™. Consider the

primal problem
T

minc'x
subject to
Ax=b, x>0,
and the dual problem
maxb'A
subject to
ATA <ec.

Assume that the dual problem has an optimal solution A*. Therefore, for each A
that is dual feasible, we have b'A < b'A*. Equivalently, for any ¢ > 0, we have
bT"A < bTA* + €. Therefore, there is no A which verifies both the dual constraints
ATA < cand b\ > b"A* + ¢ or, equivalently, —b"A < —bT"A* — ¢. In other words,
the system of n + 1 linear inequalities, with m variables

AT c
<

is incompatible. According to Farkas’ lemma (Lemma C.10), there exists a vector

(¥)

where y € R™, y >0, and r € R, r > 0, such that

T
(UT T)( /:T>:O»
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that is
Ay —T1b =0, (4.30)
and
c
(UT T) ( _bT)\* —¢ ) < 0’
that is
¢y —1b"A* —re < 0. (4.31)

We distinguish two cases.

r =0 In this case, (4.30) is Ay = 0 and (4.31) is ¢’y < 0. Applying Farkas’ lemma
to the compatible system ATA < c (it is verified at least by A*), we obtain that
c’y >0, for each y > 0 such that Ay = 0, contradicting (4.30)—(4.31). Therefore

T #0.
r > 0 Divide (4.30) by 1, and define x* = y/r to obtain

Ax* —b =0. (4.32)

Asy > 0and r > 0, x* is feasible for the primal problem. Dividing also (4.31) by
T, we obtain
c'x* —b"A" —e <. (4.33)

Denote & = c¢'x* — bTA*. By Corollary (4.6), as x* is primal feasible and A* dual

feasible, we know that § = c"x* — bTA* > 0. Therefore, (4.33) is written as
0<d<e.

As this must be true for any arbitrary small ¢, we obtain § = 0, and c"x* = bTA*.

From Corollary (4.11), x* is the optimal solution of the primal problem.

As the dual of the dual is the primal (Theorem (4.15)), the result holds in the other
direction as well. O

Another proof, based on the optimality conditions, is presented in Theorem 6.33.
Note that the strong duality result does not hold in general for all optimization
problems. Yet, it holds if the objective function is convex and the constraints linear
(see Bertsekas, 1999, Proposition 5.2.1).

4.3 Exercises
Exercise 4.1. Consider the optimization problem

min x? + x5 subject to x; =1.
x€R2

1. Write the Lagrangian of this problem.
2. Write the dual function.
3. Write and solve the dual problem.
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Exercise 4.2. Same questions as for Exercise 4.1 for the problem

]
minp 5 (x§ +x3) s.c. xp > 1.
Exercise 4.3. Consider a matrix A € R™*™ such that AT = —A, and the vector

c € R™. Consider the optimization problem

min ¢'x

xER™

subject to
Ax > —c

x>0.

Demonstrate that this problem is self-dual, i.e., that the dual problem is equivalent
to the primal problem.

Exercise 4.4. Consider the optimization problem

min —3x7 + 2x2
x€R2

subject to
X1 —%x2 < 2
—x1+x2 <=3
X1, X2 > 0.
1. Write the Lagrangian.
2. Write the dual function.
3. Write the dual problem.
4. Represent graphically the feasible set of the primal problem.
5. Represent graphically the feasible set of the dual problem.

Exercise 4.5. Same questions for the following problem.

min —x7 — X2

x€eR2
subject to
—x1+ x2<1
1
X] — 7 x2 <0

X1, X2 2 0.






Part 11

Optimality conditions






As far as the laws of mathematics
refer to reality, they are not certain;
and as far as they are certain, they
do not refer to reality.

Albert Einstein

Before developing algorithms that enable us to identify solutions to an optimization
problem, we must be able to decide whether a given point is optimal or not. These
optimality conditions have three key roles in the development of algorithms:

1. they provide a theoretical analysis of the problem,

2. they directly inspire ideas for algorithms,

3. they render it possible to determine a stopping criterion for iterative algorithms.

We analyze them in detail and in a gradual manner, starting with the simplest
ones.






Chapter 5

Unconstrained optimization
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5.1 Necessary optimality conditions

Consider the problem of unconstrained optimization (1.71) min,cgn f(x) and a local
minimum x*, as defined in Definition 1.5. We attempt to characterize the minimum
by using the results developed in Chapter 2. The first optimality condition is a
generalization of a well-known result, attributed to Fermat.

Theorem 5.1 (Necessary optimality conditions). Let x* be a local minimum of a
function f: R™ — R. If f is differentiable in an open netghborhood V of x*, then,

Vix*)=0. (5.1)
If, wn addition, f 1s twice differentiable on V, then
V2f(x*) 1is positive semidefinite. (5.2)

Condition (5.1) is said to be a first-order necessary condition, and condition
(5.2) is said to be a second-order necessary condition.

Proof. We recall that —Vf(x*) is the direction of the steepest descent in x* (Theorem
2.13) and assume by contradiction that Vf(x*) # 0. We can then use Theorem 2.11
with the descent direction d = —Vf(x*) to obtain 1 such that

f(x* — aVF(x*)) < f(x*), Voo € 10,1],
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which contradicts the optimality of x* and demonstrates the first-order condition. To
demonstrate the second-order condition, we invoke Taylor’s theorem (Theorem C.2)
in x*, with an arbitrary direction d and an arbitrary step o« > 0 such that x*+ad € V.
As

1
f(x* + ad) — f(x*) = xd" VF(x*) + z(xszVZf(x*)d +o([lad|?),

we have

1
fO + od) = F(x7) = 5 o*d"Vf(x*)d + o([|«d|[?) from (5.1)

1
= -~ o?d"Vf(x*)d + o(o?) ||d|| does not depend on o

T2
>0 x* is optimal.
When we divide by o?, we get

1
5 A"V (x*)d + ——
Intuitively, as the second term can be made as small as desired, the result must hold.
More formally, let us assume by contradiction that dTV2f(x*)d is negative and that
its value is —2¢, with ¢ > 0. According to the Landau notation o(-) (Definition B.17),

for all € > 0, there exists 1 such that

>0. (5.3)

2
o
|(2)|<£, Vo< o <m,
107
and
L S o) 1 1 o . o(a?)] 1
zd Vof(x™)d + 2 < zd Vof(x*)d + 2 <—§2£—|—£:O,
which contradicts (5.3) and proves that d"V2f(x*)d > 0. Since d is an arbitrary
direction, V2f(x*) is positive semidefinite (Definition B.8). O

From a geometrical point of view, the second-order condition means that f is
locally convex in x (Theorem 2.21).

Example 5.2 (Affine function). Consider an affine function (see Definition 2.25):
f(x) =c"x+d, (5.4)

where ¢ € R™ is a vector of constants and d € R. Then, Vf(x) = ¢ and V?f(x) = 0.
Therefore, the necessary optimality conditions are verified for every x if ¢ = 0, and
for no x if ¢ # 0. The geometric interpretation is that an affine function is bounded
only if it is constant. We have used this property in Section 4.1 to derive the dual
problem.

Example 5.3 (Necessary optimality condition — I). Consider the function

f(x1,%x2) =100 (Xz —X%)z + (1 —X1)2
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illustrated in Figure 5.1 (see Section 11.6 for a discussion of this function). The point
(11 )T is a local minimum of the function. We have

3 - —
Vif(x1,%x2) = ( 400xy —400x1x2 +2x1 — 2 ))

200, — 2003

which is indeed zero in ( 1 1 )T. Moreover,

2 _ _
V2f(x1, %) = ( 1200x7 —400x, +2  —400%, ))

—400 x4 200

which, in (1 1)7, is:

V(1) = ( 802 —400 )

—400 200

for which the eigenvalues are positive (0.39936 and 1,001.6) and the Hessian matrix

is positive semidefinite. Note that the conditioning of f in ( 1 1 )T is high (2,508)
and that the function is ill-conditioned at the solution (Section 2.5).

Figure 5.1: Function of Example 5.3

It is important to emphasize that the necessary optimality conditions are not
sufficient, as shown by Examples 5.4 and 5.5.

Example 5.4 (Necessary optimality condition — II). Consider the function

4 4
f(x1,%x2) = —X1 — X
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illustrated in Figure 5.2. The point ( 0 0 )T satisfies the necessary optimality

conditions. Indeed,
—4x3
vtk = ( Tl )
is zeroin (0 0 )T. Moreover,

—12x3 0
2 _ 1

is positive semidefinite in ( 0 0 )T. However, this is not a local minimum. To
demonstrate this, consider a non zero arbitrary direction d = ( dy d» )T and take
a step « > 0 of any length from the point ( 0 0 )T. We have

0= f(0,0) > f(ady, xdz) = —(exdq)* — (xd2)*

and ( 0 0 )T turns out to be a local maximum. From a geometrical point of view,
L . T
the function is in fact concave and not convex in ( 00 ) .

Figure 5.2: Function of Example 5.4

Example 5.5 (Necessary optimality condition — III). Consider the function

f(x1,%2) =50x5 —x3
illustrated in Figure 5.3. The point ( 0 0 )T satisfies the necessary optimality

conditions. Indeed,
100 x4
Vi(x1,x2) =< 32 )
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. . T
iszeroin ( 0 0 ) . Moreover,

100 0
2 _
Vaf(x1,x2) = ( 0 —6xs )

is positive semidefinite in ( 0 0 )T. However, it is not a local minimum. To show

this, consider the direction d = ( 0 1 )T and take any one step o« > O from the
. T

point ( 0 0 ) . We have

0=1f(0,0) > f(0, &) = —>

and ( 0 0 )T is not a local minimum. However, if we consider the direction d =
T .
(0 —1)", we obtain
0 =f(0,0) < f(0,—ax) = &>

Then, ( 0 o0 )T is not a local maximum either. F%om a geometrical viewpoint, the

function is neither concave nor convex in ( 0 0 )

=
\XZ\\\M

Figure 5.3: Function of Example 5.5

In practice, the second-order necessary condition is difficult to check, as this re-
quires calculations of the second derivatives and analyses of the eigenvalues of the
Hessian matrix. The first-order necessary optimality condition plays a central role in
optimization. The vectors x that satisfy this condition are called critical points or
stationary points. Among them, there are local minima, local maxima, and points
that are neither (Example 5.5). The latter are called saddle points.
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Definition 5.6 (Critical point). Let f : R™ — R be a differentiable function. Any
vector x € R™ such that Vf(x) = 0 is said to be a critical point or stationary point
of f.

5.2 Sufficient optimality conditions

Theorem 5.7 (Sufficient optimality conditions). Consider a function f : R™ —
R twice differentiable in an open subset V of R™ and let x* € V satisfy the
conditions

Vix*) =0 (5.5)

and
V2f(x*) s positive definite. (5.6)

In this case, x* 1s a local minimum of f.
Proof. We assume by contradiction that there exists a direction d and n > 0 such

that, for any 0 < o« <, f(x* + ad) < f(x*). With an identical approach to the proof
of Theorem 5.1, we have

* —f(x*) T 2
f(X + “d) (X ) _ 2 dTVZf(X*)dJr O(O( )
2 2 o2
and 5
1
~d"V2f(x*)d + ole?) <0
2 2
or )
Larezeeya+ 2% 4 o
2 2

with ¢ > 0. According to the definition of the Landau notation o(-) (Definition
B.17), there exists fj such that

(e
OCZ

<e, Vo, < x <7,

and then, for any o« < min(n, 1), we have

o(a?) _ |o(a?)|
2 = oz =F
such that 5
1 . o(o”)
szVZf(x )d =— o, —e<0,

which contradicts the fact that V2f(x*) is positive definite. O
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Example 5.8 (Optimality conditions). Consider the function

1
f(x1,x2) = 3 x% + %71 cosxy
illustrated in Figure 5.4. We use the optimality conditions to identify the minima of
this function. We have

X1 + COSX
Vi(x1,x2) = ( 1 z )

—x1 sinx>,

Figure 5.4: Function of Example 5.8: the surface

This gradient is zero for xj = ((—1)*"! ,k7t)T, k € Z, and for Xx = (0,5 + th)T,
k € Z, as illustrated in Figure 5.5. We also have

V2H(x1,x2) = ( 1 —sinx, ) .

—sinxy —XjCOSX2

By evaluating this matrix in x}, we get for any k

V2(x}) = ( (1) ? )

Since this matrix is positive definite, each point xj satisfies the sufficient optimality
conditions and is a local minimum of the function.
By evaluating the Hessian matrix in Xy, we get for any k

ket
Vlf(ik):< (_11)“1 ( 1()) + )
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X2

X1

Figure 5.5: Function of Example 5.8: stationary points

Regardless of k, this matrix is not positive semidefinite. Therefore, there is no xi
that satisfies the necessary optimality conditions. None of them can then be a local
minimum.

We now present a sufficient condition for a local minimum to also be a global
minimum.

Theorem 5.9 (Sufficient global optimality conditions). Consider a continuous
function f : R™ — R and let x* € R™ be a local minimum of f. If f is a convezx
function, then x* is a global minimum of f. If, moreover, f s strictly convez, x*
1s the only global minimum of f.

Proof. We assume by contradiction that there exists another local minimum x* # x*,
such that f(x™) < f(x*). By the convexity of f (Definition 2.1), we have

flox™ + (1 —o)x™) < af(x*) 4 (1 — o) f(x "),
where 0 < o < 1. Since f(x) < f(x*), we have for each x € [0, 1]
f(ocx* + (1 — oc)x*) < of(x*) 4+ (1 — o) f(x*) = f(x*). (5.7)

It means that any point strictly between x* and x* is also strictly better than x*.
Consider an arbitrary ¢ > 0, and demonstrate that Definition 1.5 of the local minimum
is contradicted. If € > ||x*—xT||, (1.75) is not satisfied for x = xT, when taking o = 1
n (5.7). If ¢ < ||[x* —x*||, consider 0 < n < 1 such that |[nx* + (1 —n)x*|| =¢. In
this case, (1.75) is not satisfied for x = ax* + (1 — a)x " with n < o < 1 according to
(5.7). Since n < 1, such « always exist.
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We now consider a strictly convex function, and assume that x* and y* are two
distinct global minima, and then x* # y* and f(x*) = f(y*). According to Definition
2.2, we have

flox™ 4+ (1 —x)y*) < of(x*) + (1 — )f(y*) = f(x*) =f(y*), Ve 10,1[,

which contradicts that x* and y* are global minima. |

Pierre de Fermat was born in Beaumont-de-Lomagne close to
Montauban on August 20, 1601, and died in Castres on January
12, 1665. With the exception of a few isolated articles, Fermat
never published and never gave any publicity to his methods.
= Some of his most important results were written in the mar-
gin of books, the most often without proof. For instance, his
“observations on Diophante,” an important part of his work on
number theory, was published by his son on the basis of margin
notes in a copy of Arithmetica. Fermat’s conjecture is probably
the most famous of his intuitions. It affirms that when n > 3,
there exists no non zero integer numbers x, y and z such that
— x" 4+ y"™ = z". He wrote the following note in the margin of
Arithmetica by Diophante: “I have a marvelous demonstration, but this margin is
too narrow to contain it.” This conjecture, called Fermat’s last theorem, was proven
by Wiles (1995). Fermat’s body was transferred from Castres to the Augustinian
Convent in Toulouse in 1675.

Figure 5.6: Pierre de Fermat

We conclude this chapter with a discussion of the optimality conditions for quadratic
problems (Definition 2.28).

Theorem 5.10 (Optimality conditions for quadratic problems). We consider the
problem

: 1ot T
gﬁ@f(x)—zx Qx+g'x+c, (5.8)

where Q € n X n 1s a symmetric matriz, g € R™ and c € R.

1. If Q is not positive semidefinite, then the problem (5.8) has no solution, i.e.,
there is no x € R™ that is a local minimum of (5.8).

2. If Q 1is positive definite, then

x*=-Q'g (5.9)

1s the only global minimum of (5.8).
3. If Q 1s positive semidefinite, but not positive definite,
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etther the problem is mot bounded or there is an infinite number of global
mintma. More precisely, we consider the Schur decomposition of Q (see
Theorem C.5):

Q=UAU", (5.10)

where U ts an orthogonal matriz (composed of the eigenvectors of Q organized
in columns) and A is a diagonal matriz with the eigenvalues of Q as entries.
As Q 1s positive semidefinite but not positive definite, 1t means that it is rank
defictent, so that r eigenvalues are positive and n —r are zero. We can sort
the wndices 1n such a way that the v first eigenvalues on the diagonal are
positive, and the n —r last are zero:

A 0 Ar O .
/\_< 0 Anr>_< 0 O)_dlag(Ah"")\T)O)"-)o)- (5.11)

We decompose the vectors x and g as follows:

U'x = ( yyr ) and UTg = < ggr ), (5.12)

where Yr, gr € R" and yn—r,gn—r € R 7. Therefore, if gn_r # 0, the problem
1s unbounded. If gn_» =0, then for any yn—, € R™ 7,

A1
x* _u< ;\r 9r ) (5.13)

s a global minimum of (5.8).

Proof. We have Vf(x) = Qx + g and V?f(x) = Q.

1.

We assume by contradiction that there exists a local minimum x* of (5.8). Accord-
ing to (5.2) of Theorem 5.1, V2f(x) = Q is positive semidefinite, which contradicts
the hypothesis.

. Since Q is positive definite, the point x* in (5.9) is indeed definite and

Vi(x*) =—QQ 'g+9g=0.

The sufficient optimality conditions (5.5) and (5.6) are satisfied and x* is a lo-
cal minimum of f. Moreover, according to Theorem 2.21, f is strictly convex.
According to Theorem 5.9, x* is the only global minimum.

. Using the Schur decomposition, and the fact that U is orthogonal (so that UUT =

I), we write the objective function of (5.8) as
1 1
f(x) = > x'Qx+g'x+c= 3 x UAU X + g"uU"x +c. (5.14)
Using (5.12), we obtain

1
fYryYn—+) = 5 UIArUr + QIUr + QrTxfrUnfr +c. (5.15)
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The gradient is
Aryr +
Vi(y) = ( rYr T Or ) )

Jn—r
If gn_r # 0, the gradient is different from zero for any value of y, and the necessary
optimality condition is never verified. Now, if g, = 0, the variables y,,_, do
not affect the objective function. We fix yn_, to any arbitrary value and solve
the problem for y,:

) 1
min f(y,) = 7 UI/\rUT + g;ryT' (5'16)
As A, is positive definite, the first result of this theorem applies, and
yr =—Agr (5.17)
We obtain (5.13) using (5.12).
([l

The last result of Theorem 5.10 has a geometric interpretation. The Schur de-
composition actually identifies one subspace where the quadratic function is strictly
convex (the subspace corresponding to the positive eigenvalues), and one subspace
where the function is linear (the subspace corresponding to zero eigenvalues). In this
latter subspace, in order to guarantee that the function is bounded, the linear part
must be constant, which corresponds to the condition g, = 0 (see Example 5.2).

5.3 Exercises

For the following optimization problems :

1. Calculate the gradient and the Hessian of the objective function.
2. Identify the critical points.
3. Eliminate those that do not satisfy the necessary optimality conditions.

4. Identify those that satisfy the sufficient optimality conditions.

Exercise 5.1. min x} +x3 .
x€R2

. ]
Exercise 5.2. min = x3 +x3 —x7 —X2.
x€R2 3

. . 1
Exercise 5.3. minx? + —— .
x€ER x—2
Exercise 5.4. min x§ — 3xx3 +3x3x5 —x§.
x€R

Exercise 5.5. mini f(x), where f is defined by one of the functions of Exercise 2.2.
x€R
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The development of optimality conditions in the presence of constraints is based on
the same intuition as in the unconstrained case: it is impossible to descend from a
minimum. However, we can no longer apply the optimality conditions described in
Chapter 5, as illustrated by the following example.

Example 6.1 (Necessary optimality condition without constraint). Consider the
problem

min f(x) = x?

subject to
x>1.

The solution to the problem is x = 1. And yet, f'(1) =2 #0.

Here, instead of verifying that no direction is a descent direction, we must only
take into account the feasible directions and, if there is none, the feasible directions
at the limit (see Definition 3.21 and the discussions of Section 3.3). Theorem 6.2
expresses that if x* is a local minimum, no feasible direction at the limit is a descent
direction.
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Theorem 6.2 (Necessary optimality conditions for general constraints). Let x* be
a local minimum for the optimization problem min,crn f(x) subject to h(x) =0,
g(x) <0 and x € X defined in Section 1.4. Here,

V(x*)Td >0 (6.1)

for any feasible direction d at the limat in x*.

Proof. We assume by contradiction that there exists a feasible direction at the limit
d such that Vf(x*)Td < 0 and let us consider a feasible (sub-)sequence (Xk)k en Of
Definition 3.21. According to Taylor’s theorem (Theorem C.1) with d = x — x*, we
have

flxi) = F(x*) + (xx fx*)TVf(x*) +o(]xk —x*|) . (6.2)

Since d = limy(xx — x*), and Vf(x*)Td < 0, there exists an index K such that
(xx fx*)TVf(x*) < 0 for all k > K. In addition, the term o(||xx — x*||) can be made
as small as desired by making k sufficiently large (see Theorem 2.11 or Theorem 5.1
for a more formal analysis of this result). Therefore, there exists an index k large
enough that f(xy) < f(x*), which contradicts the local optimality of x*. O

This general result does not take into account a possible structure in the con-
straints. We now propose optimality conditions for specific problems.

6.1 Convex constraints

We now consider the optimization problem min f(x) subject to x € X, where X is a
closed non empty convex set. We obtain a specific version of Theorem 6.2.

Theorem 6.3 (Necessary optimality conditions for convex constraints). Let x* be a
local minimum to the optimization problem
in f
min (),
where f: R™ — R 1s differentiable at X and X 1s a non empty convex set. Then,

Vx € X,
Vf(x*)T(x—x*) >0. (6.3)

Proof. We assume by contradiction that (6.3) is not satisfied. In this case, according
to Definition 2.10, the direction d = x — x* is a descent direction. According to
Theorem 2.11, there exists n > 0 such that

f(x* + ad) < f(x¥), Vo € [0,1]. (6.4)
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Moreover, according to Theorem 3.11, d is a feasible direction and x* + «d is feasible
for any 0 < o < 1. Then, for each 0 < « < min(n, 1), we have x* + ad € X and
f(x* + ad) < f(x*). This contradicts the local optimality of x*. O

The condition (6.3) signifies geometrically that any feasible direction should form
an acute angle with the gradient, as illustrated in Figure 6.1. When the convex set
has a particular structure, the necessary optimality conditions can be simplified, as
shown in Example 6.4.

-3 1 1 1 1

Figure 6.1: Illustration of the necessary optimality condition

Example 6.4 (Bound constraints). Consider the optimization problem

min f(x)
xEXCR™
with
X={xt<x<u,i=1,...,n}, (6.5)
where {; # wy, forany i =1,...,n. Let x* be a local minimum of this problem. Since

the condition (6.3) should be satisfied for all x € R™, we select some specific values
to derive necessary conditions. Each time, we select an arbitrary index i and choose
x € R™ such that xj = xj for all j # i. For such x, the condition (6.3) simplifies to

(xi —=x{) > 0. (6.6)

We now need to specify x; and verify that £; < x; < u; in order to obtain a feasible
point and apply the necessary optimality condition. We consider three cases.

1. x} = {;. If we choose
ui—6 w6
2 2

xi =i +
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xi is located exactly halfway between {; and w;, and x is feasible. Moreover,
xi —x} = (uy —4£;)/2 > 0 because u; > £;. The condition (6.6) implies that

of(x*)
6xi

>0.

2. x¥ =u,. If we choose

wi—8  uwitb
Xi=Uy — =

2 2

x is feasible. Moreover, x; —x{ = —(u; — {;)/2 < 0. The condition (6.6) implies
that

o) .

oxy
3.4y < x§ <uy. If we choose
. uj +xj
1 2 )

x is feasible. Moreover, x; —x} = (u; —x})/2 > 0 because x} < u;. The condition
(6.6) implies that

If we choose

*

x is feasible. Moreover, x; —x} = (§; —x})/2 < 0 because ¢; < x}. The condition
(6.6) implies that
of(x*)
6xi

<0.

By combining these two results, we get

of(x*)

aXi

Then, in the case of bound constraints defined by (6.5), the necessary optimality
conditions can be written as

of(x*) .

o >0, fxi =4
of(x*) .

™ <0, ifxi =w
of(x*) . X

for any 1 such that {; < u;. Finally, let us note that, in the case where {; = u;, each
feasible x is such that x; = {; = u; = x} and the condition (6.6) is trivially satisfied,
regardless of the value of 9f(x*)/0x;.
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Figure 6.2(b) illustrates the problem
min f(x) = x§ + x3

subject to
0.7 S X1 S 2
—1<x;<1.
. T T
The solution is x* = ( 0.7 0 ) and Vf(x*) = ( 14 0 ) . Since x] =4 = 0.7, we

have 9f(x*)/0x1 > 0. Since {, < x5 < u, we have 0f(x*)/0x, =0.
Figure 6.2(a) illustrates the problem

min f(x) = x§ + x3

subject to
—2<x1 <-0.7
—1<x2<1.

The solution is x* = ( —0.7 0 )T and Vf(x*) = ( =14 0 )T. Since x} = wy =
—0.7, we have 0f(x*)/9x; < 0. Since £, < x5 < u;, we have 0f(x*)/0x, =0.

(a) Upper bound active (b) Lower bound active

Figure 6.2: Illustration of the necessary optimality condition for bound constraints

Theorem 6.5 (Sufficient optimality conditions for convex constraints —I). Consider
the optimization problem

inf
min (),

where X 1s a closed non empty convezx set, and f: R™ — R 1s differentiable and
convez at X. Then, (6.3) is a suffictent condition for x* to be a global minimum
of f in X.
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Proof. According to Theorem 2.16, we have
f(x) — f(x*) > (x—x*)TVf(x*), vx € X.
If (6.3) is satisfied, then
f(x) —f(x*) >0, Vx € X,

and x* is a global minimum (Definition 1.7) O

Example 6.6 (Projection on a convex set). Let X be a closed non empty convex set
for R™ and let us take z € R™. The projection of z over X, denoted by [z]", is defined
as the unique solution of the following optimization problem:

1
min f(x) = 3 (x—2z)T(x —2) subject to x € X.

Since f is convex and Vf(x) = x — z, a necessary and sufficient condition for x* to be
the projection on z over X is

(x*fz)T(xfx*) >0, WxeX. (6.7)

Note that if z € X, then (6.7) implies that x* = z.

It is interesting to characterize the optimality condition (6.3) by using the projec-
tion operator.

Theorem 6.7 (Optimality conditions for convex constraints — II). Consider the
optimization problem

{(nel)rgf(x) ,

where X 1s a closed non empty convezr set and f : R™ — R 1s differentiable. If
X* 1s a local minimum, then

x* = [x* — aVf(x*)] " Voo > 0. (6.8)
If, moreover, f is convez, (6.8) is sufficient for x* to optimize f over X.
Proof. Consider z(a) = x* — aVFf(x*). According to (6.7), we have [z(oc)]P = x* for
all &« > 0 if and only if
(x*—z(oc))T(x—x*)ZO, Yx € X, Yo >0,

or
(x*fx*+(fo(x*))T(xfx*)20, Vx € X, Voo > 0.

The latter equation is equivalent to the optimality condition (6.3). [l
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6.2 Lagrange multipliers: necessary conditions

Theorem 6.2 is based on the notion of feasible directions at the limit, which form
the tangent cone (Definition 3.22). As we discussed in the last part of Section 3.3,
this notion is too complex and the linearized cone (Definition 3.23) is much easier
to handle. The most common cases, where the linearized cone is equivalent to the
tangent cone, are optimization problems with linear constraints (Theorem 3.27) and
linearly independent constraints (Theorem 3.28). Therefore, we present the results for
only these cases. It is also possible to develop optimality conditions by considering the
linearized cone from a general point of view. The details are described in Mangasarian
(1979) and Nocedal and Wright (1999). The necessary optimality conditions are
generally called Karush-Kuhn-Tucker conditions or KKT conditions. In fact, for
many years, they were called Kuhn-Tucker conditions, following the article by Kuhn
and Tucker (1951). It later turned out that Karush (1939) had already formulated
them independently. John (1948) proposed a generalization a decade later (Theorem
6.12).

Note that the theory of Lagrange multipliers extends beyond the optimality con-
ditions presented in this book and that they can also be adapted to non differentiable
optimization. We refer the interested reader to Bertsekas (1982) and Rockafellar
(1993).

In this text, we adopt the approach of Bertsekas (1999), who first presents these
conditions in the case of linear constraints, and then for problems including linearly
independent equality constraints. The proof provides intuitions that are reused in
the development of algorithms. Subsequently, we generalize the result for problems
that also include inequality constraints.

6.2.1 Linear constraints

Consider the problem

min f(x) (6.9)
subject to
Ax=D (6.10)

with A € R™™ and b € R™. According to Theorem 3.6, the matrix A can be
considered of full rank without loss of generality. In this case, the Karush-Kuhn-
Tucker conditions are formulated in the following manner.

Theorem 6.8 (Karush-Kuhn-Tucker: linear case). Let x* be a local minimum of
the problem min,cgrn f(x) subject to Ax = b, where f : R™ — R 1s differentiable
and A € R™*™" 15 of full rank. There thus ezists a single vector A* € R™ such
that

Vi L(x*,A*) = VF(x*) + ATA* =0, (6.11)
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Albert William Tucker was born on November 25, 1905 in On-
| tario, Canada, and died in Hightstown, New Jersey on January
+ 25, 1995. He received his PhD in 1932 from Princeton University,
where he spent most of his career. He is particularly known for
his work on linear programming and game theory. After Dantzig
visited von Neumann in 1948, Tucker drove Dantzig back to the
| train station in Princeton. It was during this short ride that
Dantzig exposed linear programming to Tucker. In the context
of game theory, von Neumann is generally cited as the inventor of
the duality theorem, and Tucker, Kuhn and Wales as the first to
propose a rigorous proof. In 1950, Tucker proposed the example
of the prisoner’s dilemma to illustrate the difficulty of non zero-sum games. John
Nash, Nobel Laureate in Economics 1994, was one of his students at Princeton. The
story goes that von Neumann did not agree with the approach of Nash’s game theory,
while Tucker encouraged him to develop his ideas and supervised his doctoral thesis.

Figure 6.3: Albert William Tucker

where L is the Lagrangian function (Definition 4.3). If f is twice differentiable,
then
Yy V2, L(x" A" )y >0, VyeR"™ such that Ay =0. (6.12)

Proof. We employ the technique for the elimination of constraints described in Section
3.4 to convert the optimization problem with constraints into an optimization problem
without constraint (3.70). To simplify the proof, we can assume that the variables
are arranged in a way that the m variables to eliminate are the m first ones. Then,
P =1in (3.70) and the minimization problem is

B~ (b — Nxn) ) '

N (6.13)

XN ERM—M

min  g(xn) —f(

If x* = (x},x%) is a local minimum of the problem with constraints, then x¥ is a
local minimum of the problem without constraints and the necessary condition (5.1)
applies to (6.13). By using chain rule differentiation (see (C.6) of Theorem C.3) we
obtain:

Vg(xy) = —NTB TV f(x*) + Vnf(x*) =0, (6.14)

where Vpf(x*) and VNT(x*) represent the gradient of f with regard to the variables
xp and xp, respectively. If we define

A =B TVgf(x"), (6.15)
which can also be written as

Vef(x*) +B'A* =0, (6.16)
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the condition (6.14) is expressed as
Vnf(x*) + NTA* = 0. (6.17)

Equations (6.16) and (6.17) form (6.11), which proves the first-order result.
To demonstrate the second-order result, we first derive (6.11) to obtain

V2, L(x,A) = V2f(x). (6.18)

We consider a vector y € R™ such that Ay = 0 and then Byg + Nyn = 0 or
yp = —B7'Nyn. Then, if d € R™ ™ is an arbitrary vector, the vector

() ()

is such that Ay = 0. According to the necessary optimality conditions (5.2) in the
unconstrained case and Definition B.8 of a positive semidefinite matrix, we have that

d"Vv?g(xy)d >0, Vd e R™ ™, (6.20)
However, when deriving (6.14), we obtain

VZQ(X*N) _ TBfTVZ ( *)B71N
NTB Tv Nf( *)

(6.21)
+v2NNf(x*),
where V2f(x*) is decomposed into
Vaef(x*) Vi f(x*
v2rpe) = [ VEs'l *) BN ( *) : (6.22)
V3 apf(x*) Vinf(x*)

Then,
d"V?g(x})d =d"NTB TV, f(x*)B~'Nd
—d"™NTB V3 Nf( “)d
—d"VZpf(x")B~'Nd

+dTv NF(xF)d from (6.21)
=ysV (X*)ys

‘HJB enf(x")yn

YLV )y

+yn Vanf(x* yn from (6.19)
=y V2f(x*)y from (6.22)
=y"V2 L(x")y from (6.18)

and (6.12) is equivalent to (6.20). O
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Example 6.9 (Karush-Kuhn-Tucker: linear case). We consider the following opti-
mization problem:

min f(x1,X2,X3,X4) = X3 + x5 + x5 +x3

subject to
X1+ X2 +x3 =1
X1 — X2 +x4=1.

The solution to this problem is

2/3 4/3

. 0 o 0
X" = 1/3 and Vi(x*) = 2/3
1/3 2/3

By decomposing

we obtain

e (12 12 43\ _( =213
A*=—B VBf(X)—<]/2 _]/2)( 0 >_<—2/3>>

and (6.11) is expressed as

4/3 11 4/3 —4/3 0
U I R I 2 2 W AT N B Y
2/3 1 0 -2/3 ) | 2/3 -2/3 1 |0
2/3 0 1 2/3 ~2/3 0
Any vector of the form
1 1
Y3 ;U4
B 1 . 1
y_ 2y3 2y4
Y3
Ya
is such that Ay =0 and (6.12) is written as
=1y ' 1 1
—5Y3— 5 Y4 —>Us— Y4
27 2 2000 277 2
ToZeory, _ | 1 1 0200 1 1
y Vi y = FYs T 5Ys 00 2 0 —Yst U
Y3 000 2 Y3
Ya Ya

=3y3 +3y; > 0.
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6.2.2 Equality constraints

We consider here the problem with equality constraints (1.71)—(1.72). In this case,
the Karush-Kuhn-Tucker conditions are formulated in the following way. Thanks to
the Lagrangian function (Definition 4.3), their expression presents similarities with
conditions without constraint.

Theorem 6.10 (Karush-Kuhn-Tucker: equality constraints). Let x* be a local min-
wmum of the problem min,crn f(x) subject to h(x) = 0, with f : R™ — R and
h:R™ — R™ continuously differentiable. If the constraints are linearly indepen-
dent in x* (in the sense of Definition 3.8), there ezists a unique vector A* € R™
such that

VL(x*,A*) =0, (6.23)

where L is the Lagrangian function (Definition 4.3). If f and h are twice differ-
entiable, then
YTV L Ay >0, vy € D(x*), (6.24)

where D(x*) 1s the linearized cone'in x* (Definition 3.23). Moreover,

A= (Vh(x*)TVh(x*)) Vh(x*) VE(x"). (6.25)

Proof. We generate a sequence of optimization problems without constraint approach-
ing the original problem. The idea is to penalize the violation of constraints by in-
troducing a penalty term. The objective function of the problem without constraints
is defined by

Felx) = 00 + 5 [n00])* + 5 =< (6.26)

where k € N, x* is a local minimum to the problem min,crn f(x) subject to h(x) =0
and « > 0 is arbitrary. Since x* is a local minimum (Definition 1.5), there exists ¢
such that

f(x*) < f(x), Vxsuchthat h(x)=0andx €S, (6.27)

where S, is the sphere defined by S. = {x|||x—x*|| < e}. According to the Weierstrass
theorem (Theorem 1.14), the problem

min Fy (x) (6.28)

subject to
x €S, (6.29)

has a solution in S, denoted by xi. One should keep in mind that the problem (6.28)-
(6.29) is subject to constraints. Nevertheless, we demonstrate that, for a sufficiently

1 Since the constraints are linearly independent, the constraint qualification is satisfied and the

linearized cone corresponds to the tangent cone.
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large k, the solution lies strictly inside S, and is therefore a solution to the problem
(6.28) without constraint (according to Theorem 3.5). The role of S, is to ensure that
no local minima other than x* are found.
We have
Fk(Xk) < f(X*) . (630)

Indeed, Fx(xk) < Fx(x*) because xy is the solution to (6.28)-(6.29) and x* € S.. Also,
according to (6.26),

Fr(x™) :f(X*)+]§ [h(x*) |2 X —x*||? = f(x"),

+ 2
2

because h(x*) = 0. Then, when k — oo, the value of Fi(xy) remains bounded. We
show by contradiction that this implies that

lim ||h(x)|| =0. (6.31)
k—o0
Indeed, if (6.31) is not satisfied, then the term %Hh(xk)Hz tends towards +oo. Since
F(xx) remains bounded, this signifies that either f(xy), or ||xx — x*||? tends towards
—oo. However f(xy) is bounded from below by f(x*) over S, (according to (6.27))
and ||xi — x*||? is positive, which leads to a contradiction and proves (6.31).
Let X be a limit point of the sequence (xy )x (Definition B.20). According to (6.31),
we have h(X) = 0 and X is feasible for the original problem and thus f(x*) < f(X).
Moreover, according to (6.30)

lim Fie(xk) = f(R) + af|x —x*||* < f(x*). (6.32)

k—oo

Then,
() + o[k —x*||* < F(R). (6.33)

As aresult, oc||327x* ||2: 0 and X = x*. The sequence (xk) . converges to x*. According
to Definition B.19, there exists k such that

[xk —x*|| <0.9¢ < ¢, vk >k, (6.34)

where ¢ is the radius of the sphere S, involved in the definition of the local minimum
(6.27). The point xy is inside S, when k is sufficiently large.

According to Theorem 1.16, xx is a local minimum of the unconstrained prob-
lem (6.28). We can apply the necessary optimality conditions of an unconstrained
problem, given by Theorem 5.1:

VFr(xk) = VI(xi) + kVh(x ) h(xk) + a(xx —x*) =0 (6.35)

and V2F, (xy) is positive semidefinite, with

V2F(xi) = VAf(xi) +k ) hi(xi) VZhi(xi) + kVh(xi) Vh(xi)T + . (6.36)

i=1
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X0
Se

Figure 6.4: Illustration of the proof of Theorem 6.10

By multiplying (6.35) with Vh(xy)T, we get
Vhixk) "VE(xi) + kVh(x) TVh(xi)h(xk) + aVh(x) T (xx —x*) =0.  (6.37)

Since the constraints are linearly independent by hypothesis, the matrix Vh(x*)"
Vh(x*) is of full rank and invertible. By continuity of Vh (indeed, h is continuously
differentiable), there exists a k sufficiently large such that Vh(xy)"Vh(xy) is also

invertible. By multiplying (6.37) by (Vh(xk)TVh(xk))q, we obtain

Kh(xk) = —(Vh(x) TVh(x)) ' Vhix) T (V) + el — x7)) - (6.38)
When k — oo, we define
A= k11_)111 kh(xx) (6.39)

to obtain (6.25). By letting k — oo in (6.35), we get
VF(x*) + Vh(x*)A* = 0. (6.40)

According to Definition 4.3, (6.40) is equivalent to V4 L(x*,A\*) = 0. Since 0 = h(x*) =
VaL(x*,A*), we get (6.23).
To demonstrate the second-order condition (6.24), let us consider y in the lin-

earized cone (and thus Vh(x*)Ty =0) and, for a sufficiently large k, let us consider
its projection y, on the kernel of Vh(xy)". According to the theorem of projection
on the kernel of a matrix (Theorem C.7), we have

Yk =y — Vhixi) (Vh(x) " Vhix)) ' Vhix)Ty. (6.41)

We also have

. T 1 T
klingoyk =y — Vh(x*) (Vh(x*) Vh(x*)) Vh(x*) 'y =y, (6.42)

because Vh(x*)Ty = 0. Then, from (6.36),

m
Y VF(x)yk = yp (sz(xk) +kZhi(Xk)v2hi(Xk)> Yx

i=1

+kyp Vh(x) Vh(xi) Ty + oy yse.
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As Vh(xi) 'y =0,

m
YL V()Y =y (vzf(xk) +k > m(xk)vzm(xk)> Yk + Qg Yi.

i=1

As V2Fy (xy) is positive semidefinite, this last quantity is non negative. By letting
k — oo and using A* = limy_, o, kh(xy), we get

m
y' (sz(x*) + ZA;‘V%@*)) y+ay'y>o0. (6.43)
i=1
According to Definition 4.3 of the Lagrangian function, (6.43) is equivalent to
Y VILL A )y + ayTy > 0. (6.44)

If (6.24) is not satisfied, (6.44) is not valid for all > 0. Indeed, if y" V2, L(x*,A*)y <
0, (6.44) is not satisfied for the values of « such that

y 'V L(x*,A*)y
y'y
Since « can be arbitrarily chosen, this concludes the proof. [l

Note that for linear constraints, h(x) = Ax—b, Vh(x) = AT and (6.23) is written

as
( VH(x*) + ATA® ) o
- b

x < —

Ax—b
which is equivalent to (6.11) of Theorem 6.8.

Example 6.11 (Karush-Kuhn-Tucker: equality constraints). Consider the optimiza-
tion problem

i 6.45
7{1;.1]1{1% X1+ X2 ( )
subject to
X2+ (xa—1)2 =1
hix)={ =0. 6.46
™ ( X7 +x2 ) (646)
The set of constraints is illustrated in Figure 6.5. We have
o 1 . 2X1 —2X1
Vf(x) = ( : ) and Vh(x) = ( Iy 2 : ) . (6.47)
The Lagrangian function of the problem is
L(x,A) =x1 +x2 4+ A1 (x] + (x2 = 12 = 1) 4+ Az2(—x] +x2) (6.48)
and
14 2A1%x1 — 2A2%q
T4+20(x2=1)+A
VL(x,A) = 102 =142 (6.49)

X2+ (x2—1)2 =1

*X% + X2
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X2

05 Fhy() =23+ (xa—Df—1 -

-1t 1 1 1 v 1 1 1 .
-2 -15 -1 -05 0 05 1 15 2

X1

Figure 6.5: Illustration of the KKT conditions

The point x¢ = ( 1 1 )T is a local minimum of the problem. The constraints are
linearly independent in x“ because the matrix

Vh(x?) = ( é _]2 ) (6.50)

is of full rank. Thanks to the relations (6.25) and (6.47), we get
A= ( —312 ) (6.51)

The condition VL (x%,A*) =0 is satisfied. Note that the linearized cone is empty
in x® and that the second-order condition is trivially satisfied.

The point x° = ( 0 0 )T is also a local minimum (in fact, we are dealing with a
global minimum of the problem). We have

1

120+ A2
0 )
0

VL(x°,A) = (6.52)

which cannot be zero for any A. The necessary condition is not satisfied in this case.
Indeed, the constraints are not linearly independent in x® because the matrix

0 0
Vh(x?) = ( o ) (6.53)

is not of full rank.
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We now present the result of John (1948) for equality constraints, which consti-
tutes a generalization of Theorem 6.10.

Theorem 6.12 (Fritz John: equality constraints). Let x* be a local minimum of
the problem min,cgn f(x) subject to h(x) =0, where f: R™ - R and h: R™ —» R™
are continuously differentiable. Then, there exists uj € R and a vector A* € R™
such that

s VF(x*) + Vh(x*)A* =0 (6.54)

and K3, A},...,Am, are not all zero.

Proof. In the case where the constraints are linearly independent, Theorem 6.10 ap-
plies and (6.54) is trivially obtained with u§ = 1. In the case where the constraints
are linearly dependent, then there exist A7,..., A}, not all zero, such that

m
> AjVhi(x*) =0,
i=1
and (6.54) is obtained when po = 0. O

6.2.3 Equality and inequality constraints

We now present the necessary Karush-Kuhn-Tucker optimality conditions for a gen-
eral case including equality and inequality constraints. As is often the case, the
approach consists in returning to an already studied case, in this case the problem
with only equality constraints.

Theorem 6.13 (Karush-Kuhn-Tucker). Let x* be a local minimum of the problem
min,ern f(x) subject to h(x) = 0, g(x) < 0, where f : R® - R, h : R* — R™
and g : R™ — RP are continuously differentiable. If the constraints are linearly
independent in x* (in the sense of Definition 3.8), there exists a unique vector
A€ R™ and a unique vector u* € RP such that

ViL(x*, A", u*) =0, (6.55)
H;ZO> i=1..5p, (6'56)

and
Hyg;(x") =0, i=1...,p, (6.57)

where L is the Lagrangian function (Definition 4.8). If f, h and g are twice
differentiable, then

y V2 L(x* A, 1)y >0, WYy #0 such that
Yy Vhix)=0, i=1,...,m (6.58)

UTVQi(X*) i=1,...,p such that gi(x*) =0.
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Proof. We consider the active inequality constraints at the solution as equality con-
straints and let us ignore the other constraints in order to obtain the problem
min,egn f(x) subject to h(x) = 0, gi(x) = 0, for any i € A(x*), where A(x*) is
the set of active constraints in x* (Definition 3.4). According to Theorem 3.5 where
Y= {x | h(x) = 0}, x* is a local minimum of the optimization problem with equality
constraints. According to Theorem 6.10, there exist Lagrange multipliers A* € R™
and pf, with i € A(x*) such that

VI(x*) + VR(x*)A* + Z wivgi(x*) =0. (6.59)
ie A(x*)

We associate a zero multiplier to each non active inequality constraint in x* to obtain

P
VE(x*) + V(XA + ) uiVgi(x*) =0 (6.60)

i=1

with pf = 01if i ¢ A(x*). We thus get (6.55). Similarly, the second-order condition
of Theorem 6.10 implies that

Yy Vhi(x*) i=1,...,m (6.61)

Yy V2, L(x*,A\*,uw*)y > 0, Vy such that
yVgi(x') =0, i=1,...,p such that g;(x") =0

and (6.58) is satisfied. We note that (6.57) is trivially satisfied. Indeed, if the con-
straint g;(x*) < 0 is active, we have g;(x*) = 0. If on the other hand it is not, we
have p = 0. We now need only demonstrate (6.56).

We take the same proof as Theorem 6.10, by defining the penalty function for
inequality constraints with

g; (x) = max{0,gi(x)}, i=1,...,p. (6.62)

In this case, the function (6.26) becomes
F =f k h 2 k - + 2 x *(12
k(x) = f(x) + 5 [[h(x)]| +§;g]~ ()2 + 5 = x|17 (6.63)

Since g)?L(x)2 is differentiable and
Vgi (x)* = 2gf (x)Vg;(x), (6.64)

we can invoke the same development as in the proof of Theorem 6.10. Since we have
obtained (6.39), we have

H*{:kli_}Holokgj(xk)) i=1...,p. (6'65)

And since g; (x) > 0, we get (6.56). O
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Example 6.14 (Karush-Kuhn-Tucker: inequality constraints —I). Consider the prob-
lem

min x7 + x2 (6.66)
xER2
subject to
(x1 =32 +x3 <9
Xt 4+ (x2—3)2<9 (6.67)
x% <T+x2,

illustrated in Figure 6.6. Re-arranging the equations of the constraints, we obtain

gi(x) = x% — 6Xq er%
g2(x) = x§ — 6x2 + X3 (6.68)
g3(x) =xf —x2—1,

and the Lagrangian function is written as

L(x, 1) = x1 + %2 + 1 (x] — 6x1 +x3)

6.69
+uz(x$—6xz+x§)—i—ug(x%—xz—]). ( )

X2

X1

Figure 6.6: Karush-Kuhn-Tucker optimality conditions

The point x* = ( 0 0 )T is a local minimum of this problem. The constraints
g1(x) < 0 and g2(x) < 0 are active in x*, whereas the constraint gs(x) < 0 is not.
The point x* is also a local minimum of the problem where the two active inequality
constraints are replaced by equality constraints, and the active constraint is ignored,
that is

min x7 + x2 (6.70)
xER2

subject to
(x1 —3)2—|—x% =9

6.71
X3+ (x2 —3)* =9, ( )
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or, equivalently
hi(x) :x%76x1 +x% =0

6.72
ha(x) =xF —6x2 +x3 =0. (6.72)
The gradient of the constraints is written as
2X1 —6 2X1
= -7
Vh(x) ( 2y 26 ) (6.73)

According to the KKT conditions (Theorem 6.10), A* is given by (6.25) and we have

e () (%) (S ()-8

Then, the necessary first-order KKT condition for the initial problem is written as

16 +2(18 + 13 + 3t
VLX(X*,H*):< Hq (u'1 29 u'3) 1 >:0’

1 =603 +2(k] + u3)x5 — 13

where L is defined by (6.69), x* = ( 0 0 )T and

AL 1/6
w=1 A | = 1/6
0 0

Since the linearized cone is empty in x*, the necessary second-order KKT condition
is trivially satisfied.

Example 6.15 (Karush-Kuhn-Tucker: inequality constraints — II). Consider the
optimization problem

T 2
— 6.74
){161%%112 3 (x] —x3) (6.74)
subject to
x2 <1, (6.75)

for which the objective function is illustrated in Figure 6.7. We have

1 1
L(x, ) zzxf—zxﬁ—i-u(xz—]).

The point x* = ( 0 1 )T is a local minimum of the problem. The constraint is
active in this point. The first-order condition (6.55) is expressed as

VXL(X*,H*) _ ( *Xl . ) _ ( 0 . > —0
—X5 + —T+u
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Figure 6.7: Objective function of Examples 6.15 and 6.21

and is satisfied with u* = 1, which is positive. The second-order condition (6.58) is

written as
1T 0 Y1 2 2
= — > .
(Y1 Uz)(o _]>(y2> yr—y; =0 (6.76)

for any y such that

vol) () =0 (4 ) mu =0

and is satisfied. Note that if we choose a feasible direction y, for instance y =
( 0 -1 )T, the condition (6.76) is not satisfied. It is only valid for y orthogonal to
active constraints.

Example 6.16 (Physical interpretation of KK'T conditions). We consider the opti-
mization problem

min xq
x€R2

subject to
hi(x) =x7 —sinx; =0.

The equality constraint is represented in Figure 6.8(a). The point xq = ( -1 3m/2 )T
is a local minimum of the problem. We have

VTf(x) = ( (1) ) R Vh(x) = ( —clsxz )

and the necessary optimality condition is written as

—Vf(xqa) —A]Vh(xq) =0.
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X2
w

X1

X2
w
T

g(x) =x1 —sinx; <0
0 1 1
-2 -1 0 1 2

X1

(b) Inequality constraint

Figure 6.8: Interpretation of the KKT constraints

Using the fact that —Vf(x) is the direction with the steepest descent (Theorem
2.13), we can interpret this condition as an equilibrium between the “force” —Vf(xq),
which drives the solution to lower values of the objective function, and the force
—A1Vh(x), which maintains the solution on the constraint. If x, is optimal, this
signifies that the forces are balanced and that their sum is zero. In our example, since
the “force” —Vf(xq) acts in the same direction as —Vh(x4), the multiplier A} should
be negative so that the two “forces” can compensate each other.

If we now take the point x, = ( sin(3) 3 )T, the “forces” —Vf(xy) and —AVh(xp)
are not balanced. This is not only the case when A = A}, as shown in Figure 6.8(a),
but for all A.
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We now consider the problem

min xq
x€R2

subject to

g1(x) =x7 —sinx, < 0.

The inequality constraint is represented in Figure 6.8(b). The point xq = (—1,37/2)
is not a local minimum of the problem. In fact, the direction —Vf(x) is feasible and
the associated “force” drives the solution towards feasible values.

Note that the constraint is active in x4, and that the equation

—Vf(xa) —m1Vgi(xq) =0

is satisfied for py = —1. The interpretation of the forces signifies that the “force”
—n1Vgi(xq) drives the solution to the right and prevents it from going inside the
feasible domain, which is incompatible with the definition of the inequality constraint.
The condition (6.56) in Theorem 6.13, u* > O signifies that, for an inequality con-
straint, the “force” can only act in a single direction, so as to prevent the points from
leaving the feasible domain, but not from going inside. For the equality constraints,
the “force” can act in two directions and there is no condition for the sign of the
multipliers.

Example 6.17 (Slack variables). Consider problem (P1)

Inin f(x) (6.77)
subject to
gi(x)<0,i=1,...,m. (6.78)
The Lagrangian of (P1) is
m
L(x,u) =f(x) + Z wigi(x). (6.79)
i=1
The first derivative is
oL of = 0gi
— = — i 6.80
g (o) = 35 00+ g ), (6.50)
for j =1,...,n, and the second derivative is
%L o%f uk 9gi
— = i 6.81
o W = g )T ; i o (6.81)

for j,k=1,...,n.
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Let x* be a local optimum of problem P1. Therefore, the first order necessary
optimality (KKT) conditions say that, under appropriate assumptions, there is a
unique p* € R™, u* > 0, such that

oL, ., = .0 )

oy ) = g 1 K 0) = 0

ke e (6.82)
uigi(x*) = 0i=1,...,m

Assume that the first p constraints are active at x*, and the others not, that is

gix*)=0,1=1,...,p, (6.83)
and
gix*) <0, i=p+1,...,m. (6.84)
Therefore, we obtain
O ey = Ly 3 iy — o (6.85)
an W= an — Hi an -0 '
and
wy = 0, i=1,...,p,
(6.86)
we = 0, i=p+1,...,m
Moreover, for each d € R™ such that, foreachi=1,...,p
n
da:
3 diesot(x*) =0, (6.87)
an
k=1
we have

D= 0% f dg;
djdy > 0. 6.88
j; ]; 0% axk Z H axlaxk ) | ddic 2 (6.88)

Consider now problem (P2), obtained from problem (P1) by transforming the
inequality constraints into equality constraints using slack variables, as suggested in
Section 1.2.2:

xeRIEl,lyneRm f(x) (6.89)
subject to
hilxy) =gi(x)+yZ =0, i=1,...,m. (6.90)
For each i =1,..., m, the first derivatives of the constraint are
ohy 09
= k=1,... 6.91
an axk) ) )n) ( )
Ohy
L =2y, (6.92)

ayi
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and o
ayZ:O,E:L...,m,E;&L (6.93)
The Lagrangian of (P2) is
m
Ly, A) = f(x)+ Y Ailgi(x) + 7). (6.94)
i=1
The first derivatives are
oL 391
™~ ]( Yy A) = +Z7\ (6.95)
forj=1,...,n, and
oL
6_131(X’y’7\) = 2A\iVYs, (6.96)
for i =1,...,m. The second derivatives are
0%L o%f = dg;
— A) = A .97
aX]'an (%,Y,A) an Oxr (x) + ; i an Oxn (x), (6 9 )
for j,k=1,...,n
aZL(x y,A) =2\ (6.98)
ay% ) ) 13)
fori=1,...,m,
9°L
— A) = .
Y10y (%, y,A) =0, (6.99)
for i,£=1,...,m,1#{, and
9°L
A)=0 6.100
ax]ayl(x Y, A) =0, (6.100)

forj=1,...,n,i=1,...,m.
Let x* and y* be local optima of problem P2. Therefore, the first order necessary
optimality (KKT) conditions say that there is a unique A* € R™ such that

aL * * *) * agl * _
a_xj(x YA = +Z)\1 ax =0, (6.101)
and
220y =0i=1,...,m. (6.102)
Moreover, for each
d= ( dx ) e R™™
dy
such that, foreachi=1,...,m
= a
Y (d 91 “) +2(dy )iy’ =0, (6.103)

k=1
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we have
* * 1 * *
Z o (x*) + Z A R, (x*) ] (dx)j(dx)ic + ZZAi(dy)i > 0. (6.104)
j=1 k=1 i=1 i=1
Now, assume that the constraints are numbered so that y; =0 fori =1,...,p,
and yf #0 fori =p+1,...,m. As x* verifies the constraints (6.90), we have also

gix*)=0fori=1,...,p,and gi(x*) <O fori=p+1,...,m. Then, from (6.102),
we have Af =0, i=p+ 1,...,m. The first order condition (6.101) becomes

oL

a_Xj(X*>y*>7\*) =

f * *agl *®\
a_xj(x )+iZ7\. “(x*) = 0. (6.105)

For the second order conditions, for each

such that, for eachi=1,...,p

Z(dx)k It (x*) =0, (6.106)
1 an
and foreachi=p+1,...,m
n
agi * *
D (A= (x*) +2(dy)iyi =0, (6.107)
b an
we have
= (o2 i 9 i 5
X)) A —=—(x") | (dy)j(dx)x +2 ) Af(dy)f >0. (6.108
;“(axjam( 1+ N ))( hdet 23 ()¢ 2 0. (6108

In particular, consider d such that dx =0 and (dy); =0,i=p+1,...,m. It clearly
verifies conditions (6.106) and (6.107). We have for any value of (dy)i, i=1,...,p,

P
23 Ai(dy)? > 0. (6.109)
i=1

In particular, select k between 1 and p, and set (dy); = O for each i # k, and

(dy)k = 1. Therefore, (6.109) implies A; > 0, for any k =1,...,p.

Based on these results, we can prove that (x*,u*) verifies the KKT conditions
of problem P1, if and only if (x*,y*,A*) verifies the KKT conditions of problem P2,
where A* = p* and yf = /—qgi(x*),i=1,...,m.

P1 — P2 Consider (x*,u*) that verifies the KKT conditions of problem P1, such
that gi(x*) =0 fori=1,...,p and gi(x*) < 0 for i = p + 1,...,m. Define y*
such that

yi = 0 i=1,...,p,
y; = —gix*) i=p+1,...,m,
and define A* = p*. Then (x*,y*,A\*) verifies the KKT conditions of problem P2.

(6.110)
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« Constraints (6.90) are trivially verified from the definition of y*.
o The first order conditions (6.105) are exactly the same as (6.85).

e The second order KKT conditions are also trivially verified. Consider a direc-
tion d that verifies (6.106) and (6.107). As (6.106) is equivalent to (6.87), we
deduce from (6.88) that

n azf . P . agi .
ZZ 30 H;)‘i oo ) | (d)idxi 2 0. (6.111)

Now, (6.108) results from (6.111) and (6.86), which says that A > 0, for each
i.

P2 = P1 Consider (x*,y*,A*) that verifies the KKT conditions of problem P2, such
that y* =0fori=1,...,pandy; #0fori=p+1,...,m. Then (x*, u*), where
u* = A*, verifies the KKT conditions of problem P1.
o The constraints (6.78) are direct consequences of (6.90).
o The first order conditions (6.105) are exactly the same as (6.85).
« The conditions (6.86) on the Lagrange multipliers are verified, as for P2, A7 > 0,
fori=1,...,pand A} =0,i=p+1,...,m (see the discussion above).

o Consider d that verifies (6.87). Define dx = d, and define d,, such that (d,); =
0,i=1,...,p, and

.I n

D (dok 09t () (6.112)

ox
k=1 k

(dy)i = _Zy?

for i = p+1,...,m. By definition, d, and d, verify (6.106) and (6.107).
Therefore, (6.108) holds. As (dy); =0,1=1,...,p, we obtain (6.88).

6.3 Lagrange multipliers: sufficient conditions

Similarly to the approach presented in Section 6.2, we start with problems with
equality constraints. We then generalize the result for general problems.

The demonstration of the sufficient optimality condition utilizes what is called an
augmented Lagrangian, which is also used for algorithms.

Definition 6.18 (Augmented Lagrangian). Consider the optimization problem with
equality constraints (1.71)—(1.72) minyegn f(x) subject to h(x) = 0 and let us take a
parameter ¢ € R, ¢ > 0, called penalty parameter. The Lagrangian function of the
problem 2
I

min f(x) + % [h(x) subject to  h(x) =0 (6.113)

xER™
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is called the augmented Lagrangian function of the problem (1.71)—(1.72) and is
expressed as
c 2
Le(x,A) =L(x,A) + > [h)||
c ) (6.114)
=f(x) +ATh(x) + 7 Hh(x)“ .

The idea of the objective function (6.113) is to penalize points x that violate the
constraints, hence the name penalty parameter for c .

6.3.1 Equality constraints

Thanks to the Lagrangian function, the sufficient conditions are similar to those for
the unconstrained case. However, we should note the role of the linearized cone.

Theorem 6.19 (Sufficient optimality conditions: equality constraints). Let f : R™ —
R and h : R™ — R™ be twrce differentiable functions. Consider x* € R™ and
A* € R™ such that

VL(x*,A*) =0 (6.115)

and
Y VLKA )y >0, Yy € D(x*), y #0, (6.116)

where L is the Lagrangian function of the optimization problem min,crn f(x)
subject to h(x) = 0 and D(x*) is the linearized cone in x*. Then, x* is a strict
local minimum of the optimization problem.

Proof. We first note that any solution to the augmented problem (6.113) is also a
solution to the original problem. We go back to a problem of unconstrained opti-
mization thanks to the augmented Lagrangian function, by showing that x* is a strict
local minimum of the problem

)31611%1}1 Lc(x,A") (6.117)

for sufficiently large c. Indeed,

ViLe (x*,A%) = VF(x*) + Vh(x") (?\* + Ch(x*)) by derivation of (6.114)

= Vf(x") + Vh(x")A* because x* is feasible
= VxL(x*,A") according to Definition 4.3
=0 from (6.115).

Similarly, we obtain
V2 Le(x*,A") = V2, L(x*,\*) + cVh(x*)Vh(x") . (6.118)

By applying the theorem for the formation of a positive definite matrix (Theorem
C.18), there exists ¢ such that (6.118) is positive definite for all ¢ > €. According to
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Theorem 5.7, x* is a strict local minimum of the unconstrained problem (6.117) for
sufficiently large c.
According to Definition 1.6, there exists ¢ > 0 such that

Le(x",A") < Lc(x,A"), V¥x €R™, x # x" such that ||[x —x"|| < €. (6.119)
According to Definition 6.18 of L., we get
f(x*) < f(x), VxeR™, x#x" such that ||[x —x"|| < e and h(x) =0. (6.120)

According to Definition 1.6, x* is a strict local minimum of the problem. O

Notes

o Theorem 6.10 can be demonstrated by using the same constraint elimination tech-
nique as for Theorem 6.8. The logic behind the demonstration is the same, but
the proof is more technical (see Bertsekas, 1999).

« No constraint qualifications appear in the sufficient optimality conditions, neither
linear independence nor any other.

6.3.2 Inequality constraints

Theorem 6.20 (Sufficient optimality conditions). Let f : R™ — R, h: R™ — R™
and g : R™ — RP be twice differentiable functions. Consider x* € R™, A* € R™
and W* € RP such that

VxL(x*, A5, u*) =0 (6.121)
h(x*) =0 (6.122)

g(x*) <0 (6.123)

>0 (6.124)

Hgi(x*) =0, ji=1,...,p (6.125)

uy >0, vj € A(x") (6.126)

y V2 L(x* A%, 1w )y >0, Wy #0 such that
Yy Vhi(x*)=0,i=1,...,m (6.127)
y'Vgi(x*) =0, i=1,...,p such that gi(x*) =0,
where L is the Lagrangian function of the optimization problem min,cgn f(x)

subject to h(x) = 0 and g(x) < 0. Then, x* is a strict local minimum of the
optimization problem.
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Proof. We use slack variables (Definition 1.4) to obtain the following optimization

problem with equality constraints

min  f(x)
xERM, zERP
subject to
hi(x) =0, i=1,...,m
gi(x) +27 =0, i=1,...,p,
and let us define
zi = /—gi(x*)

such that gi(x*) + (z*{)z = 0 is trivially satisfied.
The Lagrangian function of this problem is

~

m P
Lz, A 1) =) + 3 Ahi(x) + Y pi(gi(x) +27)
i=1 i=1
and
~ m p
VL2, A 1) = VE(x) + Y MVhi(x) + ) wiVgi(x) = ViL(x,A, 1)
i=1 i=1

and N
oL (x,z,A, ) .
#:Zpﬂi, i=1,...,p.

P X
Moreover, by expressing x = ( ), we have
z

VZ LA W | 0
2ui 0 - 0
V2. L(x,z,A, 1) = 0 2y -+ 0
0 . . :
0 0 2u,

(6.128)

(6.129)

(6.130)

(6.131)

(6.132)

(6.133)

(6.134)

From the hypothesis (6.125) and as per (6.130), we have pfzf = 0. Moreover,

from the hypothesis (6.121), we have

~

VLQ(X*)Z*)}\*) H*) =0.

(y >€Rm+p’
w

Comnsider a non zero vector

in the linearized cone at

(6.135)
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for the problem (6.128)—(6.129), i.e., such that
y'Vhi(x*) =0, i=1,...,m, (6.136)

and
Yy 'Vgi(x*) + 2zfw; =0, i=1,...,p. (6.137)

Note that if i € A(x*), then z; = 0 and (6.137) is written as y"Vgi(x*) = 0. The
vector y always corresponds to the conditions of the hypothesis (6.127). We have

( yT wh )V%ZT-\(X*)Z*)A*)H*)< Y )

w
P

=y VL2 (x*, A", 1)y +ZZ ww? from (6.134)
i=1

=y V2 L(x*, A", 1)y + 2 Z wiw? from (6.125).
ieA(x*)

From the hypothesis (6.127), the first term is positive if y # 0. From the hypothesis
(6.124), each term of the sum of the second term is non negative. If y = 0, there is
necessarily an i such that w; # 0. In order for (6.137) to be satisfied, we have that
zf =0 and then i € A(x*). From (6.126), the corresponding term piw? is positive.
The sufficient optimality conditions of Theorem 6.19 are satisfied for x*, z*, A*

and pu* and
X*
Z*

is a strict local minimum of (6.128)—(6.129). Consequently, x
mum of the initial problem. O

*

is a strict local mini-

The condition (6.126) is called the strict complementarity condition. The fol-
lowing example illustrates its importance.

Example 6.21 (Importance of the strict complementarity condition). Consider the
problem

I
min 5 (x7 —x3) (6.138)
subject to
x2 <0 (6.139)

for which the objective function is illustrated in Figure 6.7. We demonstrate that all
sufficient optimality conditions except (6.126) are satisfied for x, = ( 0 0 )T and
p* = 0. We have

2

1
L(x,u) = 3 (x5 —x3) + uxz. (6.140)

Then,

VLl n) = ( I )
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and (6.121) is satisfied when x, = ( 0 0 )T and p* = 0. The other conditions are
trivially satisfied and (6.126) is not satisfied because the constraint is active in x* and
u=0.

We now consider the point (0, —«), with o« > 0. It is feasible and the objective
function is —%ocz, which is strictly smaller than the value in x*, which is therefore
not a local minimum.

To understand why it is not a local optimum, let us take the proof of Theorem

6.20 and transform the problem into a problem with equality constraints:

B N R
min 5 (x7 —x3) (6.141)
subject to
X2 +2>=0. (6.142)
We have
2" =+/—g(x.) =0. (6.143)

The Lagrangian function of this problem is
~ 1
L(xyz, 1) = 3 (x5 —x3) 4+ ulx2 +22). (6.144)

The Hessian V%Qi(x*, z*, u*) used in the proof is

1 010
ViLixzuw=| 0 1|0
and
1 00
ViL(x*z5u) = 0 —1]0 |,
0 00

and it is singular. As in the proof, let us take a vector belonging to the linearized

cone at
X*
Z*

of the problem with equality constraints, i.e.,

0
()=
W —_
v
For all v, we have
1 0 0 0
(00 y)l O =10 0 | =0

0 0 0 Y

and the sufficient condition for the problem with equality constraints is not satisfied,
which prevents us from proving Theorem 6.20.
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We conclude this section with two examples of the use of optimality conditions
to identify critical points. They both lead to the resolution of a system of equations,
the topic of the next section of this book.

Example 6.22 (Identification of critical points — I). Consider the problem

min 3x} 4 x3
xER?

subject to
2x1+x2 =1

illustrated in Figure 6.9. The necessary optimality condition (6.23) is written as
6x1+2A=0

2x2+A=0
2x1+x2—1=0.

This is a system with three linear equations, with three unknowns, for which the
solution is

.2
X]:?
. 3
XZZ?
=2

We now need only ensure that this point satisfies the sufficient second-order conditions
in order to determine that it is indeed a solution.

X2

X1

Figure 6.9: Problem for Example 6.22
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Example 6.23 (Identification of critical points — II). Consider the problem

min 3x? + x3
x€R?

subject to
x12—|—4x1 —x2+3=0

illustrated in Figure 6.10. The necessary optimality condition (6.23) is expressed as
6x71 +2Ax7 +4A =0

2X2—7\=0
X3 +4x +3=0.

This is a system of three non linear equations, with three unknowns. One solution is
x1 = —1, x2 = 1.5, and A = 3. It is not necessarily straightforward to calculate it.

: . 3
\
\\ . 2
N v
\ N v \
. i
\ \ \ 1
\ [
i 1940 X2
/ "‘ ’J
¥ ;o 4 -1
S A
. J )
/ / -4 -
e /
| L -3
1 2 3

X1

Figure 6.10: Problem of Example 6.23

6.4 Sensitivity analysis

When the data of an optimization problem is slightly disturbed, the solution to the
perturbed problem generally does not differ fundamentally from that of the unper-
turbed problem. We first analyze this relation for problems with equality constraints.

Theorem 6.24 (Sensitivity analysis: equality constraints). Let f : R™ — R and
h:R™ — R™ be twice continuously differentiable functions. Consider the opti-
maization problem (1.71)—(1.72)

in f
i
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subject to
h(x) =0.

Moreover, let x* be a local minimum and let \* satisfy the sufficient optimality
conditions (6.115) and (6.116), such that the constraints are linearly indepen-
dent wn x*, according to Definition 3.8. Consider a perturbation of the data
characterized by 6 € R™, and the perturbed optimization problem

B 1)
subject to
h(x) = 9.

There thus exists a sphere S C R™ centered in 0 such that if & € S, there exist x(0)
and A(d) satisfying the sufficient optimality conditions of the perturbed problem.
The functions x : R™ — R™ : 6 ~ x(0) and A : R™ — R™ : 6 ~» A(5) are
continuously differentiable in S, with x(0) =x* and A(0) = A*. Moreover, for all
S €S, we have

Vp(8) = —A(5), (6.145)

where
p(8) = f(x(8)) . (6.146)

Proof. We note that

— X n+m
‘y—(A)eR

and consider the function F: R™**+™ — R"+™ defined by

_( VEX)+ Vh(xA ) _ [ ViL(x,A)
F(&v)—( hix) — 5 )-(h(x)é ) (6.147)

We first demonstrate that the gradient matrix

2 * * *
oyt - (Tl T

is non singular. We assume by contradiction that this is not the case. There then
exist y € R™ and z € R™, non zero, such that

v (V) =0,
z
i.e.,

V2, L(x*,A")y + Vh(x*)z =0 (6.148)
Vh(x*)Ty =0. (6.149)
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We have

y VI L)y = =y Vh(x')z from (6.148)
=0 from (6.149).

Since the sufficient optimality condition (6.116) is satisfied, V2, L(x*,A*) is positive
definite and y = 0. Then, according to (6.148), Vh(x*)z = 0. By assumption, the
constraints are linearly independent at x* and the matrix Vh(x*) is of full rank.
Then, z = 0, which contradicts the fact that y and z are non zero. The matrix
VF(8,v*) is indeed non singular and we can apply the theorem of implicit functions
(Theorem C.6): there exist neighborhoods Vo C R™ around 6+ =0 and Vy» C R**™
around y* = y*, as well as a continuous function

)
$: Vo = Vye 15~ y(8) = ( ;\‘8 )
such that
F(S,y(é)) =0, Vo € Vo,
i.e.

( V(x(8)) + Vh(x(8))A(3) ) —o. (6.150)

h(x(8)) — &

We now demonstrate that, for o sufficiently close to 0, the sufficient optimality
conditions of the perturbed problem are satisfied. Assuming (by contradiction) that
this is not the case, there exists a sequence (5k)k’ such that limy_,o 6x = 0 and a

sequence (yx)x, with yx € R™, ||lyx|| = 1 and Vh(x(ék))Tyk =0, for all k, such that
Ui Vi L (x(8x), A(8k))yx < 0, V.

Consider a subsequence of yy converging toward y # 0. When we take the limit,
we obtain by continuity of V2 L (as a result of the continuity of V2 f and V2 h;,
i=1,...,m) that

§TV2 L(x*,A*)g <0,

which contradicts the sufficient optimality condition in x* and A* (6.116).
By differentiating the second row of (6.150), we obtain

Vsh(x(8)) = Vx(8)Vh(x(8)) =1. (6.151)
When multiplying the first row of (6.150) by Vx(5), we get
0 = Vx(8)VF(x(8)) + Vx(8)Vh(x(8))A(8) = Vx(8)VF(x(8)) +A(8),
where the second equality comes from (6.151). Therefore,
Vp(8) = Vsf(x(8)) = Vx(8)VF(x(8)) = —A(8),

which demonstrates (6.145). O
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Example 6.25 (Sensitivity). Consider the problem min,cg x? subject to x = 1, for
which the solution is x* = 1, A* = —2. We consider the perturbed problem min,cp x?
subject to x = 14§, for which the solution is x(8) =1+ 6 and A(d) = —26 — 2. We
have f(x(é)) =62+25+1and

The quantity Vf (x(é)) represents the marginal modification of the objective func-
tion for a perturbation & of the constraints. When 6 is small, we use Taylor’s theorem
(Theorem C.1) to obtain

p(8) =p(0) + 5" Vp(0) +o([dl]).
Neglecting the last term, we obtain
f(x(8)) ~ f(x*) —8TA*.
Note that if p(0) is linear, we have exactly
f(x(8)) = f(x*) — 8TA*. (6.152)

This result has significant practical consequences. Indeed, it becomes possible to
measure the impact of a perturbation of the constraint on the objective function,
without re-optimizing.

Example 6.26 (Sensitivity analysis). We consider a company manufacturing two
products. Each unit of the first product brings in € 6,000, while each unit of the
second product brings in €5,000. A total of 10 machine-hours and 15 tons of raw
material are available daily. Each unit of the first product requires 2 machine-hours
and 1 ton of raw material. Each unit of the second product requires 1 machine-hour
and 3 tons of raw material. In thousands of euros, the optimal production that the
company should consider is obtained by solving the optimization problem

max 6x7 + 5%,
X1,X2

subject to
2x1 +x2 <10
x1+3x2 <15
X1, X2 > 0.
We omit the non negativity constraints to maintain a simple formulation (these con-
straints are inactive at the solution). We first express the problem in the form (1.71)-

(1.72) by changing the maximization problem into a minimization problem, and by
including slack variables (see Section 1.2):

min  f(x) = —6x7 —5%x2
X1,X2,X3,X4
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subject to
hi(x) =2x1 +x2 +x3 —10=0

ha(x) = x1+3x4+x5—15=0,
where x3 and x4 are the slack variables. The solution to the problem is x* =
( 34 00 )Tand A* :( 13/5 4/5 )T,enablingthe company to bring in € 38,000
per day.

10

X2
X2

o [\] > (o)) oo
T

0 2 46 810121416 0 2 4 6 810121416
X1 X1
(a) 5=5 (b) 5=16

Figure 6.11: Graphical analysis of Example 6.26

In order to increase its production, the company wishes to invest by purchasing
an additional quantity & of raw material per day. In this case, the constraints would
become

hi(x) =2x7 + xz—l—x§—10:0
ha(x) = x1+3x2+%x5 —15=5.

To determine what this investment would bring in, we use (6.152) with
0
=(%)
4

f(x(8)) = f(x*) —8"A* = —38 — = 0. (6.153)

Therefore, the purchase of 5 tons of raw material per day would enable the company
to bring in €4,000. If this purchase costs less than €4,000, it is worth going through
with the investment. Otherwise, the investment is of no use.

Note that this result is only valid for small values of 6. If & = 16, such that
31 tons of raw material are available each day, the company no longer has enough
machine-hours to use up all of the raw material. Therefore, the second constraint
is no longer active (here, x4 is positive). The company should thus produce only
the second product, which consumes half as many machine-hours. In this case, the

to obtain
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purchase of additional raw material would not enable the company to earn more, and
the company should thus rather invest in new machines.

The inspiration for this example came from de Werra et al. (2003).

Corollary 6.27 (Sensitivity analysis). Let f : R - R, g : R™ — RP and h :
R™ — R™ be turce differentiable functions. Consider the optimization problem
(1.71)—(1.73)

B )

subject to

h(x) =0

g(x) <0.
Moreover, let x* be a local minimum and let A*, u* satisfy the suffictent optimality
conditions (6.121)—(6.126), such that the constraints are linearly independent

m x*, according to Definition 3.8. Consider perturbations dn, € R™ and 64 € RP,
and the perturbed optimization problem

subject to

Then, there ezists a sphere S C R™P centered in 0 such that if 6 = ( &}, 8] )Te
S, there are x(8), A(6) and u(d) are satisfying the sufficient optimality conditions
of the perturbed problem. The functions x : R™"P — R™ A :R™*P 5 R™ and
w:R™TP 5 RP are continuously differentiable in S, with x(0,0) = x*, A(0,0) = A*
and w(0,0) = u*. Moreover, for all 6 € S, we have

Vs, p(8) = —A(3)

(6.154)
Vs,p(8) = —(8),

with
p(8) =f(x(8)) . (6.155)

Proof. From Theorem 3.5, x*, A* and p* satisfy the optimality conditions of the
problem

in f
2ja

subject to
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From Theorem 6.24, there exist x(5), A(0) and w(d) satisfying the sufficient optimality
conditions of the problem

5161]%1‘ f(x) (6.156)

subject to
h(x) = 0n (6.157)
gi(x) = (8g);» Vie A(x"). (6.158)

The functions x : R™*P — R™, A: R™*P — R™ and p; : R™"P — R are continuously
differentiable in S, with x(0,0) = x*, A(0,0) = A* and p;(0,0) = uf, 1 € A(x*).
Moreover, for all 6 € S, we have

Vs, p(5) = —A(8)
(Vs,p(®) = —mi(8),  i€Ax".

We now need only verify the result for inequality constraints that are inactive in
x*, i.e.,
gi(x*) <0.

In this case, if 8; is sufficiently close to 0, gi (x(é)) < 04, and the constraint i is also in-
active on the solution to the perturbed problem (by continuity of g;). Then, according
to Theorem 3.5, the perturbed problem is equivalent to the problem (6.156)—(6.158).
If we take p;(8) = 0 for all i & A(x*), x(8), A(6) and n(d) satisfying the sufficient
optimality conditions. Moreover, regardless of the value of 4; (small enough for the
constraint of the problem to remain inactive), the value of x(A) remains constant,
since it is determined by the problem (6.156)—(6.158), which does not depend on d;,
if i ¢ A(x*). Therefore,

of ox4
Z aX] 05, ui(8),

which concludes the proof. [l

We emphasize the importance of the condition requiring that the inactive con-
straints in the initial problem remain so in the perturbed problem. This is illustrated
for Example 6.26 in Figure 6.11. When & = 5, the solution x(8) is such that the
constraints x; > 0 and x, > 0, inactive in x*, remain inactive in x(8). However, when
5 = 16, the constraint x; > 0 becomes active in x(0) and we leave the domain of
application of the theorem of sensitivity.

6.5 Linear optimization

We now analyze in greater detail the optimality conditions for the linear optimization
problem

min ¢'x (6.159)
x€eR™
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subject to
Ax=Db
(6.160)
x>0,
where A € R™*™ b € R™, ¢ € R™, for which the Lagrangian function is
Lix, A\, ) =c'x+AT(b—Ax) —pu'x, (6.161)

with A € R™ and p € R". By directly applying Theorem 6.13, the necessary first-
order optimality condition is expressed as

VLA p) =c—ATA—p=0

oo (6.162)

These conditions represent exactly the constraints (4.23) of the dual problem de-
scribed in Section 4.2. The second-order conditions are trivial, because ViXL(x, Au) =
0, for all (x,A, ). The complementarity condition (6.57) is simply written as

wixi =0, i=1,...,n, (6.163)
or, equivalently,
m
(ci—Zaﬁ?\j)xizo, i=1,...,n. (6.164)
j=1

We show below that this condition happens to also be sufficient for optimality.

We can also utilize the necessary conditions of Theorem 5.1. In particular, if we
consider the j'* basic direction d; (Definition 3.42), the directional derivative of the
objective function in the direction d; is given by

Vf(X*)de = CTd]' = Cg(dj)g + CL(d]')N = *C-Br,BilA]' +¢5. (6.165)

In the context of linear optimization, this quantity is often called reduced cost.

Definition 6.28 (Reduced costs). Consider the linear optimization problem (6.159)-
(6.160) and let x be a feasible basic solution of the constraint polyhedron. The reduced
cost of x; is

g =c; —cEBTA;, j=1,...,m. (6.166)

In matrix form, we have
c=c—ATB Tcg. (6.167)

The reduced costs can be decomposed into their basic and non basic components,
as follows:
Cg =cg —B'B Tcg =0, (6.168)

and
cn =cn —NTB . (6.169)
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Therefore, for any basis B, the basic components of the reduced costs is always
0. This, together with the geometric interpretation of the non basic components, is
formalized in the next theorem.

Theorem 6.29 (Reduced costs). Consider the linear problem (6.159)-(6.160)
and let x be a basic solution of the constraint polyhedron. When j is the index
of a non basic variable, the j™* reduced cost is the directional derivative of the
objective function in the j** basic direction. When j is the index of a basic
variable, the j™ reduced cost is zero.

Proof. In the case where j is non basic, the proof can be found above (see (6.165)).
For basic j, we see that B~'B = I and B! Aj; is the j*® column of the identity matrix.
Then, CEB*1 Aj = ¢; and the reduced cost is zero. O

The concept of reduced costs now enables us to state the optimality conditions
for linear optimization.

Theorem 6.30 (Necessary optimality conditions, linear optimization). Consider the
linear problem (6.159)—(6.160) and let x* be a non degenerate basic solution of
the constraint polyhedron. If x* is the solution to (6.159)—(6.160), then ¢ > 0.

Proof. Consider the basic direction di. According to Theorem 3.44, the non degen-
eracy of x* ensures that dy is feasible. Therefore, given the convexity of the set of
constraints, the necessary condition of Theorem 6.3 applies and

Vi) de=c >0,

by using (6.166) and Theorem 6.29. O

Theorem 6.31 (Sufficient conditions, linear optimization). Consider the linear
problem (6.159)—(6.160) and let x* be a feastble basic solution of the constraint
polyhedron. If ¢ > 0, then x* is optimal.

Proof. Let y be an arbitrary feasible point and w = y — x*. Since the feasible set
is convex, w is a feasible direction (Theorem 3.11). If d; is the j*® basic direction?
(Definition 3.42), we have

c'w= Z (w)ch dj from Theorem 3.45
JEN
= Z(w)j(—cEBqA,- +¢j) from Definition 3.42
JEN
= Z (w)jc; from Definition 6.28.
JEN

In this proof, d; is a vector of R™, while (w); is a scalar, representing the jth entry of the vector
w.
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Since x* is a basic solution, j € A implies that Xj = 0 according to Definition 3.38.
Therefore, (w); = y; —Xj =Yj =2 0 by feasibility of y. Then, as the reduced costs are
non negative, we obtain

cly—cx =c'w= Z(w)jéj >0,
JEN

which proves the optimality of x*. O

Note that the sufficient conditions do not assume that x* is non degenerate. To
understand why the necessary conditions may not hold when x* is degenerate, we go
back to the example illustrated in Figure 3.16. In this example, the vertex number
2 corresponds to a degenerate solution, and the basic direction 83 is not feasible.
Therefore, if this vertex happens to be the optimal solution of an optimization prob-
lem, it is not necessary for the basic direction 83 to correspond to an ascent direction.
It does not matter if it is a descent direction, as the direction is not feasible anyway.
If it happens to be a descent direction, the reduced cost is negative, and the necessary
condition is not verified although we are at the optimal solution.

We now characterize the optimal solution of the dual problem given the optimal
solution of the primal. We obtain an important result for linear optimization, called
strong duality, that the optimal value of the primal coincides with the optimal value
of the dual. Moreover, this result provides a direct link between the reduced costs
and the dual variables.

Corollary 6.32 (Optimality of the dual). Consider the primal linear problem
(6.159)-(6.160) and let B be a basis such that B~'b > 0 and ¢ > 0. Consider
also the dual problem

max A'b (6.170)
AER™

subject to
ATA<ec. (6.171)

Then, the primal vector x* with basic variables
x5 =B b (6.172)

and non basic variables x{; = 0, is optimal for the primal problem, the dual
vector
A =B Tcp (6.173)

1s optimal for the dual problem, and the objective functions are equal, that is

(A)Tb =c'x". (6.174)
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Proof. The optimality of x* is guaranteed by Theorem 6.31. We have also

A)Tb=ciB'b from (6.173)
= cpxp from (6.172)
=c'x* as xyy =0,

proving (6.174).
The vector A* is feasible for the dual. Indeed, from (6.167), we have

ATV =ATB Teg=c—c¢.

As ¢ > 0, we obtain (6.171).
Consider now any dual feasible A. By the weak duality theorem (Theorem 4.9),

ATb < c™x* = (A9) Ty,
which proves the optimality of A* for the dual problem. O

The above result leads to an important result called strong duality. Consider x*
an optimal solution of the primal problem. If x* is non degenerate, the condition
¢ > 0 is a sufficient and necessary condition for its optimality. If it is degenerate,
it can be shown that there exists a basis B such that xp = B0 >0and ¢ =
c—ATB Tcg > 0. The idea is that the simplex algorithm described in Chapter 16,
combined with appropriate rules attributed to Bland (1977) terminates in a finite
number of iterations with an optimal basis and non negative reduced costs.

Theorem 6.33 (Strong duality). Consider the primal linear problem

min ¢'x

xER™

subject to
Ax=Db

x>0,

where A € R™ ™ b € R", c € R", and the dual problem

max A'b

AER™
subject to

ATA <ec.

If either the primal or the dual problem has an optimal solution, so does the
other, and the optimal objective values are equal.

Proof. From the discussion above, if x* is a solution to the primal problem, there
exists a basis B such that x5 = B™'b > 0 and ¢ = ¢ — ATB~Tcg > 0. Therefore,
Corollary 6.32 applies, the optimal solution of the dual is B~ "cp, and the objective
functions are equal.
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If A* is a solution to the dual problem, the fact that the primal problem is the
dual of the dual (Theorem 4.15) is used to prove the result. O

Note that another proof of this result, exploiting Farkas’ lemma, is presented in
Theorem 4.17. Finally, we show that the complementarity condition (6.164) is a
sufficient and necessary optimality condition.

Theorem 6.34 (Complementarity slackness). Consider the primal linear problem

min ¢'x
xERM

subject to
Ax =D

x>0,

where A € R™*™ b € R", ¢ € R™, and the dual problem

max ATb
AER™

subject to
ATA <ec.

Constder x* primal feastble and A* dual feasible. x* s optimal for the primal
and A\* is optimal for the dual if and only if

m
(ci—ZaﬁAj)xi:O, ‘L:],...,TL. (6175)
j=1

Proof. Conditions (6.175) are KKT necessary optimality conditions (see Theorem 6.13
and the discussion at the beginning of the section). To show that they are sufficient,
consider the equation

n m
(c—ATA)Tx* = Z(Ci - Z a;jiAj)xq = 0.
j=1

i=1
Therefore,
cTx* = (A)TAX™.
As x* is primal feasible, we have Ax* = b and
c™x* = (A)Th.
Consequently, the objective function of the primal at x* equals the objective function
of the dual at A*. We apply Theorem 4.11 to prove the optimality of x* and A*. O

Conditions (6.175) are called complementarity slackness conditions because the
activity of the constraints must be complementary. At the optimal solution, if a
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primal variable is positive, that is if x; > 0, the corresponding dual constraint must
be active, that is c; — Z]n; ajiA;j. Symmetrically, if a dual constraint is inactive, that
isif ¢y > ZT; ajiAj, the corresponding primal variable must be equal to 0.

6.6 Quadratic optimization

We now consider a case of quadratic optimization with equality constraints:

1T T
= 17
min > x Qx+c'x (6.176)

subject to
Ax=Db, (6.177)

where Q € R™*™, ¢ € R™, A € R™*™ and b € R™. The Lagrangian function is
1
L(x,A) = szQerchJr?\T(b—Ax), (6.178)

with A € R™. By directly applying Theorem 6.13, the necessary first-order optimality
condition is written as

Vil(xA) = Qx+c—ATA=0. (6.179)

By combining (6.177) and (6.179), we obtain the linear system

<2QT><;>:<;>' (6.180)

We demonstrate the case where this system has a unique solution.

Lemma 6.35. Consider the quadratic problem (6.176)—(6.177), with A of full
rank. Let Z € R™(""™) be a matriz for which the columns form a basis of
the null space of A, t.e., AZ=0, and Z is of full rank. If the reduced Hessian
matriz Z'QZ 1is positive definite, then the system (6.180) is non singular and
has a unique solution (x*,\*).

Proof. Consider x and A such that
Q AT x\ (0
A 0 AJ)o\o )’

i.e., Qx = ATA and Ax = 0. We demonstrate that x and A are zero in order to prove
that the matrix is non singular. Since Ax = 0, we have

0=(x" ?\T)<S g\T)(;):xTQX.
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Since Z is of full rank, there exists y such that x = Zy. Therefore,
y'2"Qzy =o0.

Since ZTQZ is positive definite, then y = 0. As a result, x = Zy = 0 and the first
equation is written as
Qx—AA=—ATA=0.

Since A is of full rank, then A = 0. O

We calculate the analytical solution to this problem.

Lemma 6.36. Consider the quadratic problem (6.176)—(6.177) with Q =1 and
b=0, ze,

o1
min EXTX I c'x

subject to
Ax =0

where A 1s of full rank. The solution to this problem 1s

x* =AT(AAT) 'Ac—c (6.181)
A= (AAT) ' Ac. (6.182)

Proof. The system (6.180) is written as

I —AT x*\ [ —c¢

A 0 A ) Lo )
By multiplying the first equation

X —ATA = —¢, (6.183)

by A, we obtain
Ax* —AATA" = —Ac.

Since Ax* =0 and A is of full rank, we obtain (6.182). We now need only introduce
(6.182) in (6.183) to obtain (6.181). O

Lemma 6.37. Consider the quadratic problem (6.176)—(6.177) with Q =1, .e.,
1
min = x"x +c'x
x 2

subject to
Ax =D
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where A s of full rank. The solution to this problem 1s

x* =AT(AAT) "(Ac+b) —c (6.184)
A* = (AAT) (Ac+ D) (6.185)

Proof. Consider xo such that Axo = b and let y = x — xp, i.e.,, x =y + xo. The
problem becomes

1
nbin 3 (y'y +xdx0 +2y x0) + ¢’y +x"x0

subject to
Ay+Axo=Db.

By removing the constant terms of the objective function and using Axy = b, we
obtain

1o T

min>y'y+ (c+x0) y

y 2

subject to
Ay =0.

According to Theorem 6.36, the solution to this problem is
y*=AT (AAT)AA(C +x0) — (¢ +x0)
A= (AAT) T Ac+ o).

We now need only use Axp =b and y* = x* —xo to obtain the result. |

Theorem 6.38 (Analytical solution of a quadratic problem). Consider the
quadratic problem (6.176)—(6.177) minycgrn 3x' Qx+cTx subject to Ax = b, where
A s of full rank. If the matriz Q is positive definite, then the system (6.180) is
non singular and has a unique solution (x*,A*) given by

x*=Q (ATA* —¢) (6.186)

and
A= (AQ'AT) (AQ Tc+ D). (6.187)

Proof. Let Z € R™*("~™) be a matrix where the columns form a basis of the null
space of A, i.e., such that AZ = 0. Since Q is positive definite, then so is Z'QZ,
and Theorem 6.35 applies to demonstrate the non singularity of the system and the
unicity of the solution. Let L be an lower triangular matrix such that Q = LL" and
let us take y = LTx. The problem (6.176)—(6.177) is thus written as

1 1
min 5 Yy LML Ty + "L Ty = 5 yly+c'L Ty
Yy
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subject to
AL Ty =b.

The solution to this problem is given by Theorem 6.37, by replacing ¢ with L~'c and
A with AL™T. Then,

A= (AL L AT)’1 (AL TL e+ b) = (AQ 'AT) 1(AQ Tc+b)

and
y =LTAT\ —L 'c.

We now need only take y* = LTx* to obtain the result. |

The presentation of the proof of Theorems 6.10, 6.13, 6.19, 6.20, and 6.24 was
inspired by Bertsekas (1999). That of the proof of Theorem 6.31 was inspired by
Bertsimas and Tsitsiklis (1997).

6.7 Exercises

Exercise 6.1.

Identify the local optima of the following optimization problems, and verify the op-
timality conditions.

n
. 2 . o
1. min Ix]|5, subject to ;xl =1.
i=

n
2. min in, subject to ||x[|3 = 1.
xER™ =

3. mi% fx% — x%, subject to (x1/2)? 4 (x2/2)? < 1 (Hint: plot the level curves and
x€R
the constraints).

4. mini —x% — x%, subject to —x% + x% <1, and —5 < x; <5 (Hint: plot the level
x€R
curves and the constraints).

5. The Indiana Jones problem (Section 1.1.6): mi% x? +x3, subject to x1x2 — hx; —
x€R

Ix; =0,x7 > {,x2 > h.

Exercise 6.2.

An electricity company must supply a town that consumes 100 MWh daily. Three
plants are used to generate the energy: a gas plant, producing at the cost of € 800/ MWh,
a coal plant, producing at the cost of € 1,500/MWh, and a hydroelectric plant produc-
ing at the cost of €300/MWh. The amount of available water limits the production
of the latter plant to 40 MWh per day. Moreover, due to ecological concerns, the two
other plants are limited to produce no more than 80 MWh per day each.

1. Formulate a linear optimization problem that would optimize the costs of the
company.

2. Formulate the dual problem.
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3. Prove, using the optimality conditions, that the optimal solution is to produce 60
MWh per day with the gas plant, 40 MWh per day with the hydroelectric plant,
and not to use the coal plant.

4. Deduce the optimal values of the dual variables.

5. Use sensitivity analysis to propose profitable investments to the company.

Exercise 6.3. Consider the optimization problem min,cgn f(x) subject to

ixizl and x > 0.

i=1
Let x* be a local minimum of f.

1. Prove that, if x{ > 0, then

vj. (6.188)

(Hint: refer to Example 6.4).

2. Show that, if f is convex, condition (6.188) is sufficient. (Hint: Define A =
min; 0f(x*)/0x4).

Exercise 6.4 (Slack variables). Consider problem (P1)

min f(x) (6.189)
subject to
gl(x)§0>l: ) y M,
and problem (P2)
min  f(x
xeR™,yeR™
subject to
gl(X)eri = 0,i=1, y T,
Yi > 0, i= 1, y ML,

1. Write the necessary optimality conditions (KKT) for problem (P1), both first and
second order.

2. Write the necessary optimality conditions (KKT) for problem (P2), both first and
second order.

3. Prove that (x*,u*) verifies the KKT conditions of problem P1, if and only if
(x*,y*,A*) verifies the KKT conditions of problem P2, where A* = u* and y} =
—gi(x*), i=1,...,m (Hint: refer to Example 6.16).
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Solving equations






Equations are more important to
me, because politics is for the
present, but an equation is
something for eternity.

Albert Einstein

We have seen that the necessary optimality conditions enable us to identify the critical
points (Definition 5.6) that are candidates for the solution to an optimization problem.
In the case of optimization without constraint, we use condition (5.1). For constrained
optimization, we use conditions (6.11), (6.23), and (6.55)—(6.57). One way to address
the problem is to solve the system of equations defined by these conditions. This
is how the problem in Example 5.8 was solved, as well as Example 6.22. In these
two cases, the system of equations is easily solved. This is not always the case, as
illustrated in Example 6.23.

We now consider numerical methods enabling us to solve such systems of non
linear equations. Even though these are not directly utilized for optimization, they
are the basis for the main algorithms.






Chapter 7

Newton’s method

Contents
7.1 Equation with one unknown . . ... ... ......... 181
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7.3 Project . ... ... i i i i i e e e e e e e 198

Newton’s method plays a crucial role in the context of solving non linear equations
and, by extension, in that of non linear optimization. Isaac Newton was inspired
by a method from Vieta, and the method was later on improved by Raphson (and
sometimes called “Newton-Raphson.”) We refer the reader to Deuflhard (2012) for
a historical perspective of the method. We introduce it for the simple problem of
solving one equation of one unknown, i.e., by deriving numerical methods to find
x € R such that F(x) = 0.

7.1 Equation with one unknown

Let F: R — R be a real differentiable function of one variable. In order to solve
the equation F(x) = 0, the main idea of Newton’s method consists in simplifying the
problem. Since a non linear equation is complicated to solve, it is replaced by a linear
equation. The concept of replacing a difficult problem with a simpler one is used
throughout this book. We use the term model when referring to a function that is a
simplification of another.

To obtain this simplified equation, we invoke Taylor’s Theorem C.1 which ensures
that a differentiable function can be approximated at a point by a straight line and
that the magnitude of the error decreases with the distance to this point.
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Isaac Newton was born prematurely and fatherless on December
25, 1642, in Woolsthorpe, England. (As 11 days were dropped in
September 1752 to adjust the calendar, the date of his birth in
the “new style” calendar, that is, January 4, 1643, is sometimes
reported.) He is considered as the father of modern analysis, es-
pecially thanks to his study on differentiable functions, and in-
finitesimal calculus (that he called “fluxions”). His most famous
. work, published in Philosophiae naturalis principia mathe-
matica, concerns the theory of gravitation and associated principles (inertia, action-
reaction, tides, etc.) He is considered as the founder of celestial mechanics. Newton
claimed that the fall of an apple inspired in him the concept of gravitation. Some
dispute him being the father of these findings, rather attributing the fundamental
ideas to Robert Hooke. Newton accused Leibniz (apparently wrongfully) of having
plagiarized his work. He was the first British scientist to be knighted, on April 16,
1705, by Queen Anne. He died on March 20, 1727, in London. One of his most famous
quotes is “If I have seen further than others, it is by standing upon the shoulders of
giants.” He is buried in Westminster Abbey, with the following inscription on his
grave: “Hic depositum est, quod mortale fuit Isaaci Newtoni”. (Here lies that which
was mortal of Isaac Newton).

Figure 7.1: Sir Isaac Newton

Example 7.1 (Linear model). Take the function
F(x) =x*—2
and the point X = 2. According to Taylor’s theorem, for any d € R, we have

F(x 4 d) = F(X) + dF'(X) + o(|d])
=%X*—2+42xd+o(|dl)
=2+4d+o(ldl).

The linear model is obtained by ignoring the error o(ldl):
m(x+d)=2+4d.
Defining x =X + d, we get
m(x) =2+4+4(x—2)=4x—6.

The function and the model are presented in Figure 7.2(a). The zoom in Figure 7.2(b)
illustrates the good agreement between the model and the function around X = 2.
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Figure 7.2: Linear model of x2 — 2

We can now provide a general definition of the linear model of a non linear func-
tion.

Definition 7.2 (Linear model of a function with one variable). Let F: R — R be a
differentiable function. The linear model of F in X is a function ms : R — R defined
by

mz(x) = F(X) + (x —X)F'(X) . (7.1)

From a first approximation X, the main idea of Newton’s method in order to find
the root of the function f consists in
1. calculating the linear model in X,
2. calculating the root x* of this linear model,

3.if x* is not the root of f, considering x* as a new approximation and starting
over.

According to Definition 7.2, the root of the linear model is the solution to

F(X) + (x —X)F'(x) =0, (7.2)
ie., if F/(X) £0,
R
xF=%_ P (7.3)

which summarizes the first two steps presented above.
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We also need to specify the third step. How do we conclude that x* is a root
of the function, i.e., F(x*) = 0, and that we can stop the iterations? Seemingly
innocuous, this question is far from simple to answer. Indeed, computers operating
in finite arithmetic are not capable of representing all real numbers (that represent an
uncountable infinity). Therefore, it is possible, and even common, that the method
never generates a point x* such that F(x™) = 0 exactly. Then, we must often settle for
a solution x* such that F(x™) is “sufficiently close” to 0. In practice, the user provides
a measure of this desired proximity, denoted by ¢ and the algorithm is interrupted
when

[Fx)| <e. (7.4)

A typical value for ¢ is \/eénm, where ep is the machine epsilon, that is, an upper
bound on the relative error due to rounding in floating point arithmetic. A simple
way to compute epq is Algorithm 7.1. The loop stops when ep, is so small that, when
added to 1, the result is also 1.

Algorithm 7.1: Machine epsilon

Objective
L Find the machine epsilon epg.

N =

w

Initialization
L em = 1.

while 1+ epm # 1 do
L EM = Em/2.

'y

=23

Typical values are
eem = 5.9605 108 for single precision floating point (so that ¢ = /em =
2.441410~%), and

eem = 1.1102 107 '® for double precision floating point (so that ¢ = \/ep =
1.0537 10-8).

We now have all the elements in order to write Newton’s algorithm to solve an
equation with one unknown (Algorithm 7.2).
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Abu Ja‘far Muhammad ibn Musa Al-Khwarizmi was a Persian
mathematician born before AD 800. Only a few details about
his life can be gleaned from Islamic literature. His name appears to indicate that
he was from the State of Khwarazm or Khorezm (currently Khiva in Uzbekhistan).
However, other sources suggest that he was born between the Tigris and Euphrates

in the Baghdad area. Al Khwarizmi was an astronomer in the House of Wisdom (Dar
al-Hikma) of caliph Abd Allah al Mahmoun. He is primarily known for his treatise al
Kitab almukhtasar fi hisab al-jabr w’al mugabala (that can be translated as “The
Compendious Book on Calculation by Completion and Balancing”), which provides
the origin of the word algebra (al-Jabr, used in the sense of transposition, became
algebra). He explained in Arabic the system of Indian decimal digits applied to
arithmetic operations. The Latin translation of this work, entitled Algoritmi de
numero Indorum gave rise to the word algorithm. Al Khwarizmi died after AD 847.

Figure 7.3: Al Khwarizmi

Algorithm 7.2: Newton’s method: one variable

Objective

=

2 L Find (an approximation of) a solution to the equation F(x) = 0.
3 Input

4 The function F: R — R.

5 The derivative of the function F' : R — R.

6 A first approximation of the solution xo € R.

7 The required precision € € R, ¢ > 0.

8 Output

©

L An approximation x* € R to the solution.

10 Initialization

11 L k:=0.
12 Repeat
13| X1 o= xk — Fxa)/F (x),

14 ki=k+1.
15 Until [F(xi)| < ¢
16 X" = Xk

Example 7.3 (Newton’s method: one variable — I). Take the equation
F(x)=x>*—2=0.

We have F/(x) = 2x. We apply Newton’s method (Algorithm 7.2) with xo = 2,
and ¢ = 107", The iterations are listed in Table 7.1. The first two iterations are
portrayed in Figure 7.4. Figure 7.4(a) represents the first iteration, where xo = 2.
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The linear model at x¢ is represented by a dotted line. It intersects the x-axis at
x7 = 1.5. Figure 7.4(b) represents the second iteration, where x; = 1.5. The linear
model at x; is represented by a dotted line. It intersects the x-axis at x; = 1.4666.

Table 7.1: Iterations with Newton’s method for Example 7.3

k Xk F(xx) F'(xi)

+2.00000000E+00  +2.00000000E+00  +4.00000000E+00
+1.50000000E+00  +2.50000000E-01 +3.00000000E+00
+1.41666667E+00 +6.94444444E-03 +2.83333333E+00
+1.41421569E+00 +6.00730488E-06 +2.82843137E+00
+1.41421356E+00 +4.51061410E-12 +2.82842712E+00
+1.41421356E+00 +4.44089210E-16  +2.82842712E+00

g W N = O

2 F 0.3
15 0.25
al 0.2
1 0.15
05 0.1
0 0.05
P 0 pA
_0-5 v/I 1 1 1 1 1 1 _0.05 1 1 1 1 1
1.41.51.61.71.81.9 2 2.1 1421.441.461.48 1.5
X X
(a) First iteration (b) Second iteration

Figure 7.4: Newton’s method for Example 7.3

According to Example 7.3, Newton’s method seems quite fast, as only 5 iterations
were necessary to converge. We characterize this speed below. Before that, however,
we illustrate by other examples that the method does not always work that well.

Example 7.4 (Newton’s method: one variable — II). Take the equation
F(x) =x—sinx =0.

We have F/(x) = 1 — cosx. We apply Newton’s method (Algorithm 7.2) with xo =1
and € = 10~ '>. The iterations are listed in Table 7.2. The number of iterations is
much larger than for the previous example. Note how the derivative F/(xy) is getting
closer and closer to 0 as the iterations proceed. Actually, the root of this equation is
x* = 0, and the value of the derivative at the root is 0. As Newton’s method divides
by F/(xy) at each iteration, the fact that F/(x*) = 0 is the source of the slow behavior
of the method. The first two iterations are portrayed in Figure 7.5(a). The linear
model at the starting point xo = 1 is represented by a dotted line and intersects the
x-axis at 0.65, which is the first iterate.



Table 7.2: Iterations with Newton’s method for Example 7.4

Newton’s method

k Xk F(xx) F/(xx)

0 +1.00000000E+00  +1.58529015E-01 +4.59697694E-01
1 +6.55145072E-01  +4.58707860E-02 +2.07040452E-01
2 +4.33590368E-01 +1.34587380E-02 +9.25368255E-02
3 +2.88148401E-01 +3.97094846E-03 +4.12282985E-02
4 +1.91832312E-01  +1.17439692E-03 +1.83434616E-02
25 +3.84171966E-05 +9.44986548E-15 +7.37940486E-10
26 +2.56114682E-05 +2.79996227E-15 +3.27973648E-10
27 +1.70743119E-05 +8.29617950E-16 +1.45766066E-10
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Figure 7.5: Newton’s method for Example 7.4
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The linear model at that point is also represented by a dotted line, and intersects
the x-axis at 0.43, which is the second iterate. Figure 7.5(b) is a zoom on the same

figure.
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Even though Newton’s method has managed to provide the desired precision in
5 iterations for Example 7.3, more than 5 times as many iterations are necessary for
Example 7.4. In the following Example, we see that the method may sometimes not
work at all.

Example 7.5 (Newton’s method: one variable — III). Take equation
F(x) = arctanx = 0.

We have F/(x) = 1/(1 +x?). We apply Newton’s method (Algorithm 7.2) with
xo = 1.5 and € = 10~ ">, The first 10 iterations are listed in Table 7.3. We note that
the absolute value of xy increases with each iteration, that the value of F(xy) seems
to oscillate, and that the value of F/(xy) closes in on 0. Therefore, not only does the
algorithm not approach the solution, but when the derivative approaches 0, the main
iteration cannot be performed due to the division by 0. The first three iterations are
portrayed in Figure 7.6.

Table 7.3: The ten first iterations with Newton’s method for Example 7.5

k Xk F(xx) F'(xx)

0 +1.50000000E+00 +9.82793723E-01 +3.07692308E-01
1 -1.69407960E+00 -1.03754636E+00 +2.58404230E-01
2 +2.32112696E+00 +1.16400204E+00 +1.56552578E-01
3 -5.11408784E+00 -1.37769453E+00 +3.68271300E-02
4 +3.22956839E+01 +1.53984233E+00 +9.57844131E-04
5 -1.57531695E+03 -1.57016153E+00 +4.02961851E-07
6 +3.89497601E+06 +1.57079607E+00 +6.59159364E-14
7 -2.38302890E+13 -1.57079633E+00 +1.76092712E-27
8 +8.92028016E+26 +1.57079633E+00 +1.25673298E-54
9 -1.24990460E+54 -1.57079633E+00 +6.40097701E-109
10 +2.45399464E+108 +1.57079633E+00 +1.66055315E-217

We now analyze in detail the aspects that influence the efficiency of the method.
The main result can be stated as follows:

o if the function is not too non linear,

o if the derivative of F at the solution is not too close to 0,

o if X is not too far from the root,

o then Newton’s method converges quickly toward the solution.

The central idea of the analysis is to measure the error that is committed when
the non linear function is replaced by the linear model. Intuitively, if the function
is almost linear, the error is small. While if the function is highly non linear, the
error is more significant. We use here the Lipschitz continuity of the derivative of

F to characterize the non linearity, as discussed in Section 2.4 (Definition 2.27).
Theorem 7.6 considers a linear model at X, and provides an upper bound on the error
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Figure 7.6: Newton’s method for Example 7.5

at a point x*. This bound depends on the distance between X and x*, and on the
Lipschitz constant that characterizes the nonlinearity of the function.

Theorem 7.6 (Error of the linear model: one variable). Consider an open interval
X CR and a function F for which the derivative is Lipschitz continuous over X,
where M 1is the Lipschitz constant. So, for all X, x™ € X,

(x* —%)?

[F(x*) —mz(x")| <M 3

(7.5)
Proof. We have

X X X
J (F'(z) —F'(x)) dz = J F(z)dz — F'(X) J dz linearity of the integral

=F(xT) —mg(xh) from (7.1).

We take z =X + t(x" —X) and dz = (x* —X) dt to obtain
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Therefore,

[F(x) = me(xT)|

1
J (FR+tx" —%)) — F'®) (x" —%) dt
0

1
< J ‘(F/(Q‘F t(x" —i)) - Fl(?))’ xT —%|dt from Theorem C.12

1
< |x* —?IJ T\/l|’c(x+ —32)| dt from Definition 2.27
0

O

We now use this bound on the error to demonstrate the convergence of Newton’s
method.

Theorem 7.7 (Convergence of Newton’s method: one variable). Consider an open
interval X C R and a continuously differentiable function F such that its derwa-
twe 1s Lipschitz continuous over X, and where the Lipschitz constant s M.
Assume that there exists p > 0 such that

[F'(x)| > o, Vx € X. (7.6)

Assume that there exists x* € X such that F(x*) = 0. There then exists n > 0
such that, if
[xo —x*[ <n (7.7)

with xo € X, the sequence (xk), defined by

Fx)
XkH:inTXi)) k=0,1,..., (7.8)

1s well defined and converges toward x*. Moreover,

M
i1 —x* < b1 |xx —x*|2. (7.9)
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Proof. We provide a proof by induction. For k = 0, x; is well defined as F'(xq) # 0
by assumption (7.6), as xo € X. We have

F(x
X1 —x* =%x0 — F’((xoo)) —x* from (7.8)
=x0—Xx"— Flxo) = Fx) because F(x*) =0
F/(xo)
1
_ ) —my (x* 1).
o) (F(x*) — iy, (X)) from (7.1)
Then
* 1 * *
[x1 —x*| < Fixo)] [F(x*) — my, (x)|
2
< * f 7.5
< T o7 rom (7.5)
M *
< Ebco —x*[? from (7.6),

which proves the result for k = 0.
We now need technical constants. Take T such that 0 < T < 1 and let r be the
radius of the largest interval contained in X and centered in x*. We then create

. 2p
1N =min (T‘, TM> . (7.10)
Therefore, based on the hypothesis (7.7), we have

2
|XO*X*|SﬂSTMp (7.11)

and

Ix; —x*| < M |x fx*|2 < MTZ—p Ixo — Xx*| = Tlxo — x*| <

1 =20 0 0o M 0 = TiXo m,
where the last inequality is the result of the fact that T < 1 and |[x¢p — x*| < 1. Since
[x1 —x*| < 1, we also have that |[x; — x*| < r (according to (7.10)) and x; € X. x;
thus satisfies the same assumptions as xo. We can now apply the recurrence using

the same arguments for x,, x3, and so forth. O
We now comment a summarized version of the result of Theorem 7.6:

If the function is not too non linear This assumption is related to the Lipschitz
continuity. The closer M is to 0, the less non linear is the function.

If the derivative of F is not too close to 0 This is hypothesis (7.6). If this as-
sumption is not satisfied, the method may not be well defined (division by zero),
may not converge, or may converge slowly, as illustrated by Example 7.4.

If x¢ is not too far from the root This is hypothesis (7.7). If x¢ is too far from
the root, the method may not converge, as shown in Example 7.5. It is interesting
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to take a close look at Definition (7.10) of ), assuming that r (a technical param-
eter) is sufficiently large such that n = 2pt/M. If the function is close to being
linear, then M is small and n is large. It means that the set of starting points
such that the method converges is large, and we can afford to start from a point
Xxo farther away from x*. In practice, as x* is not known, it increases the chance
of finding a valid starting point.

Newton’s method converges quickly toward the solution The speed is char-
acterized by (7.9). At each iteration, the new distance to the solution is of the
order of the square of the former. For instance, if the initial error is of the order
of 1077, it only takes three iterations for it to become of the order of 10~8. This
is illustrated in Example 7.3, for which the iterations are described in Table 7.1.
The method is said to converge g-quadratically.

Definition 7.8 (g-quadratic convergence). Take a sequence (xk)k in R™ that con-
verges toward x*. The sequence is said to converge q-quadratically toward x* if there

exists ¢ > 0 and k € N such that

icsr — x| < cfxi —x*||, vk > k. (7.12)

In Definition 7.8, the prefix q signifies quotient. In practice, the other types of
convergence are rarely used, and the prefix could be omitted. More details can be
found in Ortega and Rheinboldt (1970).

7.2 Systems of equations with multiple unknowns

We now generalize Newton’s method for systems of non linear equations with multiple
unknowns. The concepts are exactly the same. We start with the definition of the
linear model. Although in our context, the function F maps R™ into R™, we provide
the most general definition for a function from R™ to R™.

Definition 7.9 (Linear model of a function with n variables). Let F : R™ — R™
be a continuously differentiable function. The linear model of F in X is a function
mg : R™ — R™ defined by

mz(x) = FR) + VF(X) ' (x —%) = FX) + J(X) (x — %), (7.13)

where VF(X) € R™ ™ is the gradient matrix of F in X (Definition 2.17) and J(X) =
VF(?)T is the Jacobian matrix, of dimensions m x n (Definition 2.18).
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As in the case with one variable, we determine a bound for the error committed
when replacing the function F by the linear model and finding a result similar to that
of Theorem 7.6. The proof is essentially the same.

Theorem 7.10 (Error of the linear model: n variables). Let F : R™ — R™ be
a continuously differentiable function over an open conver set X C R™. The
Jacobian matriz of F is Lipschitz continuous over X (Definition 2.27, where M

1s the Lipschitz constant, and the matriz norm is induced by the vector norm,
Definition B.27). So, for allXx, xt € X,

e —=|°

5 (7.14)

[Fx) = me(xH)|| <M

Proof. The structure of the proof is identical to that of Theorem 7.6. We have

F(x™) —mg(x™)
=Fx") —FX) - JX)(x" —X) from (7.13)
1
= J ](i'i‘ t(x" —i))(x* —X)dt—JX)(x" —%) Theorem C.11
0

1

< J HJ(;‘\+ t(x* */72)) - J(Q)H [IxT —x]| dt Theorem C.12
0
1

< J M||t(x* —%)||IIxT —x]| dt Definition 2.27
0

O

Newton’s method for systems of equations is also essentially the same as for a
single variable. It is described by Algorithm 7.3. System (7.16) solved at step 13 of
the algorithm is often called the Newton equations. Note that we have intentionally
not written this step as

A1 = —J(xa) " F(xx)-

Indeed, from a numerical point of view, the calculation of dx,; must be performed
by solving the system of linear equations, not by inverting the Jacobian matrix.
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Algorithm 7.3: Newton’s method: n variables

1 Objective
2 To find (an approximation of) a solution to the system of equations
F(x) =0. (7.15)
3 Input
4 The function F: R™ — R™.
5 The Jacobian matrix of the function ] : R™ — R™*™.
6 A first approximation of the solution xo € R™.
7 The required precision ¢ € R, ¢ > 0.

2]

Output
L An approximation x* € R™ of the solution.

©

10 Initialization

11 L k=0.
12 Repeat
13 Calculate dy. 1 solution of

J(x)dierr = —F(xi) - (7.16)

X1 = Xk + diet1.
14 ki=k+1.
Until [[F(xi)|| < e
16 X* = Xy

1

o

Example 7.11 (Newton’s method: n variables). Consider the system of equations

(xi+ 1) +x3 =2

7.17
X x5 =2. (717)

We apply Newton’s method with

o a1 x5 -2 200+ 2%
Flx) = ( e +x3—2 > and  Jbd) = ( ex 3x5 ) '

3 3
Fixo) = ( e—1 )” ( 1.7182 >
o= (15 )-

and
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The iterations of Newton’s method are described in Table 7.4, with ¢ = 107", where
the first column reports the iteration number, the second column the current iterate,
the third the value of the function at the current iterate, and the last its norm. The
quadratic convergence of the method is well illustrated in this example. Indeed, the
value of x;. converges rapidly to the solution (0,1)", and the values of ||F(xy || decrease
rapidly toward zero.

Table 7.4: Iterations of Newton’s method for Example 7.11

k Xk F(xx) [ FOxa)||

0 1.00000000e+00 3.00000000e+00 .45723768e+00
1.00000000e+00 1.71828182e+00

1 1.52359213e-01 7.56629795e-01 .15470870e+00
1.19528157e+00 8.72274931e-01

2 -1.08376809e-02 5.19684443e-02 .14042557e-01
1.03611116e+00 1.01513475e-01

3 -8.89664601e-04 1.29445248e-03 .94232975e-03
1.00153531e+00 3.72375572e-03

4 -1.37008875e-06 3.13724882e-06 .07998556e-06
1.00000293e+00 7.44606181e-06

5 -5.53838974e-12 1.05133679e-11 .88316980e-11
1.00000000e+00 2.68465250e-11

6 -1.53209346e-16 -2.22044604e-16 .22044604e-16
1.00000000e+00 0.00000000e+00

We now analyze the impact of the starting point on the solution of Newton'’s
method.

Example 7.12 (Newton fractal). Consider the system of equations

F(x) = ( R ) =0.
12 12

x'(9) = ( V3/2 ) x(w) = ( 31 >

We apply Newton’s method to this problem, starting from different points. To visu-
alize the process, we take on the following convention:

3 2
X7 —3x1x5 — 1

It has three roots:

« if Newton’s method, when starting from the point x(, converges toward the solu-
tion x*(b), the point x¢ is colored in black;

« if Newton’s method, when starting from the point x(, converges toward the solu-
tion x*(g), the point x¢ is colored in gray;

o if Newton’s method, when starting from the point xo converges toward the solution
x*(w), the point x¢ is colored in white.
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(@) —2<x;1 <2, —2<x, <2 (b) —0.001 < x7 < 0.001, —0.001 < x5 < 0.001
Figure 7.7: Newton’s method: relation between the starting point and the solution

The result is presented in Figure 7.7(a), where the three roots are represented
by a + sign. We see that there is no direct relationship between the position of
the starting point and the root identified by the method. For example, look at the
gray areas at the bottom right of Figure 7.7(a). Although these starting points are
closer to the roots x*(b) and x*(w), Newton’s method converges towards x*(g) when
started from these areas. But the most noticeable feature of this figure is the shape
of the borders between each region. This type of configuration is called a fractal
(see Mandelbrot, 1982). The zoom presented in Figure 7.7(b) shows that two points
that are very close may be colored differently. This is an illustration of a chaotic
system, which exhibits a significantly different outcome when the starting conditions
are perturbed just a little bit.

We now generalize Theorem 7.7 for the case of n equations and n variables.

Theorem 7.13 (Convergence of Newton’s method: n variables). Consider an open
conver set X C R™ and a function F : X — R™. We assume that there exists
x* € X, a sphere B(x*,1) centered in x* with radius v and a constant p > 0 such
that F(x*) =0, B(x*,r) C X, J(x*) is tnvertible,
. 1
[T < = (7.18)
p
and | is Lipschitz continuous over B(x*,r), where M 1s the Lipschitz constant.
There thus exists 1 > 0 such that if

xo € B(x*,n), (7.19)
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the sequence (xx)x defined by
Xk+41 :Xk*](xk)iwz(xk)) k=0,1,..., (7'20)

1s well defined and converges toward x*. Moreover,

M
e =l < 5 lbee =1 (7.21)

Proof. In order for the sequence to be well defined, the matrix J(xy) always has to
be invertible. By assumption, it is the case at x*. We choose 1 such that J(x) is
invertible for all x in a sphere B(x*,n) of radius n around x*. We take

n= m1n<r, 2M) (7.22)

We first demonstrate that J(xo) is invertible, by using the theorem about the inverse
of a perturbed matrix (Theorem C.16), with A = J(x*) and B = J(x¢). The hypothesis
(C.28) on which the theorem is based is satisfied. Indeed,

116" (x0) = I H<HI o) =100

= 5 HI(XO) *J(X*)H from (7.18)
M

< o l[xo —x"|| Lipschitz
M

< ?ﬂ from (7.19)

< %from (7.22).

Therefore, J(xo) is invertible, and x; given by (7.20) is well defined. By using this
result, Theorem C.16 and by noting that if y < 1/2, then 1/(1 —y) < 2, we obtain

. 1)
o< i
1= )™ ko) = 1) | (7.23)
a1~ 2
ol ] <2
We have
X1 — X" =x0 — J(x0) " "F(x0) — x* according to (7.20)
=x0 — J(x0) " (F(x0) — F(x*)) —x* because F(x*) =0
=J(x0) " (F(x*) — F(xo0) — J(x0) (x* —x0))
=J(x0) T (F(x*) — my, (x*)) from (7.13).
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Consequently,

[Per = < [[T0x0) ™ [[[[F(x) = mxy (x|

< 2 ) = mas )] from (7.2)
2
2 X0 —x*
< EMHiO 7 H from (7.14),

which proves (7.21) for k = 0. Since

[Ixo —x*|| < from (7.19)
< ﬁ from (7.22),
we have 5 | |
P |[xo—x"
VA gl V/ a1 o AR | R U
1 —x*|| < TV 5 lIxo =7l
and x7 € B(x*,n). The same reasoning can be applied recursively to prove the result
for k=1,2,3,... (|

Newton’s method constitutes an effective tool that is central in optimization prob-
lems. However, it has two undesirable features:

1. it must be started close to the solution (which is not known in practice) and,
therefore, does not work from any starting point (assumption (7.19));

2. it requires calculating the matrix of the derivatives at each iteration, which can
involve a great deal of calculations in solving real problems.

Techniques that permit us to address the first issue are called globalization tech-
niques. A global algorithm exhibits convergence when started from any point. We
study such methods directly in the context of optimization in later chapters, and refer
the interested reader to Dennis and Schnabel (1996) for a comprehensive description
of these techniques in the context of solving systems of equations. In Chapter 8, we
address the second issue by presenting methods based on the same idea as Newton'’s
method, but without using the derivatives. Such methods are called gquasi-Newton
methods.

The presentation of the proof of Theorems 7.6, 7.7, and 7.13 is inspired by Dennis
and Schnabel (1996).

7.3 Project

The general organization of the projects is described in Appendix D.

Objective

To analyze the impact of the starting point on the convergence of Newton’s method,
with inspiration taken from Example 7.12.
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Approach

To create drawings similar to those of Figure 7.7, we use the following convention:
o Associate a specific color for each solution. For instance, when we have three
solutions, the RGB codes (255, 0,0), (0,255,0) and (0, 0,255) could be utilized.
o Define a maximum number of iterations K.
o Apply Newton’s method from a starting point xo.

o If the method converges in k iterations toward the first solution, associate the color
(255 — (255 k/K),0,0) to the point xo. Similarly, associate the color (0,255 -
(255 k/K),O) and (0,0,255 — (255 k/K) if the algorithm converges toward the
second or third solution, respectively.

o If the method does not converge, associate the color black (0,0,0) to the point x,.

Algorithm

Algorithm 7.3.

Problems

Exercise 7.1. The system

xzzx%

x$+(xz—2)2 =4
has three roots: (0 0 )T, (-3 3 )T, (V3 3 )T. Note that there are three

intersections between a circle and a parabola (draw the sketch). Note also that the
Jacobian is singular when x; = 0.

Exercise 7.2. The system
3%} +2x3 =35

4x3 —3x3 =24
. T T T T
has four solutions: ( -3 =2 ) , ( -3 2 ) , ( 3 =2 ) , ( 3 2 ) . Note that
there are three intersections between an ellipse and a hyperbole (draw the sketch).
Exercise 7.3. The system
x% —X1X2 +x§ =21

XF 4+ 2x1x2 —8x3 =0

has four solutions: ( 27 =7 )T, ( V7 7 )T, (-4 1 )T, (4 -1 )T.

Warning: when implementing these systems, one must not confuse the Jacobian
and the gradient matrix. Each row of the Jacobian corresponds to an equation and
each column to a variable.






Chapter 8

Quasi-Newton methods

“You cannot have your cake and eat it too,” says a popular proverb. In this chapter,
however, we try! The method developed here has an effectiveness close to that of
Newton’s method, without requiring the calculation of derivatives.

Contents
8.1 Equation with one unknown . . ... ... ... ...... 201
8.2 Systems of equations with multiple unknowns . ... .. 208
83 Project. ... . . i i i e e e e e e e e 216

When conditions so permit, Newton’s method proves to be fast. However, it re-
quires that the Jacobian matrix be explicitly calculated at each iteration. There are
a number of cases where the function F is not specified by formulas, but rather by ex-
periments or determined by software. In these cases, the analytical expression of the
derivative is unavailable. Even if the problem happens to have an analytical formu-
lation, the calculation of the derivatives can be prohibitive or even impossible when
the analytical calculation and implementation of the derivatives require excessively
long work, into which errors can easily slip.

In this chapter, we see that it is possible to use the ideas from Newton’s method,
without using the derivatives. This is of course done at the expense of performance.
However, this expense is often small compared with what we gain by not having to cal-
culate Jacobian matrices. We introduce the main ideas regarding the simple problem
of one equation with one unknown, before generalizing for systems of equations.

8.1 Equation with one unknown

The main idea is based on the definition of the derivative:

F(x) = lim "SI =0

s—0 S

(8.1)
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Sister Caasi Newton, or Quasi Newton, is the twin sister of Sir Isaac
Newton. Caasi Newton tried to follow in the footsteps of her illustri-
ous brother, but was never able to understand the complex concept of
derivatives. Her striking resemblance to her brother and the complete
absence of any writings cast doubt on her existence.

Figure 8.1: Sister Caasi Newton.

To obtain a good approximation of the value of the derivative, we simply choose a
value of s that is close enough to zero and obtain

F(x +s) —F(x)

. (8.2)

as (X) =
Geometrically, the derivative at x is the slope of the tangent to the function at x. The
above approximation replaces the tangent by a secant intersecting the function at x
and x + s, as illustrated in Figure 8.2. The model obtained from this approximation
is therefore called the secant linear model of the function.

x)
x)
+
»

Figure 8.2: Secant linear model

Definition 8.1 (Secant linear model of a function with one variable). Let F: R — R
be a differentiable function. The secant linear model of F in X is a function mg :
R — R defined by

mie () = FR) + OO (g (53)

where s # 0.
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We can now utilize the same principle as in Newton’s method, replacing the deriva-
tive in (7.3) by its secant approximation and obtain

F(X)
ag(x)

xt=x—

(8.4)

To obtain an algorithm, we now need only define the value of s. As said above, a
natural idea is to choose s small so as to obtain a good approximation of the derivative.
For example, s can be defined as

S RS
:{ ™ if X >1 (8.5)

T  otherwise,

where T is small, for instance equal to 10~7. For a more sophisticated calculation of T,
taking into account the epsilon machine and the precision obtained when calculating F,
we refer the reader to Dennis and Schnabel (1996, Algorithm A5.6.3). The algorithm
based on this definition of s is called the finite difference Newton’s method and is
presented as Algorithm 8.1.

Algorithm 8.1: Finite difference Newton’s method: one variable

1 Objective

2 To find (an approximation of) a solution to the equation
F(x) =0.

3 Input

4 The function F: R — R.

5 A first approximation of the solution xo € R.

6 A parameter T > 0.

7 | The required precision ¢ € R, ¢ > 0.

2]

Output
L An approximation of the solution x* € R.

©

10 Initialization

11 L k:=0.

12 Repeat

13 if |xx| > 1 then

14 | S 1= TXy

15 else

16 L s:=T

17 Xk+1 =Xk — SF(Xk) .
F(xx +s) — F(xk)

18 k:=k+1.

19 Until |[F(xi)| < e
20 X* = xx.
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The iterations of this algorithm applied to Example 7.3, with T = 1077, are
described in Table 8.1. The difference with the iterations of Newton’s method (Ta-
ble 7.1) are almost imperceptible. What is even more interesting is that a higher value
of T may still enable the algorithm to converge, even if this convergence is slow. Ta-
ble 8.2 contains the iterations of the algorithm applied to Example 7.3, with T = 0.1.
The first two iterations of this algorithm are illustrated in Figure 8.3. Intuitively, we
expect it to work well, with a relatively large s, when the function is not too linear.

o
ot
T

O _ I////I 1 1 1 1 1 1
14 15 16 1.7 1.8 1.9 2 21 22 23

X

Figure 8.3: Finite difference Newton’s method for Example 7.3

Table 8.1: Iterations for finite difference Newton’s method (T = 10~7) for Example
7.3
Xk F(xi)

+2.00000000E+00  +2.00000000E+00

+1.50000003E+00 +2.50000076E-01

+1.41666667E+00  +6.94446047E-03

+1.41421569E+00 +6.00768206E-06

+1.41421356E+00 +4.81081841E-12

+1.41421356E+00 +4.44089210E-16

(S O IN SR e E

In practice, there is no reason to take T = 0.1 because, even if this choice provides
results, it slows down the convergence. The only motivation to take a larger s would
be to save on function evaluations. This is the idea of the secant method, that uses
a step based on the last two iterates, that is

$ = Xk—1— Xk,
in such a way that (8.2) is written as

~ Flxx—1) = Flx)
as(xk) = ﬁ .

Therefore, no additional evaluation of the function is required, because F(xy_1) has
already been calculated during the previous iteration. The secant method is described
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Table 8.2: Iterations for finite difference Newton’s method (T = 0.1) for Example 7.3

k Xk F(xi)

0 +2.00000000E+00 +2.00000000E+00
1 +1.52380952E+00 +3.21995465E-01
2 +1.42318594E+00 +2.54582228E-02
3 +1.41466775E+00 +1.28485582E-03
4 +1.41423526E+00 +6.13706622E-05
5 +1.41421460E+00 +2.92283950E-06
6 +1.41421361E+00 +1.39183802E-07
7 +1.41421356E+00 +6.62780186E-09
8 +1.41421356E+00 +3.15609761E-10
9 +1.41421356E+00 +1.50284230E-11
10 +1.41421356E+00 +7.15427717E-13
11 +1.41421356E+00 +3.41948692E-14
12 +1.41421356E+00 +1.33226763E-15
13 +1.41421356E+00 +4.44089210E-16

as Algorithm 8.2. Note that this technique does not work at the first iteration (k = 0),
as Xk_1 is not defined. For the first iteration, an arbitrary value for ag is therefore
selected.

Table 8.3 shows the iterations of the secant method, with ap = 1. Figure 8.4
illustrates the first two iterations of the method for this example. At the iterate
Xo = 2, a first arbitrary linear model, with slope 1, is first considered. It intersects
the x-axis at 0, which becomes the next iterate x;. Then the secant method can start.
The secant intersecting the function at xo and x; is considered. It intersects the x-
axis at 1, which becomes iterate x;. The next iteration is illustrated in Figure 8.5.
The secant intersecting the function at x; and x;, crosses the x-axis at x3 = 2.
Interestingly, by coincidence, it happens to be the same value as xo. But it does
not mean that iteration 3 is the same as iteration 0. Indeed, between the two, the
algorithm has collected information about the function, and accumulated it into ay.
If ap =1 is an arbitrary value, not containing information about F, the value az =3
used for the next secant model has been calculated using explicit measures of the
function F. As a consequence, the secant intersecting the function at x; and x3
crosses the x-axis at x4, that happens not to be too far from the zero of the function.
Therefore, the convergence of the method from iteration 4 is pretty fast, as can be
seen in Table 8.3. Indeed, during the last iterations, xx and xx_1 are closer and closer
and s = xx_1 — X is smaller and smaller. Geometrically, it means that the secant is
closer and closer to the actual tangent, and the method becomes similar to the finite
difference Newton’s method. The rate of convergence is fast, and is characterized as
superlinear.
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Algorithm 8.2: Secant method: one variable

1 Objective

2 To find (an approximation of) a solution to the equation
F(x) =0.
3 Input
4 The function F: R — R.
5 A first approximation of the solution xo € R.
6 A first approximation of the derivative ap (by default: ap =1).
7 The required precision ¢ € R, € > 0.
8 Output
9 L An approximation of the solution x* € R.

10 Initialization

11 L k:=0.
12 Repeat
13 Update the current iterate
o F(xk)
Xk+1 7= Xk — .
Ak
14 Update the approximation of the derivative

_ FOx) — Flxx1)
Q4] i= —.
Xk — Xk+1

15 k:=k+1.
16 Until [F(xi)| < e
17 X = X

Definition 8.2 (Superlinear convergence). Consider a sequence (xk)k in R™ that
converges toward x*. The sequence is said to converge superlinearly toward x* if

e =]

=0. 8.6
o e &



Table 8.3: Iterations for the secant method (ap = 1) for Example 7.3

Quasi-Newton methods

k Xk F(xx) as(xk)

0 +2.00000000E+00 +2.00000000E+00 +1.00000000E+00
1 +0.00000000E+00 -2.00000000E+00 +2.00000000E+00
2 +1.00000000E+00 -1.00000000E+00 +1.00000000E+00
3 +2.00000000E+00 +2.00000000E+00 +3.00000000E+00
4  +1.33333333E+00 -2.22222222E-01 +3.33333333E+00
5 +1.40000000E+00 -4.00000000E-02 +2.73333333E+00
6 +1.41463415E+00 +1.18976800E-03 +2.81463415E+00
7 +1.41421144E+00 -6.00728684E-06 +2.82884558E+00
8 +1.41421356E+00 -8.93145558E-10 +2.82842500E+00
9 +1.41421356E+00 +8.88178420E-16 +2.82842706E+00

Figure 8.5: Iterations 2 and 3 of the secant method for Example 7.3

207



208 Systems of equations with multiple unknowns

8.2 Systems of equations with multiple unknowns

We now generalize the concepts of Section 8.1 for systems of n equations with n
unknowns. Again, the ideas are based on a ltnear model.

Algorithm 8.3: Finite difference Newton’s method: n variables

1 Objective

2 To find (an approximation of) a solution to the system of equations
F(x)=0. (8.7)

3 Input

4 The function F: R™ — R™.

5 A first approximation of the solution xp € R™.

6 A parameter T > 0.

7 | The required precision ¢ € R, ¢ > 0.

2]

Output
L An approximation of the solution x* € R™.

©

10 Initialization

11 L k:=0.
12 Repeat
13 forj=1,...,ndo
14 if |(xx);/ > 1 then
15 L S5 = T(Xk)j
16 else if 0 < (xx); <1
17 then
18 L Sji=T
19 else
20 L Sji=—T
21 Form the matrix Ay with columns
F(xx + sje;) — F(xk) .
(Ak)]. = K ]s? k2 j=1,...,n,
j

where (Ak)j is the j*® column of Ay, and e; € R™ is the j*® canonical
vector, composed of 0, except at the j*® place containing 1 instead.

22 Calculate dy 1 solution of Axdky1 = —F(xy).

23 Xk+1 = Xk + dx41-

24 k:=k+1.

25 Until ||F(xi)|| < e

26 X* = xg.

%))
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Definition 8.3 (Linear secant model for a function with n variables). Let F: R™ —
R™ be a Lipschitz continuous function and A € R™*™ a matrix. The linear secant
model of F in X is a function msz.4 : R™ — R™ defined by

mg.a(x) = F(X) + A(x —X). (8.8)

When m = n, Definition 8.3 is similar to Definition 7.9, where J(X) is replaced
by A. As we did for problems with one variable, we now consider two methods to
determine A: the approximation of J(X) by finite difference and the secant method
based on previous iterates.

Algorithm 8.3 describes the method based on finite difference approximation. The
comments related to the problems with one variable remain valid. When 7 is small, the
differences with the original Newton method are small (compare Table 7.4 and Table
8.4). When 7 is large, the method still works, but with a much slower convergence
speed. Table 8.5 describes the iterations for T = 0.1. We note that the choice of
T = 0.1 is given only as an illustration. In practice, if the finite difference method is
adopted, a small value of T should be used (see Dennis and Schnabel, 1996, for more
details).

Table 8.4: Iterations for the finite difference Newton’s method for Example 7.11
(t=10"7)

k Xk Fxx) [[FOxa)||
0 +1.00000000e+00 +3.00000000e+00 +3.45723769e+00
+1.00000000e+00 +1.71828183e+00
1 +1.52359228e-01 +7.56629845e-01 +1.15470878e+00
+1.19528158e+00 +8.72274977e-01
2 -1.08376852e-02 +5.19684806e-02 +1.14042632e-01
+1.03611119e+00 +1.01513541e-01
3 -8.89667761e-04 +1.29445824e-03 +3.94234579e-03
+1.00153532e+00 +3.72377069e-03
4 -1.37016733e-06 +3.13751967e-06 +8.08060994e-06
+1.00000294e+00 +7.44662523e-06
5 -5.68344146e-12 +1.09472431e-11 +2.98662028e-11
+1.00000000e+00 +2.77875500e-11
6 -9.93522913e-17 +0.00000000e+00  +4.44089210e-16
+1.00000000e+00  +4.44089210e-16

The main disadvantage of this method is that it uses n 4+ 1 evaluations of the
function per iteration. This turns out to be prohibitive when n is large. Therefore,
we use the same idea as in the case involving a single variable: force the linear model
in xx to interpolate the function F in x¢ and in xx_;. We immediately observe that
My, A, (Xk) = F(xx) by Definition 8.3. We now need only impose

Mo A (Xk—1) = Flxi) + Axc(x—1 — %) = F(xx—1) (8.9)
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Table 8.5: Iterations for the finite difference Newton’s method for Example 7.11
(t=0.1)
k Xk F(xx) [[FOx) |

0 +41.00000000e+00 +43.00000000e+00 +43.45723769e+00
+1.00000000e+00  +1.71828183e+00

1 +1.64629659e-01 +8.02103266e-01 +1.21852778e+00
+1.20238971e+00 +9.17300554e-01

2 -1.45741083e-02 +8.85985792e-02 +1.88972898e-01
+1.05713499e+00 +1.66916290e-01

3 -5.72356301e-03  +8.21459268e-03 +2.52536228e-02
+1.00976678e+00 +2.38802414e-02

4 -4.76896360e-04  +1.48824845e-03 +3.51842725e-03
+1.00122016e+00 +3.18817297e-03

14 -2.171562295e-13  +5.45341550e-13 +1.36591792e-12
+1.00000000e+00  +1.25233157e-12

15 -2.49137961e-14 +6.26165786e-14 +1.56919411e-13
+1.00000000e+00  +1.43884904e-13

16 -2.79620466e-15  +7.10542736e-15 +1.79018084e-14
+1.00000000e+00 +1.64313008e-14

17 -2.35536342e-16  +8.88178420e-16 +1.98602732e-15
+1.00000000e+00  +1.77635684e-15

18 -5.13007076e-17  +0.00000000e+00  +0.00000000e+00
+1.00000000e+00  +0.00000000e+00

or

Ax(xc —xx—1) = F(xx) — F(xie—1) .

This equation is called the secant equation.

Definition 8.4 (Secant equation). A linear model satisfies the secant equation in xy
and xy_1 if the matrix A defining it is such that

A(Xk — Xk71) = F(Xk) — F(kaﬂ 0 (8.10)
By taking
di—1 =X — Xp—
k—1 k k—1 (8.11)
Yk—1 = F(xx) — Flxk—1),
it is written as
Adx—1 =yYk_1. (8.12)

Given xi, Xrx—1, F(xk) and F(xyx_1), the linear secant model is based on a ma-
trix A satisfying the system of equations (8.10) or (8.12). This system of n linear
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equations has n? unknowns (the elements of A). Therefore, when n > 1, it is always
underdetermined and has an infinite number of solutions. From a geometrical point
of view, there are infinitely many hyperplanes passing through the two points.

The idea proposed by Broyden (1965) is to choose, among the infinite number of
linear models verifying the secant equation, the one that is the closest to the model
established during the previous iteration, thereby conserving to the largest possible
extent what has already been calculated. We now calculate the difference between two
successive models, that is my, ,.a, ,(x), the model of the function in the previous
iterate xi_1, and my,.a, (x), the model of the function in the current iterate xi.

Lemma 8.5. Let my,.a, (x) and my, A, _, (x) be linear secant models of a func-
tion F: R™ — R™ wn xx and xx_1, respectively. If these models satisfy the secant
equation, we can characterize the difference between the two models by

Mo Ay (X) = Mo A () = (A — A1) (x —x—1) . (8.13)

Proof. The proof exploits the definition (8.8) of the secant model, and the secant
equation (8.10).

ka;Ak (X) - kaf] ;Ak71 (X) - F(Xk) + A‘k(x - Xk

—F(xk—1) — A1

= Flxx) + Ax(x —xx

X —Xk—1) from (8.8)

F(xx) — Flxx—1) — Ar(xx —x1—1)
+ (Ax — A1) (x —xx—1)
= (Ax—Ax—1)(x —xi—1) from (8.10).

O

We now need only establish which matrix Ay minimizes this difference.

Theorem 8.6 (Broyden update). Let my, ,.a, ,(x) be the linear secant model of
a function F: R™ — R™ wn xx_1 and let us take x € R™, xx # xx_1. The linear
secant model of F in xy that satisfies the secant equation (8.10) and is as close
as possible to my, ,.A, ,(x) s

My (X)) = Flxi) + Aw(x —xi) (8.14)
with

(Yx—1 — Ax—1di—1)d)_,
dL] dic—1 )

A =Ax_ 1+ (8.15)

where dx_1 = xx —xx—1 and yx—1 = F(xx) — F(xx—_1).
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Proof. According to Lemma 8.5, the difference between the two linear models is
(Ak*Akfﬂ(X*ka]). (8.16)

The secant equation imposes the behavior of the linear model solely in the direction
dx_1. Therefore, the degrees of freedom should be explored in the directions that are
orthogonal to dyx_;. For all x, we can decompose

X—Xk—1 =adx_1+s, (8.17)
where s € R™ is such that d{ ;s = 0. Therefore, (8.16) is written as
a(Ax — Ax—1)di—1 + (Ax — Ax_1)s. (8.18)
The secant equation imposes that the first term should be
a(Ax — Ax—1)dk—1 = o(Yx—1 — Ax—1dk—1).

It does not depend on Ay and no degrees of freedom are available here. However,
dk—1 is not involved in the second term, and the secant equation is irrelevant for this
term. We choose Ay such that this second term disappears and that the gap between
the two models is minimal. This is the case if Ax — Ax_1 is defined by

A — A1 =ud{ ;, (8.19)

because d] ;s = 0. In this way, the choice of Ay depends on the choice of u. Once
again, it is the secant equation that enables its definition. We have

udy_qdi—1 = (Ax — Ax_1)dk—1 =yk—1 — Ax_1di_1.

Therefore,
1 —Ax—rdk—
u:yk1T k—1dk—1 (8.20)
dy i
and (8.15) is obtained directly from (8.19) and (8.20). O

We now show that this update indeed generates the matrix satisfying the secant
equation that is the closest to Ayx_1.

Theorem 8.7 (Broyden optimality). Consider Ax_1 € R™™", dy_1 and yx—1 €
R™, dx—1 #0. Let S={A|Adx—1 =yx_1} be the set of matrices satisfying the
secant equation. Then (8.15), i.e.,

(Yx—1 — Ax—1di—1)d}_4

Ax =Ax_1 +
K K T a

15 the solution to
min||A — As

and the unique solution to

min(|A — A |-
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Proof. Let A be an arbitrary matrix in §. We have

(Y1 — Ax—1di—1)d}
Akak,1 = from (8.15)
H HZ d{,1dkf1 5
Ady 1 —Ax_1di_1)d]
= (Ady s Tk1k1) k—1 because A € S
dk—1dk*1 2
A=A )k ad]
d{71dk*1 2
di—1dy
< [|A — Ax_q from (C.22
|| k ||2 d{i dk—] 5 ( )
= ||A7Ak,1 ||2 from (C.25).
Similarly, we have
1 —Ax_1dx_1)d{
1Ak = A, = || Pt = A die)diey from (8.15)
dy_ydi1 F
Ady 1 —Ax_1di_1)d]
= (Adi Tk1k1) k—1 because A € S
dy_qdi—1 F
A=A deady
dlfldk*1 F
di_1d}
< HAfAkq HF % from (C.23)
dye_ydi1 2
= HA—Ak,1 HF from (C.25).

The uniqueness follows from the strict convexity of the Frobenius norm and the
convexity of the set S. O

Algorithm 8.4 describes the secant method for n variables. Table 8.6 describes the
iterations for the secant method for Example 7.11. It is noteworthy that the method
converges, but toward another solution than that of Newton’s method. Table 8.7
compares matrix Ay for some iterations with the corresponding Jacobian matrix.
Clearly, these matrices are different for the first iterations of the algorithm. We
can see, even for the last iterations, that matrix Ay is a poor approximation of the
Jacobian matrix. This is one of the strengths of the secant method: it is not necessary
to have an asymptotically good approximation of the Jacobian matrix for the method
to work well.
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Algorithm 8.4: Secant method: n variables

1 Objective

2 To find (an approximation of) a solution to the system of equations
F(x)=0. (8.21)

3 Input

4 The function F: R™ — R™.

5 A first approximation of the solution xp € R™.

6 A first approximation of the Jacobian matrix Ao (by default Ay = 1I).

T The required precision € € R, ¢ > 0.

®

Output
L An approximation of the solution x* € R™.

©

10 Initialization

11 X1 := Xo —AglF(xo).
12 do :=x1 — Xo.

13 | Yo :=F(x1) —F(xo).
14 | k:=1.

15 Repeat

16 Broyden update:

(ko1 — Ax—1di—1)d]

Ax = Ax_1 +
Kk K T d

Calculate dy solution of Aydx = —F(xx).
17 Xk41 = Xk + dk.

18 | Yk = F(xee1) — F(xk).

19 ki=k+1.

20 Until ||F(xi)|| < e

21 X* = xg.

o




Table 8.7: Jacobian matrix and Broyden matrix for the secant method for Example

Quasi-Newton methods

Table 8.6: Iterations for the secant method for Example 7.11

k Xk F(xx) [|[F(xa)]|
0 1.00000000e+00 3.00000000e+00 .45723768e+00
1.00000000e+00 1.71828182e+00
1 -2.00000000e+00 -4.84071214e-01 .28706231e+00
-7.18281828e-01 -2.23524698e+00
2 -1.66450025e+00 -8.68008706e-01 .51117836e+00
8.30921595e-01 -1.23702099e+00
3 -2.42562564e-01 2.72598221e+00 .74156513e+00
2.03771213e+00 7.24574714e+00
4 -1.24155582e+00 -1.34676047e+00 .83898030e+00
T7.71291329e-01 -1.25223192e+00
5 -5.80521668e-01 -1.64577514e+00 .13825933e+00
4.22211781e-01 -1.36512898e+00
15 -1.71374738e+00 -1.15696833e-07 .85422885e-07
1.22088678e+00 -1.44899582e-07
16 -1.71374741e+00 -2.43091768e-10 .89249065e-10
1.22088682e+00 -3.04008596e-10
17 -1.71374741e+00 8.17124146e-14 .30803685e-13
1.22088682e+00 1.02140518e-13
18 -1.71374741e+00 -2.22044604e-16 .22044604e-16
1.22088682e+00 0.00000000e+00

7.11

k| J (xx) | Ak

0 4.00000000e+00 2.00000000e+00 1.00000000e+00 0.00000000e+00
2.71828182e+00 3.00000000e+00 0.00000000e+00 1.00000000e+00

1 | -2.00000000e+00 -1.43656365e+00 1.12149881e+00 6.95897342e-02
1.35335283e-01 1.54778635e+00 5.61032855e-01 1.32133752e+00

2 | -1.32900051e+00 1.66184319e+00 1.00559588e+00 4.65603572e-01
1.89285227e-01 2.07129209e+00 3.95856681e-01 5.58620104e-01

3 1.51487487e+00 4.07542427e+00 2.12000014e+00 4.80185068e-01
7.84614657e-01 1.24568122e+01 3.35797853e+00 3.07255629e+00

4 | -4.83111643e-01 1.54258265e+00 2.63710364e+00 1.13571564e+00
2.88934337e-01 1.78467094e+00 3.83878676e+00 3.68207545e+00

17 | -1.42749482e+00 2.44177364e+00 | -1.06423011e+00 2.70386672e+00
1.80189282e-01 4.47169389e+00 6.34731480e-01 4.79964153e+00

18 | -1.42749482e+00 2.44177364e+00 | -1.06870996e+00 2.71006685e+00
1.80189282e-01 4.47169389e+00 6.34731480e-01 4.79964153e+00
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8.3 Project

The general organization of the projects is described in Appendix D.

Objective

The aim of the present project is to solve a fixed point problem, i.e., given a function
T:R™ — R™, to identify x € R™ such that T(x) = x. This is of course equivalent
to solving the system of equations F(x) = 0 defined by F(x) = T(x) — x. Even if
the example that we consider is relatively simple, we assume that the derivatives are
unavailable.

Approach
o Implement the Banach fixed-point algorithm x, 1 = T(xk), as well as the secant
method (Algorithm 8.4).

e From the starting point x = ( T 1 1 1 1 11 )T, solve the problem with
the fixed-point algorithm.

« Solve the system of equations T(x)—x = 0 by using the secant method (Algorithm
8.4) from the same starting point.

« Solve the system of equations x—T(x) = 0 by using the secant method (Algorithm
8.4) from the same starting point.

« Compare the obtained solutions.

o Compare the number of iterations required to obtain the solution.

Algorithms

The simplest algorithm to solve fixed-point problems consists in applying Banach
iterations, i.e., Xx+1 = T(xy). The secant method is used to solve F(x) = T(x)—x = 0.

Problem

Exercise 8.1. Find x* € R” such that T(x*) = x*, with

1+x1 —(x7/4)
(1/2)x2 + (3/10)xa + (1/2)x¢
T4+ x3 — (x3/3)
T(x) = (1/4)x2 + (2/5)xa + (1/5)x6
V2xs
(1/4)x2 + (3/10)x4 + (3/10)x¢
8/(2+ x7)




Part IV

Unconstrained optimization






All constraint, except what wisdom
lays on evil men, is evil.

William Cowper

We discuss here the description of algorithms for solving unconstrained optimization
problems. The chosen approach is the following:

1.

First, in Chapter 9, we study quadratic problems, because they often appear as
subproblems in various algorithms.

. Based on the necessary optimality conditions described in Chapter 5, we use in

Chapter 10 Newton’s method and its variants presented in Part III to solve the
system of equations (5.1). We show with examples that this approach does not
always work.

. In Chapter 11, we define a class of methods called descent methods, specifically

designed for minimization problems. We demonstrate that Newton’s method can,
once adapted, be part of this class.

. The methods known as trust region methods, described in Chapter 12, constitute

an interesting alternative to descent methods. Again, we show that Newton’s
method can be adapted also to this context.

. Finally, we describe quasi-Newton methods, similar to the methods presented in

Chapter 8 in the context of optimization.






Chapter 9

Quadratic problems
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9.1 Directsolution . . . ... ... it e e 221
9.2 Conjugate gradient method . .. .. ... ...... ... 222
9.3 Project. . . . . . i i i e e e e e e e e e e 232

Before developing algorithms for general non linear problems, let us study the case of
quadratic problems (Definition 2.28). These indeed turn up regularly as subproblems
in the algorithms. In this chapter, we solve the problem

. 1
min f(x) = szQx+bTx+ c, (9.1)

where Q is a symmetric n X n matrix, positive definite, b € R™ and c € R. According
to Theorem 5.10, if Q is not positive definite or semidefinite, the problem has no
solution. The case where Q is positive semidefinite and singular is discussed in
Theorem 5.10, but is not dealt with here. One should immediately note that the
value of ¢ has no impact on the solution to the problem (9.1). Therefore, we focus
on the problem
){IelIiRI,ll f(x) = % xTQx +b'x. (9.2)

The value of ¢ is added to the optimal value of the objective function of (9.2) to
obtain the optimal value of the objective function of (9.1).

By employing Theorem 5.10, the unique global minimum of (9.2) can be easily
obtained by solving the system of linear equations

Qx=-b. (9.3)

9.1 Direct solution

Classical linear algebra algorithms can be used to solve (9.3). The solution details
can be found in the literature for linear algebra (see in particular Golub and Van
Loan, 1996). Typically, the solution algorithm has the following structure.
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Algorithm 9.1: Quadratic problems: direct solution

Objective
L To find the global minimum of (9.2).

N =

w

Input
The symmetric and positive definite matrix Q € R™*™.
The vector b € R™.

Output
7 L The solution x* € R™.

Calculate the Cholesky factorization Q = LLT.

Calculate y*, the solution to the lower triangular system Ly = —b.

10 Calculate x*, the solution to the upper triangular system LTx = y*.

LI

(=)

©

We refer the reader to Higham (1996) for a discussion about the numerical issues
associated with the direct method. Note that the above algorithm does not preserve
the sparsity of the matrix. Indeed, if n is large, and the number of non zero entries
of the matrix Q is significantly less than n?, it is convenient to adopt data structures
that store only those elements (see, for instance, Dongarra, 2000 and Montagne and
Ekambaram, 2004). Unfortunately, even if Q is sparse’, the matrix L resulting from
the factorization is not, and these data structures cannot be used. The algorithm
presented in the next section is able to exploit the sparsity of the matrix.

9.2 Conjugate gradient method

The conjugate gradient method is an iterative method used to solve (9.2). It was
independently discovered by Stiefel (1952) and Hestenes (1951), who completed and
published it together (Hestenes and Stiefel, 1952). Quite unpopular during the 1950s
and 1960s, the method generated interest during the 1970s, when the size of problems
to solve increased significantly (see Golub and O’Leary, 1989, for more historical
details).

We describe this method in two steps, first presenting the conjugate directions
method in a general manner.

Definition 9.1 (Conjugate directions). Let Q € R™*™ be a positive definite matrix.
The non zero vectors of R™ dy, ..., dyx are said to be Q-conjugate if

d{Qd; =0, Vi, jsuchthati#]j. (9.4)

1 A matrix is said to be sparse if most of its elements are zero.
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Note that if Q is the identity matrix I, the conjugate directions are orthogonal. If
not, we may define the inner product:

<di>dj>Q = dide» (95)

so that d; is Q-conjugate with d; if and only if d; is orthogonal to d; with respect to
the inner product (). We can derive the following result directly from the definition.

Theorem 9.2 (Independence of conjugate directions). Let Q € R™*™ be a positive

definite matriz and d;,...,dx be a set of non zero and Q-conjugate directions.
Then, the vectors dq,...,dx are linearly independent.

Proof. We assume by contradiction that there exist A1,...,Ax_1, not all zero, such
that

de =Ady + -+ A 1dir .

Therefore,
df Qdi =Ad{Qdy + -+ Ax_1d{Qdy_1 =0,

because the directions are Q-conjugate. This is impossible because di is non zero
and Q is positive definite. O

An immediate corollary is that, in R™, the maximum number of Q-conjugate
directions is n.

The idea behind the conjugate directions method is to define an iterative algorithm
using n conjugate directions dy,...,d,, with the following structure:

Xk+1 = Xk + otcdic k=1,...,n,
where oy is chosen to minimize the function in the direction dy, that is
o = argming, f(xx + oedy) -

We can identify some of the properties of this type of method.

Lemma 9.3. Let Q € R™*™ be a positive definite matriz, f(x) = %XTQX +b'x
and di,...,dn be a set of Q-conjugate directions in R™. Let x1,...,Xn+1 be the
iterates generated by a conjugate directions method. Then,

1. for allk=1,...,n, the step oy s defined by

Cdl(Quc+b) _ dlVE(a)
4T Qdy 47 Qdy

Xk =

2. for allk =1,...,n, Vf(xx) ts orthogonal to d;,...,dx_1, t.e.,

Vi) di =0, i=1,...,k—1; (9.7)
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3. Vf(xn+1) = O;‘
4. let us take k such that Vf(xx) =0 ; then,

Vi(xi) =0, i=k,...,n+1. (9.8)

Proof. 1. Since oy is the minimum of the function in the direction dy, its value
corresponds to a zero directional derivative of f in the direction dy (Definition 2.7),
ie.,

Ay VF(xi + ogedy) = df VF(xiep1) =0 (9.9)

and, applying the formula (2.42) of the gradient of a quadratic function, we obtain
0 = d] Vf(xy + agedy)
= dy (Q(xk + xidy) + b)
= df Qxx + oqedf Qdy + dib
to obtain (9.6).
2. Since Xy +1 = Xk + xkdk, we have for any i=1,...,k—1,
Xk = Xk—1 + ak—1dx—1

=xXx—2 + ox—2dk—2 + oxx—1dik—1

(9.10)
k—1
= Xi41 + Z O(jd]' .
j=i+1
Therefore, fori=1,...,k—1,
d! V(xi) = df (Qxi +b) according to (2.42)
k—1
=d{ | Qlxit1 + Z a;jd;) +b according to (9.10)
j=i+1
k
=d{Qxip1+d{b+ )  o;d]Qd;
j=it1
= d{ (Qxi1 +b) according to (9.4)
= Vf(xir1)"di according to (2.42)
=0 according to (9.9).

3. Let d # O be an arbitrary vector of R™. Since di,...,dn is a set of n linearly
independent vectors in R™, this is a basis and d can be written as

n
d=) Ndi.
i=1
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Therefore
n
Vilma)Td =3 AVF(xn)Tdi =0
i=1
by the point 2. Since d is arbitrary, we obtain Vf(xn 1) = 0.
4.If Vf(xx) = 0, then o = 0, according to (9.6). The result follows by simple

induction on k.
O

The most important result related to the conjugate direction methods is that they
identify the global minimum of a problem in, at most, n iterations. In fact, they are
able to solve the problem of increasing dimension in subspaces.

Theorem 9.4 (Conjugate directions method). Let Q € R™*™ be positive definite.
Let dy,...,d¢, £ <, be a set of Q-conjugate directions, let us take x; € R™ and
let

¢
M¢=X1+<d1,...,dg>={X‘X=X1+Z)\kdk, AERE}
k=1

be the affine subspace spanned by the directions di,...,d¢. Then, the global
manimum of the problem

; I r T
= — 11
XIél]l\}lllf(X) 7% Qx+b x (9.11)
18
¢
Xg41 = X1 + Z oedy (9.12)
k=1
with T )
. d ka+b
oy = argmin, f(xy + ody) = ——-—— 9.13
K o X K T Qdx (9.13)

Proof. We consider the function

¢
g:R“HR:Mgm—f(x]+Zmai>

i=1
that enables us to transform problem (9.11) into an unconstrained problem

in g(A
féi@g()

such that
¢

dg T
N =dlvEx + ) N

j=1
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According to Lemma 9.3, when the coefficients A are replaced by the steps o defined
by (9.13) (that is, (9.6)), we have
9g
OA;

(o1, ) = A VF(xs1) =0, Vi,

Then, Vg(«1,...,¢) = 0. Moreover,

azg
OAiA;

(a1y...,00) = df Qdj .

As the directions d;i are Q-conjugate, the second derivatives matrix of g is a diagonal
matrix with positive eigenvalues. It is therefore positive definite. We now need only
use the sufficient optimality conditions (Theorems 5.7 and 5.9) to demonstrate that
&1, ..., 0 is the global minimum of g and that x¢; defined by (9.12) is the global
minimum of (9.11). O

The specific case { = n is particularly important.

Corollary 9.5 (Convergence of the conjugate directions method). Let Q € R™*™ be
positive definite. Let dq,...,dn, be a set of Q-conjugate directions. Let x1 € R™
be arbitrary. The algorithm based on the recurrence

Xkl = Xk + ogedi

with
4 (Qxk +b)
d{Qdk

identifies the global minimum of the problem

X =

: L T
Eﬁ{%f(x)_ix Qx+b'x

in at most n iterations.

Proof. We apply Theorem 9.4 with { = n to demonstrate that x,,; is the global
minimum. As the conjugate directions are linearly independent (Theorem 9.2), n
directions span the entire space R™, that is My, = M,, = R™. [l

This result makes the conjugate directions methods particularly attractive. It
remains to show how to obtain Q-conjugate directions. We proceed in two steps.
First, we start from an arbitrary set of linearly independent vectors and apply the
Gram-Schmidt orthogonalization procedure to obtain Q-conjugate directions. Indeed,
as discussed above, two directions are Q-conjugate if they are orthogonal with respect
to the inner product () defined by (9.5). Second, we identify a specific set of linearly
independent vectors, which simplifies considerably the formulation.

Consider the set of { vectors &;,...&;, that are linearly independent. The Q-
conjugate vectors are defined by induction in such a way that, at each step 1 of the
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induction, i = 1,...,{, the vector subspace spanned by &;,...&; is the same as the
subspace spanned by di,...,d;, i.e.,

(&1y... &) =(d1,...,di). (9.14)
We initiate the induction with d; = &;. Then, for any given i > 2, we assume that
we have Q-conjugate vectors dy,...,d;_1, such that

<£1)"-£i71> = <d],...,di,]>.
We thus choose d; of the form

i—1
di =& + Z (xidk . (9.15)
k=1
We calculate the coefficients (x}{ in order for d; to be Q-conjugate with dq,...,di_1.
Let 1 <j <i—1 be any arbitrary index.
0=4d{Qd;

i—1
=d{ Q&+ ) dfQdx
k=1

= df Q& + ogd] Qdj,
because all the other terms of the sum are zero by Q-conjugation. Then,
i dj Q&
e iy §
dj Qdy
and (9.15) is written as
i1
d] Q&
di =& — K= dy. 9.16
1 1" ]; d{Qdk ( )
The calculation of d; is well-defined. Indeed, the denominator d{Qdk is non zero be-
cause Q is positive definite. Since the vectors &, ..., &; are linearly independent, &; is
linearly independent from any direction in the subspace (&;,...&;_1). From (9.14), it
is also independent from any direction in the subspace (d;,...,di—1). Consequently,
i1
dj Q&
&i # K dx
2 alea

and d; is not zero.

The Gram-Schmidt procedure described above can be applied to any set of linearly
independent vectors. We see now that a judicious choice of the vector ¢ allows us to
greatly simplify (9.16). The method called the conjugate gradient method utilizes

& =—Vf(xi) =—Qx; —Db.

In order to apply the Gram-Schmidt procedure, we must verify that the vectors
Vf(xi), 1 = 1,...,n are linearly independent. Actually, Theorem 9.6 proposes a
stronger result: they are orthogonal.
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Theorem 9.6 (Orthogonal gradients). We consider the conjugate directions
method where each direction di is generated by the Gram-Schmidt method ap-

plied to the directions —Vf(xq),...,—VTf(xi), t.e.,
df QVf(xy)
= —VIA( . 9.17
Xl + Z d{Qdk k ( )
Then,
<Vf(X1),...,Vf(Xi)> = <d1,...,di> (9.18)
and
Vi(xi)'VE(xk) =0, k=1,...,i—1. (9.19)

Proof. i =1: (9.18) is trivially satisfied because d; = —Vf(x;) and (9.19) does not

apply.
i =2: We have
d{ QVf(xz)

df Qd;

and (9.18) is satisfied. Moreover, according to Lemma 9.3,

dy, = —Vf(x2) + d;

0= Vf(XZ)Td1 = —Vf(Xz)TVf(X1)

and (9.19) is satisfied.

i > 2: we now assume that the result is satisfied for i — 1. Since the vectors
Vf(x1),..., Vf(xi_1) are orthogonal, they are linearly independent. Therefore, (9.17)
directly implies that (9.18) is satisfied for i. According to Lemma 9.3, we have that

Vi(xi)Tdx =0, k=1,...,i—1, (9.20)

and Vf(x;) is orthogonal to the subspace (dj,...,di—1). Since (9.18) is satisfied for
i—1, Vf(xi) is orthogonal to the subspace (Vf(x1),..., Vf(xi_1)), and (9.19) is
satisfied for 1. O

We now demonstrate a proposition that enables us to simplify the conjugate gra-
dient method.

Theorem 9.7 (Conjugate gradients). We consider the conjugate directions method
where each direction d; ts generated by the Gram-Schmadt method applied to the

directions —Vf(x1),...,—Vf(xi), t.e., according to (9.17). If Vf(xi) #0, then
di = —Vf(xi) + Bidi (9.21)
with N
By — Vi(xi)' VE(xi) (9.22)

Vi(xi—1)TVFf(xi1)
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Proof. For all k =1,...,1—1, we have
Vi(xx+1) — VI(xi) = Qxxp1 +b — Qxi — b = Qxk + aedx — xi) = ot Qdx .

Since Vf(xi) # 0 by assumption, then Vf(xy) # 0, k = 1,...,i— 1 (item 4 of
Lemma 9.3), and oy # 0, so that
1
Qdy = o (VE(xrs1) — VE(xi))

Then, from the orthogonality of the gradients (Theorem 9.6), we have
1
Vf(xi)"Qdy = - V(x) T (V(xis1) — VE(xxk))

1
— Vi(xi)"Vf(xi) ifk=1i—1

= o4

0 fk=1,...,i—2.

Similarly, we have
1

dyQdx = —
 Qdi o
Therefore, (9.17) simplifies into

d{_;QVf(xi)

dit (V(xici) — V() -

di =—VIf i di, =—VIf i 1di, 9.23
(xi) + T Qd: 1 (xi) + Bidi—1 (9.23)
with T T
d. Vi(xq i i
Bi _ 1;1 Q (X ) = Vf(x ) Vf(x ) . (924)
di—1 Qdif1 dif1 (Vf(xi) - Vf(Xi,1 ))
Since

di1 =—Vf{xi1) 4+ Bi1di2,
the denominator is written as
Al (V) = VH(xi1)) = =V(xi 1) (VF(xi) = Vi(xi1))
+ Bio1d]_, (VF(xi) — VF(xi—1))
=—Vflxi 1) Vi) (=0)
+ Vf(xi_1)"VF(xi_1)
+ Biad{ ,VF(xi) (=0)
—Bi1d{ ,Vf(xi1)  (=0),
where the three indicated terms are zero according to (9.7) and (9.19). And we obtain
(9.22) from (9.24). O

All these results are combined to obtain Algorithm 9.2, the conjugate gradient
method. An important characteristic of the conjugate gradient algorithm is that the
matrix Q defining the problem is never needed as such. There is not even the need
to store it. It is used exclusively to calculate the matrix-vector products Qxy or
Qdy. This is particularly interesting for problems of large size, for which the matrix
Q is generally sparse. In this case, the matrix-vector products can be efficiently
implemented without ever explicitly forming the matrix Q.
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Algorithm 9.2: Conjugate gradient method
Objective

=

2 L To find the global minimum of (9.2), i.e., miny,cgn %XTQX +bx.
3 Input

4 A first approximation x; of the solution.

5 The symmetric positive definite matrix Q € R™*™.

6 The vector b € R™.

7 Output

2]

L The solution x* € R™.

9 Initialization

10 k:=1,

11 d; :=—Qx1 —b.

12 Repeat

1o | o e —Ge(Qutb)
d, Qdx

14 Xk+1 = Xk + o di.

s Brs = Vi(xi1) " VE(xis1) _ (Qxiys +b)"(Qxk41 4+ b)
VE(xi) TVE(xi) (Qxik +b)T(Qxx + b)

16 diy1 = —Qxip1 — b+ Prprdx.

17 ki=k+1.

®

18 Until |[Vf(x)|| =0 ork=n+1
19 X* = X.

Example 9.8 (Conjugate gradient method). We apply Algorithm 9.2 to the quadratic
problem (9.2) defined by

11 1 1 —4
122 2 7
Q=14 23 3| b=1
12 3 4 -10

The iterations are detailed in Table 9.1. The algorithm converges after having gener-
ated 4 directions, as predicted by Corollary 9.5. It is easy to verify that the directions
generated by the algorithm are well conjugated and that the gradients are orthogonal
to each other, as stated in Theorem 9.6.




231

Quadratic problems

C1-99068L ¥~
CI-®YLTITC ¥~
C1-°96€9CT "€~
C1-99G€99° T~

00+°00000 " T+
00+200000" T+
00+200000° T+
00+200000 " T+

C0-95S€9C " T+

00+98TT6€ €+

¢0-°622C0 " T+
20-929061°C-
C0-9¢SSe8 " T+
€0-969S9.C 8-

C0-®69GST " T-
C0-°8TTTE T+
¢0-°998059 ' 1-
€0-996LLL"° S+

TO-9TEES9 "6+
00+962%.L0 " T+
T0-9€608€ " 6+
00+9908C0 " T+

C0-2680L.L° T+

00+9CLTLE T+

T0-9L6¥%S0° 1~
C0-98CT¥S 6+
TO-9THC8E " T+
T0-°99.9.6°T-

T0-926¥%ET T+
¢0-°0050C "6~
T0-®G8GSS T~
T0-°9590L" T+

00+9%GSTC T+
TO-9€66.L7 "8+
T0-®%ZC0T "9+
00+20696% " T+

€0-9.%S0T " T+

00+9€56C0 " T+

00+29T9T0 " T+
TO-9€S5668" T+
TO-9L0%6L 6~
00+96.9CS "1~

00+98€090° T~
T0-®05.6C°C-
T0-9%S¥8% "6+
00+°0T7805 " T+

TO-®L9€69 T+
TO-20€YCS "9+
00+99G8T9 " T+
00+9G.190° €+

T0-999.0C" T+

T0+200000 "%~
T0+900009 "€~
T0+900008 "¢~
T0+200009 " T-

T0+200000 " ¥+
T0+900009 " €+
T0+900008 " ¢+
T0+200009 " T+

00+200000° S+
00+°00000 " S+
00+200000 " S+
00+200000 " S+

1d

o

ip

()IA

Ax

8'p ordurexy I10] poyjewl jJustpeild ojesnluod o1} I0] SUOIFRIS}] :1°6 S[dR],




232

Project

9.3 Project

The general organization of the projects is described in Appendix D.

Objective

The aim of the present project is to solve several quadratic problems and compare
the direct solution with the conjugate gradient method for ill-conditioned problems.

Approach

Perform the following experiments.

1.

Generate a problem of dimension 10 for which the eigenvalues are randomly dis-
tributed between 1 and 3, and solve it with Algorithms 9.1 and 9.2. Compare the
solutions. After how many iterations does the conjugate gradient algorithm iden-
tify an iterate such that the norm of the gradient is below 10~¢? Is this consistent
with theory?

2. Carry out the same approach for a problem of dimension 100.

. Generate a vector with 100 eigenvalues randomly distributed between O and 1.

Subsequently, multiply the last 50 ones by 10,000 and generate a quadratic prob-
lem by using the procedure described below. After how many iterations does the
conjugate gradient algorithm identify an iterate with the norm of the gradient
below 10707 Is this consistent with theory?

. Generate a quadratic problem defined by a Hilbert matrix of dimension 10 and

another of dimension 100 (see Exercise 9.2 for the definition of a Hilbert matrix).
Apply Algorithms 9.1 and 9.2. Compare the solutions. After how many iterations
does the conjugate gradient algorithm identify an iterate with the norm of the
gradient below 10~°? Is this consistent with theory?

Algorithms

Algorithms 9.1 and 9.2.

Problems

Exercise 9.1. Use the following procedure to generate quadratic problems for which
the solution and conditioning are known.

a) Counsider any randomly defined matrix A € R™*™, for instance

0.071744 0.039717 0.868964 0.880528 0.969800
0.085895 0.145339 0.832277 0.691063 0.621372
A= 0.857871 0.357765 0.151824 0.396765 0.258813
0.412037 0.521116 0.348378 0.632816 0.416459
0.806180 0.1105685 0.332506 0.986633 0.476912



Quadratic problems 233

b) Carry out a QR factorization of A to obtain an orthogonal matrix B

-0.057291 -0.025777 0.733559 -0.072330 -0.672839
-0.068592 -0.258524 0.619722 0.339972 0.654846
B = -0.685055 -0.035490 -0.204420 0.657980 -0.233910
-0.329033 -0.830212 -0.119684 -0.433105 -0.024104
-0.643777 0.491924 0.147388 -0.508596 0.251334

c) Choose non negative eigenvalues Aq,..., A, and define D as a diagonal matrix
containing these values in the diagonal. For instance,

0.1 0 0 © 0
o 1.0 O 0
D= 0 0 10 © 0
0 0 0 100 O
0O 0 0 0 1000

d) Define the matrix Q = BDBT.

458.618 -438.512 151.130 18.496 -164.356
-438.512 444.290 -132.059 -31.033 148.085

Q= 151.130 -132.059 98.474 -22.563 -92.529
18.496 -31.033 -22.563 20.182 15.406

-164.356 148.085 -92.529 15.406 89.536

e) Choose a vector x*, for instance x* = ( 1T .01 )T, and define b = —Qx*.

-25.37482
9.22945
-2.45361
-0.48793
3.85804

b

Then, x* is the solution to min ]ZXTQX + bTx and the eigenvalues of Q are the same
as those of D. The same goes for the conditioning.

Exercise 9.2. We also consider the matrix H,, € R™ for which the elements H, (1, j)

are defined by
1

irj—1°

This matrix is called the Hilbert matriz of dimension n. It is symmetric, positive

Hn(i“)j) =

definite, but extremely ill-conditioned (calculate its eigenvalues).






Chapter 10

Newton’s local method

We now apply Newton’s method in the context of optimization. In this chapter, we
do it blindly. And Algorithm 10.1 does not work in general! Its only utility is to give
inspiration in order to define the algorithms that develop the same rate of convergence
as Newton’s method.

Contents
10.1 Solving the necessary optimality conditions . ... ... 235
10.2 Geometric interpretation . . . . . ... .. 00000 236
10.3 EXErcises . . v v v v v v v v v v vt e e e e e e e 244

10.1 Solving the necessary optimality conditions

The idea behind Newton’s local method is simply to use Algorithm 7.3 to solve the
system of equations (5.1),
Vi(x*) =0,

which defines the necessary optimality conditions. The algorithm, applied to F(x) =
Vf(x) and J(x) = V2f(x), is described as Algorithm 10.1.
It inherits all the properties of Algorithm 7.3. In particular,
1. the method converges g-quadratically under favorable conditions (Theorem 7.13),
2. the method can diverge if the starting point is too far from the solution,
3. the method is not defined if the matrix V2f(xy ) is singular.
When employed in the context of optimization, Newton’s local method presents
a further disadvantage. Indeed, solving the necessary optimality conditions of the

first degree does not guarantee that the identified solution is a minimum. Newton’s
method has no mechanism enabling it to discern minima from maxima and saddle
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Algorithm 10.1: Newton'’s local method

1 Objective
2 To find (an approximation of) a solution to the system

Vi(x) =0. (10.1)
Input
The gradient of the function Vf:R™ — R™.
The Hessian of the function V2f: R™ — R™*™,
A first approximation of the solution xo € R™.
The required precision ¢ € R, € > 0.

Output
L An approximation of the solution x* € R™.

L I = T w | B ]

©

10 Initialization

11 L k:=0.

12 Repeat

13 Calculate dy solution of V2f(xy)dyx = —VF(xx).
14 Xk41 := Xk + dk.

15 ki=k+1.
16 Until ||Vf(x)|| < e
17 X* = Xg.

points. For instance, by applying Algorithm 10.1 to minimize the function of Example
5.8, with xo = ( 11 ) , Newton’s local method converges rapidly toward

. (0 o (0 A B
X_<7t/2>’ Vf(x)—(()), vzf(x)—<_1 O>,

which does not satisfy the second-order necessary optimality conditions (Theorem 5.1)
and is consequently not a local minimum. It is actually a saddle point. The iterations
of the method are illustrated in Figure 10.1 and in Table 10.1.

Since Newton’s local method cannot be used as is, we develop alternative methods
in the following chapters. However, the fast rate of convergence of Newton’s method
prompts us to use it when appropriate. We conclude this chapter with a geometric
interpretation of Newton’s local method in the context of optimization.

10.2 Geometric interpretation

The main idea of Newton’s method when solving non linear equations is to replace
a complicated non linear function by a simpler model. In the context of equations,
this model is linear (Definition 7.9). Newton’s local method, applied in the context
of optimization, can be motivated in a similar manner. In this case, the model is no
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T T, T 6 2
e /) 1.8
——— ? 1.6

(G 0= % 14 %2
=S -2
T : 1.2
~ -4
4 6
-2 -1 0 2 -0.5
X1 X1
(a) Iterates (b) Zoom

Figure 10.1: Iterates of Newton’s local method for Example 5.8

longer linear, but quadratic. It is obtained thanks to Taylor’s second-order theorem
(Theorem C.2).

Definition 10.1 (Quadratic model of a function). Let f: R™ — R be a twice differ-
entiable function. The quadratic model of f in X is a function mg : R™ — R defined
by

mg(x) = f(X) + (x —X)TVF(X) + % (x —X)TVH(R)(x —X), (10.2)

where Vf(X) is the gradient of f in X (Definition 2.5) and V2f(X) is the hessian matrix
of f in X (Definition 2.19). Defining d = x — X, we obtain the equivalent formulation:

mz(X+d) = f(x) + d"VF(XR) + % A"V f(x)d. (10.3)

Note that Definition 10.1 is consistent with Definition 2.28, with Q = V?f(X),
g = Vf(x) and ¢ = f(x). If we minimize the model instead of the function, we get
the problem

- - S -
min mz(X +d) = f(X) + d"VF(X) + 3 dTVv2f(x)d. (10.4)
e n
The sufficient first-order optimality condition (Theorem 5.7) for (10.4) is written as:
Vmg (X + d) = VF(X) + V*f(X)d =0, (10.5)

i.e.
d=-—V*(x)'VI(x) (10.6)

or
x=%— VR)VIR). (10.7)
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The sufficient second-order optimality condition requires that the matrix V2f(x) be
positive definite.

Note also that (10.7) is exactly the main formula of Newton’s local method (Al-

gorithm 10.1).

When the hessian matrix of the function is positive definite in xy, an iteration of
Newton’s local method corresponds to minimizing the quadratic model of the function
in xy and thus defining

Xk+1 = argmin, cpn My, (X) . (10.8)

Algorithm 10.2: Newton'’s local method by quadratic modeling

=

L I = T < | B N

©

10
11

12
13

14

15
16
17
18

Objective
To find (an approximation of) a solution to the system
Vi(x) =0. (10.9)
Input
The gradient of the function Vf:R™ — R™.
The hessian of the function V2f: R™ — R™*™,
A first approximation of the solution xo € R™.
The required precision ¢ € R, € > 0.
Output
L An approximation of the solution x* € R™.
Initialization
L k:=0.
Repeat
Create the quadratic model
1
My, (X +d) = f(xi) + d"VF(xi) + 5 A"V (x)d. (10.10)
Calculate
dy = argming my, (xi + d) (10.11)
using the direct method (Algorithm 9.1) or the conjugate gradient
algorithm (Algorithm 9.2).
X1 = Xk + dk.
k:=k+1.
Until [|[Vf(x)|| < e

X" = xk.
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Algorithm 10.2 is the version of Algorithm 10.1 using the quadratic model. It is
important to note that Algorithms 10.1 and 10.2 are equivalent only when the hessian
matrix at the current iterate is positive definite, that is when the function is locally
convex at the current iterate. When solving Example 5.8, illustrated in Table 10.1,
this interpretation is not valid. Indeed, we have

sz(x ) = 1.00000000e+00 -8.41470984e-01
© 7\ -8.41470984e-01 -5.40302305¢-01 )’

for which the eigenvalues are -9.10855416e-01 and 1.37055311e+00. This matrix is
not positive definite. Therefore, the necessary optimality condition for the quadratic
problem is never satisfied, and there exists no solution to the minimization problem of
the quadratic model in xo. The model is shown in Figure 10.2(b). It is not bounded
from below. Therefore, Algorithm 10.2 cannot be applied.

(a) Objective function

40 -
20
My, (X1,%2)

-20

(b) Quadratic model mx, (x)

Figure 10.2: Quadratic model for Example 5.8

We illustrate with Example 10.2 the limitations of Newton’s local method by using
the geometric interpretation (Algorithm 10.2).
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Example 10.2 (Quadratic model). Consider the function
f(x) = —x* +12x3 —47x* 4 60x. (10.12)

We consider three different points and apply Newton’s local method.

1. xx = 3. The quadratic model is
mz(x) = 7x* —48x + 81,

for which the minimum is xx,1 = 24/7 ~ 3.4286. Moreover, f(xx) = 0 and
f(xkxy1) &~ -1.32 and then f(xxy1) < f(xk). This is a favorable case. The model
is shown in Figure 10.3. It can be seen that there is a good adequacy between the
model and the function in the neighborhood of the iterates xx and x4 1.

2. xx = 4. The quadratic model is
ma(x) = x? —4x,

for which the minimum is xx 11 = 2. In this case, f(xx) = 0 and f(xxy1) = 12. The
iterate generated by the method is worse (in terms of the value of the objective
function) than the current iterate. The model is illustrated in Figure 10.4. It can
be seen that the iterate xx 1 lies in a region where the model is a poor approxi-
mation of the function. Recall that Taylor’s theorem guarantees a good adequacy
only in a neighborhood of xi, without mentioning the size of that neighborhood.
Here, the iterate xy 1 clearly lies outside it.

Figure 10.3: Illustration of Example 10.2 with xi = 3
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Figure 10.5: Illustration of Example 10.2 with xi =5

3. xx = 5. The quadratic model is
ms(x) = —17x* + 160x — 375.

This model is concave (its second derivative is negative) and it is not bounded
from below. It is not possible to minimize it and Algorithm 10.2 does not work.
Applying Newton’s local method (Algorithm 10.1) in xx = 5 corresponds to maz-
tmazing this quadratic model, which goes against the desired effect.

We conclude this chapter by defining two particular points that play a role later
on. On the one hand, the point obtained during the iteration of Newton’s local
method is often called Newton’s point.
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Definition 10.3 (Newton’s point). Let f : R™ — R be a twice differentiable function
and let us take x; € R™ such that V2f(xy) is positive definite. Newton’s point of f
in xi is the point

XN =Xk + dn, (10.13)

where dy is the solution to the system of equations
VZ(xk)dn = —VF(xx) . (10.14)
The system (10.14) is often called Newton'’s equations.
Newton’s point minimizes the quadratic model of the function in x;. If VZf(xy)
is positive definite, we have a minimum of the quadratic model in xi. On the other

hand, the point minimizing the quadratic model in the direction with the steepest
descent is called the Cauchy point.!

Augustin-Louis Cauchy was born in Paris on August 21, 1789.
Cauchy was a pioneer in the study of analysis. In 1814, he
published a thesis on definite integrals that became the basis
of complex functions theory. One year later, he was appointed
professor of analysis at Ecole Polytechnique. In his work, he tried
to demonstrate the proposals that had been put forward so far
as evident and for which there was no proof. Cauchy was the
first to provide rigorous conditions for the convergence of infinite
series and he also gave a precise definition of the integral. He
was a prolific researcher (he wrote approximately 800 mathematical articles), and was
unliked by most of his colleagues. He was a convinced royalist and legitimist, and
spent some time in Italy after having refused to pledge allegiance. He resumed his
chair at the Sorbonne in 1848 after the abdication of Louis-Philippe. He kept it until
his death in Sceaux, on May 22, 1857.

Figure 10.6: Augustin-Louis Cauchy

Definition 10.4 (Cauchy’s point). Let f: R™ — R be a twice differentiable function
and let us take x € R™. The Cauchy point of f in xy is the point xc that minimizes
the quadratic model of f in the direction with the steepest descent, i.e.,

xc = xx — ¢ VI(xy), (10.15)

where
ac € argmingep My, (xk — aVF(xi)) . (10.16)

1 We here refer to Dennis and Schnabel (1996, page 139). Other references (particularly Conn

et al., 2000, page 124) define Cauchy’s point as the minimum of the quadratic model along the
arc obtained by projecting the steepest descent direction onto the trust region.
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Exercises

It is well defined if f is convex in the direction of the gradient. In this case, there is
only one minimizer. Using (10.3), we obtain

_ Vi (xx) TV (xx)
X Vi) V() V()

10.3 Exercises

(10.17)

For each of the following problems, determine Cauchy’s point x¢c and Newton’s point
xn in X. Each time, compare the value of the objective function at these three points.

Exercise 10.1.

Exercise 10.2.

Exercise 10.3.

Exercise 10.4.

Exercise 10.5.

. - T
min ) ix{, x=( 1 1)
x€R™

i=1

n
min xiz, any x
xeR™

min 2x;xp e (NP2 g = (0 1),

x€R

min 2x1%2 67(4X%+X2]/87 x=(4 4 )T.
xER2
(=T

. 2 2
gﬁg]OO(Xzfx%) +(1—x1)7, %



Chapter 11

Descent methods and line search

Newton’s local method may be fast, but it fails regularly. We address the problem in
a different manner. Intuitively, in order to identify iterates with a lower value of the
objective function, we choose to follow the direction with the steepest descent given
by the opposite of the gradient. This idea turns out to be functional, but disastrously
slow. We demonstrate in this chapter how to correct this shortcoming, and how to
combine the two approaches in order to obtain a method that is both fast and robust.

Contents

11.1 Preconditioned steepest descent . ... ... ....... 246
11.2 Exact linesearch . . . . . . . . ... i, 251

11.2.1 Quadratic interpolation . . . . .. ... ... 252

11.2.2 Golden section . . . .. .. .. ... .o 257
11.3 Inexact linesearch . . . . .. .. ... ... ..., 263
11.4 Steepest descent method . . . . . ... ... ... ..... 277
11.5 Newton method with linesearch . ... ... ....... 277
11.6 The Rosenbrock problem . . . . .. ... ... ....... 281
11.7 CONVErZENCE . v v v v v v v v v v e v e v e v e e e e e e 284
11.8 Project . . v v v v v v v e e e e e e e e e e e 288

We leave Newton’s method aside for now (we return to it in Section 11.5) and focus
on specific methods for an optimization problem. The main idea is simple. Since we
seek the minimum of a function, we attempt to descend, i.e., to generate a sequence
of iterates (xk)k such that

fxg1) < flxi), k=1,2,...

Theorem 2.11 ensures that such an iterate can be found in a direction d such that
Vf(xx)"d < 0. The methods presented here, often called descent methods, consist
of a process involving three main steps:

1. Find a direction dy such that Vf(xy)Tdx < 0.
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2. Find a step oy such that f(xx + ady) < f(xk).
3. Calculate xy11 = x¢ + axdy and verify a stopping criterion.

11.1 Preconditioned steepest descent

The first idea that comes to mind to define a concrete descent method is to invoke
the theorem of the steepest descent (Theorem 2.13) and to choose dx = —Vf(xk).
Indeed, it is in this direction that the function has its steepest descent. We often refer
to this method as the steepest descent method. An iteration of this method consists
in
Xka1 = Xk — o VF(xk) . (11.1)
When it comes to the step ay, we choose for the moment one that gives the largest
reduction of the function in the direction dy, i.e.,

X € argming g f(xi + xdi) . (11.2)

In the presence of multiple minima, it is common to use the first one, that is oy is
the small element of argminaeRg f(xx + ady). Example 11.1 illustrates this method
for a simple case.

Example 11.1 (Steepest descent method). We minimize the function f : R? — R
defined by
1 9
f(x) = Ex%+§x§, (11.3)
by using the steepest descent method. Let xx be the current iterate. The direction

of the steepest descent is

d = —Vf(xi) = ( (), ) .

=9 (%),
To calculate the step oy, we solve the problem in one dimension
. 1 2 9 2
mo%nf(x]< —aVf(xy)) = min 5 (Ca)y —ox),)” + 3 (), = 9a(xk),) ",

for which the optimal solution is

(4)7 + 81 (x1);

(xi) 7 +729 (x:);
At each iteration, the steepest descent method generates the point
(xi)7 + 81 (xx); < — (i) )
(xic): +729 (i) \ —9(xx),

By applying this algorithm, starting from the point x¢ = ( 92 1 )T, we obtain the
iterations illustrated in Figure 11.1 and listed (in part) in Table 11.1.

Xk+1 = Xk
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X2
X1
(a) Iterations
7 T 0.15
_/ // 0.1
/ /'/
- / 0.05
{
| f 0 X2
1
- \ -0.05
\ \
\ \
A -0.1
A -0.15
-1 -0.5
X1
(b) Zoom

Figure 11.1: Steepest descent method: illustration of Example 11.1.

In Example 11.1, it is remarkable how slow the steepest descent method is, even
though the function to minimize is simple. The zigzag behavior illustrated in Fig-
ure 11.1 is characteristic. We show next that the performance can be improved by
preconditioning the function (the concepts of conditioning and preconditioning are

discussed in Section 2.5).
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Example 11.2 (Preconditioned steepest descent method). We minimize the function
f:R? — R defined by

1 9
f(x) = zx%Jrzx%, (11.4)

by using the steepest descent method and the preconditioning technique from Sec-
tion 2.5. We have

Vf(x)—<9xx12> and V%(x)-(éﬁ)-(éﬁ)(é?)

We use the equations (2.53) and (2.54) to define the change of variables

T

X] = X1

x5 =3x2
and we obtain the function

2
f(x) :lx{Z—i-% (%xé) :%x{z—i-%xﬁz.

Therefore, the direction of the steepest descent is
~ —X/
dz—Vf(x’)z( 1)
—x4
To calculate the step o, we solve the problem in one dimension
min f(x' — aVf(x')) = minl (x1 — ooc')z + 5 (x2— ooc’)z
« « 2 1 1 2 2 2 )

for which the optimal solution is o« = 1. Then, regardless of the current iterate x’,
the steepest descent method always generates the point

x] —x1
() (5)=0
X2 X2
which is the optimal solution to the problem. In this case, the method identifies the
minimum of the function in a single iteration.

Clearly, the performance of the steepest descent method can be significantly im-
proved when the function is preconditioned. We can generalize this idea. Let Hy be
a symmetric positive definite matrix such that Hy = LkL{. We use Ly to define a
change of variables, according to Definition 2.32, i.e.,

x' =Lix. (11.5)
The steepest descent method for the variables x’ is written as

Xt1 = X1 — o VE(x)) . (11.6)
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By using (2.52), (11.6) is expressed as

Xfiq = X — oLy ' V(L Txg) (11.7)
In the original variables, we obtain, by using (11.5),

L{Xk+] = L{xk — qu_;1 VE(xx) (11.8)
or, by multiplying by L{T

Xk+1 = Xk — OCkL]:TLE1 VT(xy)

T (11.9)

= Xk — O(ka Vf(xk) .
Therefore, the preconditioned steepest descent method gives

Xk+1 = Xk + edi (11.10)
with

di = —H ' Vf(xx) . (11.11)
If we denote Dy = Hy ', we obtain in a similar manner

dk = —Dka(Xk) . (1112)

It is admittedly a descent method. Indeed, when Vf(xy) # 0,
Vf(Xk)Tdk = —Vf(Xk)TDka(Xk) < O,

because Hy is positive definite as is Dx. We note that the index k of Dy enables us
to precondition the method differently for each iteration.

It is important to note that Algorithm 11.1 is not complete. Indeed, nothing is
specified regarding the manner in which to generate the positive definite matrices
Dy. Moreover, the suggested method to calculate xy at step 15 is not trivial to
implement. Finally, certain additional assumptions are necessary in order to ensure
that the method converges.

Section 11.2 describes algorithms that are designed to identify an (approximation)
of a local minimum of the function along the selected direction dy, that is

o € argming g f(xx + ady). (11.13)

However, it is not necessary to select a step o, that minimizes the function along dy.
In order to save computing time, we propose in Section 11.3 a characterization of steps
that are “acceptable.” Section 11.3 proposes an inexact line search algorithm based
on this characterization. After including the line search approach into the steepest
descent algorithm in Section 11.4, we propose in Section 11.5 a way to define the
preconditioning matrices Dy, inspired by Newton’s method.
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Algorithm 11.1: Preconditioned steepest descent method

Objective
2 To find (an approximation of) a local minimum of the problem

=

min f(x). (11.14)

Input

The differentiable function f : R™ — R.

The gradient of the function Vf:R™ — R™.

A family of preconditioners (Dk)k such that Dy is positive definite for all k.
An initial solution xg € R™.

The required precision € € R, ¢ > 0.

Output
10 L An approximation of the optimal solution x* € R™.

®» I o oA~ 0w

©

11 Initialization

12 L k:=0.

13 Repeat

14 dx = —Dy VT(xy).

15 Determine y, for instance ay € argmin - f(xi + ady).
16 X1 = Xk + X di.

17 ki=k+1.
18 Until HVf(xk)H <e
19 X 1= xy.

11.2 Exact line search

As suggested in Algorithm 11.1, the step to perform along the direction dx may be
obtained from solving (11.13). We call this way of calculating the step size an “exact
line search,” referring to the fact that we are seeking the exact minimum.
The optimization problem (11.13) is a problem with one variable, «, and can be
written as
minh(a) = f(xx + ady), (11.15)
x>0
where xy is the current iterate and dy is a descent direction. From Theorem 2.11, we
know that o« = 0 is not a local minimum of this function. Therefore, the constraint
« > 0 is inactive at the optimal solution and can be ignored (see Theorem 3.5).

Clearly, Newton’s method can be used to solve the problem, if a good approxima-
tion of the local optimum is known. The derivatives of h are

dh(o)

h'(«) = T = Vibac+ ody) " dy, (11.16)
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and

d’h(«x)
do?

We describe two other techniques: the quadratic interpolation method and the golden

section method.

h (o) = = df V*(xx + adi) Tdi. (11.17)

11.2.1 Quadratic interpolation

The quadratic interpolation method requires that the function h is continuous and
uses only the value of the function, not its derivatives.

Consider three distinct points a < b < ¢ such that h(a) > h(b) and h(c) > h(b),
so that a local minimum of the function lies in the interval [a, c] by continuity of h.
Such points can be generated by Algorithm 11.2. Note that the condition h(8) < h(0)
guarantees that the algorithm does not stop at the first iteration, that is, when only
two points have been generated.

Algorithm 11.2: Initialization of the exact line search

1 Objective
2 | Find a, b, and c such that a < b < ¢, h(a) > h(b) and h(c) > h(b).

3 Input

4 A continuous function h : R — R such that the function decreases at 0.
5 5 such that h(8) < h(0).

6 Initialization

7 X0 :=0

8 X1 :=0

9 k:=1

10 Repeat

11 Xkl = 2Xx

12 k=k+1

13 Until h(xy) > h(xx_1)
14 4 =Xx 2

15 b = Xk_1

16 C = Xk

We interpolate a parabola g at the three points. To do so, we identify the param-
eters 31, B2, and 33 of the quadratic function

q(x) = Br(x —a)(x —=b) + P2(x —a) + B3(x — b), (11.18)

such that q(a) = h(a), q(b) = h(b) and q(c) = h(c). As q(a) = h(a), we obtain
immediately that

h(a)
a—b’

B3 = (11.19)
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Similarly, as q(b) = h(b), we have

h(b)

Bz:b—a'

(11.20)
From the last interpolation condition, q(c) = h(c), we obtain after some straightfor-
ward derivation,

(b —c)h(a) + (¢ — a)h(b) + (a — b)h(c)
(a—b)(c—a)(c—b)

B1= (11.21)

As q(a) > q(b) and q(c) > q(b), the quadratic q is convex, and its minimum x*
corresponds to the point where the derivative is 0. As

q’ x)=pB12x—a—Db)+p2+p3=0, (11.22)
we have Bilatb) B 8
«_ P1la —[p2—1p3
X = T . (11.23)
The numerator $1(a+ b) — B2 — B3 is equal to
h(a)(b? —c?) + h(b)(c? — a?) + h(c)(a? — b?)
(a—Db)(c—a)(c—D) ’
so that
. 1h(a)(b> =c?) +h(b)(c* — a?) + h(c)(a® —b?) (11.24)
2  h(a)(b—c)+h(b)(c—a)+h(c)(a—Db) '

Now, we need to generate a new set of 3 points a™,b™, c*, with the same properties
(at < bt <ct, h(at) >h(b"), h(cT) > h(b™)), and such that the interval [a™, c 7]
is strictly smaller than [a,c]. We assume that h(x*) ## h(b). If it happens not to be
the case, perturb x* by a small amount to enforce h(x*) # h(b). Note that assuming
h(x*) # h(b) implies that x* # b.

Suppose first that x* lies between b and ¢, that is a < b < x* < c.

o If h(x*) > h(b), we set a™ = a, b* = b, and ¢™ = x*. The condition a™ < b™ <
c™ is trivially verified. The condition h(a™) > h(b™*) is h(a) > h(b), which is
verified by assumption, and the condition h(ct) > h(b™) is h(x*) > h(b), which
is the condition of the case that is treated.

o If h(x*) < h(b), we set at =b, bT = x*, and ¢c™ = ¢. The condition at < b™ <
¢ is trivially verified. The condition h(a™) > h(b™) is h(b) > h(x*), which is the
condition of the case being treated. The condition h(c™) > h(b*) is h(c) > h(x*),
which is verified because h(c) > h(b) > h(x*).

Suppose next that x* lies between a and b, that isa <x* <b <c.

o If h(x*) > h(b), we set at =x*, b = b, and ¢c™ = ¢. The condition at < b™ <
¢t is trivially verified. The condition h(a*) > h(b*) is h(x*) > h(b), which is
the condition being treated. The condition h(c*) > h(b*) is h(c) > h(b), verified
by assumption.
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o If h(x*) < h(b), we set a™ = a, bt =x*, and ¢t =b. The condition at < bt <
¢ is trivially verified. The condition h(c*) > h(b™") is h(b) > h(x*), which is the
condition being treated. The condition h(a™) > h(b*) is h(a) > h(x*), which is
verified because h(a) > h(b) > h(x*).

The complete procedure is described as Algorithm 11.3.

Algorithm 11.3: Exact line search: quadratic interpolation

Objective
L Find a local minimum of miny>o h(«x)

N o=

Input
A continuous function h : R — R such that the function decreases at 0.
A step 6 such that h(4) < h(0).
The desired precision ¢ > 0.

Output
L o* local minimum of ming>o h(o)

2B~ B N\

o

9 Initialization

10 Compute a, b, and ¢ such that a < b < ¢, h(a) > h(b), and h(c) > h(b)
using Algorithm 11.2.

11 Repeat

12
~ Th(a)(b? —c?) + h(b)(c? — a?) + h(c)(a? — b?)
2 nh(a)(b—c)+h(b)(c—a)+h(c)(a—b)

while h(x*) = h(b) do x* is perturbed to avoid being stalled

* .

13 if b-a < c-b then

14 | x*i=x*+¢/2

15 else

16 L xX*i=x*—¢/2

17 if x* > b then

18 if h(x*) > h(b) then the new triplet is a, b, x*
19 | c:=x"

20 else the new triplet is b, x*, c

21 a:=D>b

22 L b:=x"*

23 else if x* < b then

24 if h(x*) > h(b) then the new triplet is x*, b, c
25 | a:=x*

26 else the new triplet is a,x*, b

27 c:=D

28 L b:=x"*

29 Until max(h(a),h(c)) —h(b)<e orc—a<e
30 x*:=Db
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Example 11.3 (Exact line search with quadratic interpolation). Consider the func-
tion

h(x) = (24 x) cos(2 + x). (11.25)

In order to identify a local minimum of h, we apply Algorithm 11.3 with 6 = 6 and
¢ = 1073, Note that —1.1640 = h(8) < h(0) = —0.83229. This value of & has been
chosen to make the example illustrative. In practice, a smaller value is used (try with
5 =2).

The first four iterations are illustrated in Figures 11.2-11.5, and all iterations are
reported in Table 11.2.

20 T T T T
h(x) = (24 x) cos(2 + x)

-20 1 1 1 1 1 1
0 2 4 6 8 10 12

Figure 11.2: Quadratic interpolation — Iteration 1

20 T T T T
15 “hi(x) = (24 x) cos(2 +x)

-20 1 1 1 1 1 1

0 2 4 6 8 10 12

Figure 11.3: Quadratic interpolation — Iteration 2
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h(x) = (2+x) Icos(ZI + x)l
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_20 1 1 1 1 1 1 1 1
4 5 6 7 8 9 10 11 12 13
Figure 11.4: Quadratic interpolation — Iteration 3
20 T T T T T 17 T T
h(x) = (2+x) cos(2 + x)
15 N s
q(x)
10

-20 1 1 1 1 1 1 1 1
10 11 12 13

Figure 11.5: Quadratic interpolation — Iteration 4

11.2.2 Golden section

The golden section method requires that the function h be strictly unimodal on
an interval [0,T] (see Definition B.6), and «* the global minimum of h on [0, T]
(Definition 1.7). The method generates a sequence of intervals [{y,uy] such that for
each k,

o U1, uk1] C [, uxl, and
e X* € [gk,uk].

Consider two points o} and ok such that ¢, < of < o5 < uy. If h(a¥) > h(ek), then
h is decreasing from o and k. Therefore, the global minimum «* cannot be smaller
than oc‘f (due to the strict unimodality of h). Therefore, o* € [oc‘f,uk], which is the
next interval of the sequence: {1 = o and w1 = ux. If h(ak) < h(ak), then his
increasing from o and 5. Therefore, the global minimum «* cannot be greater than
oc‘z< (due to the strict unimodality of h). Therefore, a* € [{y, oc‘z‘], which is the next
interval of the sequence: {1 = {x and w1 = oc‘z‘. These two cases are illustrated
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in Figure 11.6. If it happens that h(ak) = h(e), then the strict unimodularity of h
guarantees that «* € [oc‘f, oc‘z‘}, so that it becomes the next interval, and {x .1 = 001<
and ug,1 = oc‘z‘.

b otr = b ol o2 Uk = U1

(a) Case h(oc‘]‘) > h(oclg)

hle) —

*

be =l o o Uk

X2 = Uk+1

(b) Case h(oc‘f) < h(oc‘z‘)

Figure 11.6: Next interval of the golden section method

We now define specific rules to choose oc‘f and oc‘z‘. First, we impose a symmetric
reduction of the intervals, that is

of — b =we — oy = plu — )y (11.26)

where p < 1/2 is the shrinking factor of the interval, which is constant across itera-
tions. Second, we choose p in order to save on function evaluations. At each iteration
where only one of the two values becomes the bound of the next interval, we recycle
the other value for the next reduction, as illustrated in Figure 11.7.

During iteration k, the next interval happens to be [l i1, uk1] = [k, ok]. We
select o5 ™! to be equal to o, so that there is no need to recalculate the value of the
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O ok ok g
Ot okt okt U1

Figure 11.7: Golden section method: recycling function evaluations

function in oc‘z‘ﬂ. Denote A the length of the interval:
A=y — b (11.27)
By symmetry (11.26), we have
of — & = w — oy = p(ug — L) = pA, (11.28)
and for the next iteration
oM — e =W — o5 = plwir — b ). (11.29)
We now exploit the fact that {1 = €, o5 ™' = ok, and uk1 = o (see Figure 11.7)
to obtain
ok — 0 = o — o = plo — ). (11.30)

We first derive

k_ k k_ Kk
oy — oy =&y — o + e — O+ —uk

= —(of — i) — (we — o5) +we — b
=—pA—pA+A from (11.27) and (11.28)
—A(1—2p). (11.31)
Then, we derive
o5 — e = of — b+ W — Uy

= —(ux — o) + (we — &)

=—pA+A from (11.27) and (11.28)
=A(1—p). (11.32)
Using (11.31) and (11.32) into (11.30), we obtain
AT —2p) = pA(1 — p), (11.33)
or equivalently,
p2—3p+1=0. (11.34)

This equation has two solutions:
3+v5  3-45
and .
2 2
As the shrinking factor p has to be less than 1/2, we select

3—5
2

(11.35)

, (11.36)
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Example 11.4 (Exact line search with golden section). Consider the function
h(x) = (24 x) cos(2 + x). (11.37)

The function is strictly unimodular in the interval [5,10]. We apply Algorithm 11.4
with ¢ = 1073 to identify the global minimum of h in this interval.

Algorithm 11.4: Exact line search: golden section
Objective

=

2 L Find (an approximation of) the global minimum of h(«) on [¢, u].
3 Input

4 An interval [¢{,u] C R.

5 A function h: R — R strictly unimodular on [{, u].

6 The desired precision ¢ > 0.

7 Output

2]

L o*, an approximation of the global minimum of h(«) on [{, u].

9 Initialization

10 k=1

11 =

12 uri=1u

13 p:=(3-+5)/2

14 ol =0 +plug —€)

15 o) =uy —p(w — ).

16 Repeat

17 if h(ok) = h(ok) then

18 b1 = of

19 Up1 = ok

20 081%1 =1 et — beyr)
21 o5 = — p(wieyt — Gegr).
22 else if h(ak) > h(ak) then

23 fk+1 = (x‘f

24 Uk+1 = Uk

25 ok 1= ok

26 o5 = — p(wieyt — liegr).
27 else

28 fk+] = (’,k

29 Upi = ok

30 o= lpr 4 pluksr — beer)
31 o5 = ok

32 ki=k+1.

33 Until u, —{ <c¢
34 of = (L +uy)/2
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The intervals generated during the first iterations are represented in Figure 11.8.

The details of each iteration is reported in Table 11.3.

-
H
H
) ot u
Figure 11.8: Intervals of the first iterations of the golden section method on Exam-
ple 11.4
Table 11.3: Iterates of Example 11.4
k O ok ok uy h(ak) h(ok)
1150 6.90983 8.09017 10.0 -7.75439 -7.93768
2 | 6.90983 8.09017 8.81966 10.0 -7.93768 -1.89353
3 | 6.90983 7.63932 8.09017  8.81966 | -9.41833 -7.93768
4 | 6.90983 7.36068 7.63932  8.09017 | -9.34146 -9.41833
5 | 7.36068 7.63932 7.81153  8.09017 | -9.41833 -9.08684
6 | 7.36068 7.53289 7.63932  7.81153 | -9.47723 -9.41833
7 | 7.36068 7.46711 7.53289  7.63932 | -9.45863 -9.47723
8 | 7.46711 7.53289 7.57354  7.63932 | -9.47723 -9.4678
9 | 746711 7.50776 7.53289  7.57354 | -9.47504 -9.47723
10 | 7.50776 7.53289 7.54842  7.57354 | -9.47723 -9.47553
11 | 7.50776 7.52329 7.53289  7.54842 | -9.47712 -9.47723
12 | 7.52329 7.53289 7.53882  7.54842 | -9.47723 -9.47686
13 | 7.52329 7.52922 7.53289  7.53882 | -9.47729 -9.47723
14 | 7.52329 7.52696 7.52922  7.53289 | -9.47727 -9.47729
15 | 7.52696 7.52922 7.53062  7.53289 | -9.47729 -9.47729
16 | 7.52696 7.52836 7.52922  7.53062 | -9.47729 -9.47729
17 | 7.52836 7.52922 7.52976  7.53062 | -9.47729 -9.47729
18 | 7.52836 7.52889 7.52922  7.52976 | -9.47729 -9.47729
19 | 7.52889 7.52922 7.52943  7.52976 | -9.47729 -9.47729

The name of the method comes from the golden ratio. Two quantities a and b
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are in the golden ratio if

a+b a
= - = 11.
. (11.38)
where
1
b= +2\/§z1.618 (11.39)

is the golden ratio. In geometry, a golden rectangle is a rectangle that can be cut
into a square and a rectangle similar to the original one (see Figure 11.9). Its side
lengths are in the golden ratio. The golden rectangle has been used in architecture,
for its aesthetical properties.

Figure 11.9: A golden rectangle

In Algorithm 11.4, the distance of the two points «; and «, to the lower bound
of the interval, that is oty — £ and «; — ¢, are in the golden ratio. Indeed,

(Xz—f_(Xz—O(]-l-O(]—e

X1 —{ - X1 —{
M1 —2p) +pA
= oA from (11.31)
_1-p
p
_ +2\/§ from (11.36)

=¢ from (11.39).
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11.3 Inexact line search

We want to spend as little effort as possible calculating the step. Instead of trying to
solve a one-dimensional optimization problem as in the previous section, we consider
here a trial-and-error approach, where various values are tested for the step «, and
the first one that is suitable is accepted. It means that we need formal conditions that
distinguish acceptable from unacceptable steps. In principle, to maintain consistency
with theory, small steps should be used. Indeed, Taylor’s theorem guarantees that
performing a small step along a descent direction decreases the value of the function.
However, we would also like our algorithm to progress rapidly, which would encourage
to consider large steps. In order to reconcile these two contradictory objectives, we
establish a kind of contract: large steps are acceptable provided that the reduction
that is achieved is substantial. If not, they are rejected, and smaller steps should be
considered. In order to formally characterize this “contract,” we introduce the notion
of sufficient decrease of the function.

Solving the problem
ok € argmin, o f(xk + odi) (11.40)

at each iteration using a technique like those described in Section 11.2 may be un-
necessarily demanding in terms of computational efforts.

Instead of an exact line search method, we describe here an inexact line search,
based on the characterization of what is acceptable and what is not. Once these
characterization conditions are defined, “candidates” are generated for step lengths,
thanks to simple and computationally cheap algorithms, until an acceptable step is
produced.

We start by illustrating the fact that the condition f(xy + ocdy) < f(xk) is not
sufficient for oy to be considered an acceptable step.

Example 11.5 (Descent method: too large steps). Consider the one-variable function
f(x) =x2.
We apply Algorithm 11.1 with xp = 2 and

1 sgn(xxk)
- 2|Xk| - ZXk

o =2+ 327 ).

Dy

Note that Dy is positive (definite) for all k. Since Vf(xx) = 2xx, we have dx =
—D Vf(xx) = —sgn(xy). In this case, the method is written as

Xk — 232751 ifxg >0
Xip1 = { « ( ) iz (11.41)

X +2+3027% 1) ifx <0,
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which gives the sequence of iterates listed in Table 11.4 and illustrated in Figure 11.10.
We show by induction that, in this case,

xk = (=D*(1+27%) (11.42)

and

X1l < Ixxel - (11.43)

Table 11.4: Iterates of Example 11.5

Xk dx ok
+2.000000e+00 -1 +3.500000e+00
-1.500000e+00 1 +2.750000e+00
+1.250000e+00 -1 +2.375000e+00
-1.125000e+00 1 +42.187500e+00
+1.062500e+00 -1 +2.093750e+00
-1.031250e+00 1 +2.046875e+00

s W - ol

46 +1.000000e+00 -1  +42.000000e+00
47 -1.000000e+00 1 +2.000000e+00
48 +41.000000e+00 -1 42.000000e+00
49 -1.000000e+00 1 +2.000000e+00
50 +1.000000e+00 -1  +2.000000e+00

-2 -15 -1 -05 0 05 1 15 2

Figure 11.10: Iterates of Example 11.5

The cases k = 0 and k = 1 are verified numerically (Table 11.4). We now assume
that k is even and that (11.42) and (11.43) are verified for k. We note that the parity
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of k and (11.42) ensure that xx > 0. Then,

Xep1 =Xk —2—3(27% ) from (11.41)
= (=D +27F)—2-3027%T from (11.42)
=142 —2-327+" because k is even
=14+ 217(k+1) N 3(27(k+1))
= 1 -2 (k+1)
= (=11 427 (1) because k is even.

Since k is even, xx > 0 and xx1 < 0. Therefore,

x| — x| = x4+ X1
=142k 127K
1
=-2"%>0.
2
The case where k is odd is demonstrated in a similar manner. We deduce directly
from (11.43) that x{,; < x{ and

f(xie1) < flxa),

demonstrating that it is indeed a descent method generating iterates, each of which is
strictly better than the previous one, not only because the objective function strictly
decreases, but also by the fact that each iterate is closer to the minimum than the pre-
vious one. However, the sequence (xk)k does not converge and has two accumulation
points in —1 and 1. Neither of these points is a local minimum of the function.

The reason that the presented algorithm fails in Example 11.5 is the disproportion
between the length of the step and the resulting decrease of the objective function.
Indeed, the notion of a descent direction (Definition 2.10) is based on Taylor’s the-
orem, which is valid only in a neighborhood of the current iterate. As soon as we
select a larger step than 1 of Theorem 2.11, the fact that the direction is a descent
direction is no longer relevant, and the fact that the new iterate happens to be better
is coincidental. This is the case with Example 11.5, where the next iterate actually
lies in a region where the function is increasing along the followed direction.

To avoid this inconvenience, it is necessary to impose a condition characterizing
the notion of sufficient decrease of the function. One idea is to consider a decrease
of the function to be sufficient if the improvement of the objective function is pro-
portional to the length of the step. Concretely, we select v > 0, and consider a step
i to be acceptable if

fxa) — flxi + ouedy) > oy

or
f(Xk + (Xkdk) < f(Xk) — XxY. (1144)
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The factor y cannot be chosen arbitrarily. In particular, it should vary from one
direction to another. Returning to Example 11.2, Figure 11.11 illustrates the shape of
the function f(xp+ od) when going from xy = ( 10 1 )T in two different normalized
directions, as well as the straight line f(xp) — vy, with y = 6.

According to Figure 11.11(a), a sufficient decrease of the function in the direction
d= ( —10/V/181 —9//181 )T is obtained for several values of x, especially between
0 and 3.25478. However, it can be seen in Figure 11.11(b) that no value of « allows
a sufficient decrease in the direction d = ( —2/v5 1/V5 )T with regard to the
condition (11.44). Indeed, the straight line is too steep, while the function is relatively
flat in this direction. The requirement associated with this value of vy is too strong.

Instead of using an arbitrary fixed value for vy, it is more appropriate to define it
proportional to the slope of the function in xy in the direction dy:

Y = _BVf(Xk)Tdk )

with 0 < B < 1. Then, the closer the directional derivative Vf(x;)"dy is to zero, the
smaller the slope of the line, and vice versa. Note that, if § = 0, (11.44) would collapse
to f(xx + odi) < f(xk), that we have shown to be inappropriate. Geometrically, the
line setting the threshold for the objective function value is horizontal in this case.
So the value 3 = 0 is excluded. The value 3 = 1 corresponds to the tangent line. If
the function happens to be convex at xi (which is the case close to a local minimum),
the tangent lies entirely below the function (see Theorem 2.16), and no value of oy
verifies (11.44). Again, this value of { is excluded, justifying the condition 0 < f < 1.

Definition 11.6 (Sufficient decrease: the first Wolfe condition). Consider the differ-
entiable function f : R™ — R, a point xx € R™, a (descent) direction dx € R™ such
that Vf(xx)"dx < 0 and a step o € R, & > 0. We say that the function f decreases
sufficiently in xx + o, dx compared with xj if

f(xp + oedi) < f(xi) + ok Vf(xk)Tdk, (11.45)

with 0 < 1 < 1. The condition (11.45) is called the first Wolfe condition after Wolfe
(1969), or the Armijo condition, after Armijo (1966).

It is important to note that (2.14) in the theorem on descent directions (Theorem
2.11) guarantees that there always exist steps satisfying the condition (11.45). The
condition (11.45) is illustrated in Figure 11.12 with 37 = 0.5 and in Figure 11.13 with
31 =0.1. In each case, there exist steps ensuring a sufficient decrease.

The condition (11.45) enables us to reject steps that, due to being too large, do
not provide a sufficient decrease of the function. Having solved the problem of too
large steps, we now consider steps that are too small. These may cause a problem,
as shown in Example 11.7.
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65 T T T T
f(xx + ady) —

60 | f(Xk) —xXy -

(a) dy = (—10//18T —9//18T1)7

65 T T T T
f(xx + adx) ———

60 f(xk) — XYy e

35 t 1 1 \I\\\\\\\\ 1 ]

(b) di = (—2/v/5 1/V5)"

Figure 11.11: Decrease of the function of Example 11.2
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f(Xk + Oédk) R EE—
flxi) + B VE(xe) Tde
flx) + aVi(xi)Td

(a) dy = (—10/+/18T —9//18T)7

fixe + oxd) ——
f(xi) + xBrVF(x) Tde
fxi) + aVE(x) Tdy

(b) di = (~2/V5 1/V5)"

Figure 11.12: Condition (11.45) with $; = 0.5
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65 . , | |
fxx + adx) ——

f(xi) + B VF(x) T
flx) + aVi(xi)Td

60

(a) dy = (—10/+/18T —9//18T)7

65 :

flxx + Oéldk) —_—
flxi) + aB1 VF(x) Ty

0 f(xi) + aVE(x) Tdg e

35 . . . .

(b) dic = (—2/V5 1/V5)"

Figure 11.13: Condition (11.45) with $; = 0.1
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Example 11.7 (Descent method: too small steps). Consider the one-variable func-
tion
f(x) =x2.

We apply Algorithm 11.1 with xo = 2 and

X = 27 kT

Note that Dy is positive (definite) for all k if x, > 0, which is the case in this example.
Since Vf(xx) = 2xk, we have dy = —DyVf(xx) = —1. In this case, the method is
written as

—k—1
Xk+1 :kaz .

The sequence of iterates (xk)k is listed in Table 11.5. We show by induction that it
is defined by
xx=1+27%, (11.46)

Table 11.5: Iterates of Example 11.7

k Xk dy [543

0 +2.000000e+00 -1 +5.000000e-01
1 +1.500000e+00 -1 +2.500000e-01
2 +1.250000e+00 -1 +1.250000e-01
3 +1.125000e+00 -1 +6.250000e-02
4 +1.062500e+00 -1 +3.125000e-02
5 +1.031250e+00 -1 +1.562500e-02

46 +1.000000e+00 -1 +7.105427e-15
47 +1.000000e+00 -1 +3.552714e-15
48 +1.000000e+00 -1 +1.776357e-15
49 +1.000000e+00 -1 +8.881784e-16
50 +1.000000e+00 -1  +4.440892e-16

The cases k = 0 and k = 1 are numerically verified (Table 11.5). If we assume that
(11.46) is verified for k, then

Xka1 =Xk — 27K 1 =1 427k kT

=1427%T2-1)=142"D

and the recurrence is verified. From Equation (11.46), we immediately deduce xy 1 <
xx and, consequently, f(xxy1) < f(xx). We thus have a descent method. However,
the sequence (xy )k converges toward 1, which is not a local minimum of the function.
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In this case, the reason the method fails is due to the degeneracy of the steps .
Although these steps are positive, they are closer and closer to 0 and at some point,
the method can no longer progress. A technique aiming to prevent this again exploits
the derivative of the function in the direction dy. At the point xy, the directional
derivative Vf(x;)"dy is negative, because dy is a descent direction. If we were per-
forming an exact line search (see Section 11.2) where the 