Source code for biogeme.expressions

""" Defines the various arithmetic expressions accepted by Biogeme.

:author: Michel Bierlaire

:date: Tue Mar 26 16:47:49 2019

"""

# Too constraining
# pylint: disable=invalid-name

# Too constraining
# pylint: disable=invalid-name, too-many-locals, too-many-arguments
# pylint: disable=too-many-instance-attributes, too-many-lines

import numpy as np
import biogeme.exceptions as excep
import biogeme.cbiogeme as cb
import biogeme.messaging as msg


[docs]def isNumeric(obj): """Identifies if an object is numeric, that is int, float or bool. :param obj: any object :type obj: object :return: True if the object is int, float or bool. :rtype: bool """ return isinstance(obj, (int, float, bool))
[docs]class Expression: """This is the general arithmetic expression in biogeme. It serves as a base class for concrete expressions. """
[docs] def __init__(self): """Constructor""" self.logger = msg.bioMessage() """Logger that controls the output of messages to the screen and log file. Type: class :class:`biogeme.messaging.bioMessage`. """ self.parent = None #: Parent expression self.children = list() #: List of children expressions self.elementaryExpressionIndex = None """Indices of the elementary expressions (dict)""" self.allFreeBetas = dict() #: dict of free parameters self.freeBetaNames = list() #: list of names of free parameters self.allFixedBetas = dict() #: dict of fixed parameters self.fixedBetaNames = list() #: list of names of fixed parameters self.allRandomVariables = None #: dict of random variables self.variableNames = None #: list of variables names self.randomVariableNames = None #: list of random variables names self.allDraws = None #: dict of draws self.drawNames = None #: list of draw types self._row = None """Row of the database where the values of the variables are found """ self.betaIds = None """List of ids of the free beta parameters (those to be estimated) """ self.freeBetaValues = None """List of values of the free beta parameters (those to be estimated) """ self.fixedBetaValues = None """ List of values of the fixed beta parameters (those to be estimated) """
def __repr__(self): """built-in function used to compute the 'official' string reputation of an object :return: description of the expression :rtype: string """ return self.__str__()
[docs] def __add__(self, other): """ Operator overloading. Generate an expression for addition. :param other: expression to be added :type other: biogeme.expressions.Expression :return: self + other :rtype: biogeme.expressions.Expression :raise biogemeError: if one of the expressions is invalid, that is neither a numeric value or a biogeme.expressions.Expression object. """ if not (isNumeric(other) or isinstance(other, Expression)): error_msg = ( f'Invalid expression during addition to {self}: [{other}]' ) raise excep.biogemeError(error_msg) return Plus(self, other)
[docs] def __radd__(self, other): """ Operator overloading. Generate an expression for addition. :param other: expression to be added :type other: biogeme.expressions.Expression :return: other + self :rtype: biogeme.expressions.Expression :raise biogemeError: if one of the expressions is invalid, that is neither a numeric value or a biogeme.expressions.Expression object. """ if not (isNumeric(other) or isinstance(other, Expression)): error_msg = ( f'Invalid expression during addition to {self}: [{other}]' ) raise excep.biogemeError(error_msg) return Plus(other, self)
[docs] def __sub__(self, other): """ Operator overloading. Generate an expression for substraction. :param other: expression to substract :type other: biogeme.expressions.Expression :return: self - other :rtype: biogeme.expressions.Expression :raise biogemeError: if one of the expressions is invalid, that is neither a numeric value or a biogeme.expressions.Expression object. """ if not (isNumeric(other) or isinstance(other, Expression)): error_msg = ( f'Invalid expression during substraction to {self}: [{other}]' ) raise excep.biogemeError(error_msg) return Minus(self, other)
[docs] def __rsub__(self, other): """ Operator overloading. Generate an expression for substraction. :param other: expression to be substracted :type other: biogeme.expressions.Expression :return: other - self :rtype: biogeme.expressions.Expression :raise biogemeError: if one of the expressions is invalid, that is neither a numeric value or a biogeme.expressions.Expression object. """ if not (isNumeric(other) or isinstance(other, Expression)): error_msg = ( f'Invalid expression during substraction of {self}: [{other}]' ) raise excep.biogemeError(error_msg) return Minus(other, self)
[docs] def __mul__(self, other): """ Operator overloading. Generate an expression for multiplication. :param other: expression to be multiplied :type other: biogeme.expressions.Expression :return: self * other :rtype: biogeme.expressions.Expression :raise biogemeError: if one of the expressions is invalid, that is neither a numeric value or a biogeme.expressions.Expression object. """ if not (isNumeric(other) or isinstance(other, Expression)): error_msg = ( f'Invalid expression during multiplication ' f'to {self}: [{other}]' ) raise excep.biogemeError(error_msg) return Times(self, other)
[docs] def __rmul__(self, other): """ Operator overloading. Generate an expression for multiplication. :param other: expression to be multiplied :type other: biogeme.expressions.Expression :return: other * self :rtype: biogeme.expressions.Expression :raise biogemeError: if one of the expressions is invalid, that is neither a numeric value or a biogeme.expressions.Expression object. """ if not (isNumeric(other) or isinstance(other, Expression)): error_msg = ( f'Invalid expression during multiplication ' f'to {self}: [{other}]' ) raise excep.biogemeError(error_msg) return Times(other, self)
[docs] def __div__(self, other): """ Operator overloading. Generate an expression for division. :param other: expression for division :type other: biogeme.expressions.Expression :return: self / other :rtype: biogeme.expressions.Expression :raise biogemeError: if one of the expressions is invalid, that is neither a numeric value or a biogeme.expressions.Expression object. """ if not (isNumeric(other) or isinstance(other, Expression)): error_msg = ( f'Invalid expression during division of {self}: [{other}]' ) raise excep.biogemeError(error_msg) return Divide(self, other)
[docs] def __rdiv__(self, other): """ Operator overloading. Generate an expression for division. :param other: expression for division :type other: biogeme.expressions.Expression :return: other / self :rtype: biogeme.expressions.Expression :raise biogemeError: if one of the expressions is invalid, that is neither a numeric value or a biogeme.expressions.Expression object. """ if not (isNumeric(other) or isinstance(other, Expression)): error_msg = ( f'Invalid expression during division by {self}: [{other}]' ) raise excep.biogemeError(error_msg) return Divide(other, self)
[docs] def __truediv__(self, other): """ Operator overloading. Generate an expression for division. :param other: expression for division :type other: biogeme.expressions.Expression :return: self / other :rtype: biogeme.expressions.Expression :raise biogemeError: if one of the expressions is invalid, that is neither a numeric value or a biogeme.expressions.Expression object. """ if not (isNumeric(other) or isinstance(other, Expression)): error_msg = ( f'Invalid expression during division of {self}: [{other}]' ) raise excep.biogemeError(error_msg) return Divide(self, other)
[docs] def __rtruediv__(self, other): """ Operator overloading. Generate an expression for division. :param other: expression for division :type other: biogeme.expressions.Expression :return: other / self :rtype: biogeme.expressions.Expression :raise biogemeError: if one of the expressions is invalid, that is neither a numeric value or a biogeme.expressions.Expression object. """ if not (isNumeric(other) or isinstance(other, Expression)): error_msg = ( f'Invalid expression during division by {self}: [{other}]' ) raise excep.biogemeError(error_msg) return Divide(other, self)
[docs] def __neg__(self): """ Operator overloading. Generate an expression for unary minus. :return: -self :rtype: biogeme.expressions.Expression """ return UnaryMinus(self)
[docs] def __pow__(self, other): """ Operator overloading. Generate an expression for power. :param other: expression for power :type other: biogeme.expressions.Expression :return: self ^ other :rtype: biogeme.expressions.Expression :raise biogemeError: if one of the expressions is invalid, that is neither a numeric value or a biogeme.expressions.Expression object. """ if not (isNumeric(other) or isinstance(other, Expression)): raise excep.biogemeError( f'This is not a valid expression: {other}' ) return Power(self, other)
[docs] def __rpow__(self, other): """ Operator overloading. Generate an expression for power. :param other: expression for power :type other: biogeme.expressions.Expression :return: other ^ self :rtype: biogeme.expressions.Expression :raise biogemeError: if one of the expressions is invalid, that is neither a numeric value or a biogeme.expressions.Expression object. """ if not (isNumeric(other) or isinstance(other, Expression)): raise excep.biogemeError( f'This is not a valid expression: {other}' ) return Power(other, self)
[docs] def __and__(self, other): """ Operator overloading. Generate an expression for logical and. :param other: expression for logical and :type other: biogeme.expressions.Expression :return: self and other :rtype: biogeme.expressions.Expression :raise biogemeError: if one of the expressions is invalid, that is neither a numeric value or a biogeme.expressions.Expression object. """ if not (isNumeric(other) or isinstance(other, Expression)): raise excep.biogemeError( f'This is not a valid expression: {other}' ) return And(self, other)
[docs] def __or__(self, other): """ Operator overloading. Generate an expression for logical or. :param other: expression for logical or :type other: biogeme.expressions.Expression :return: self or other :rtype: biogeme.expressions.Expression :raise biogemeError: if one of the expressions is invalid, that is neither a numeric value or a biogeme.expressions.Expression object. """ if not (isNumeric(other) or isinstance(other, Expression)): raise excep.biogemeError( f'This is not a valid expression: {other}' ) return Or(self, other)
[docs] def __eq__(self, other): """ Operator overloading. Generate an expression for comparison. :param other: expression for equality :type other: biogeme.expressions.Expression :return: self == other :rtype: biogeme.expressions.Expression :raise biogemeError: if one of the expressions is invalid, that is neither a numeric value or a biogeme.expressions.Expression object. """ if not (isNumeric(other) or isinstance(other, Expression)): raise excep.biogemeError( f'This is not a valid expression: {other}' ) return Equal(self, other)
[docs] def __ne__(self, other): """ Operator overloading. Generate an expression for comparison. :param other: expression for difference :type other: biogeme.expressions.Expression :return: self != other :rtype: biogeme.expressions.Expression :raise biogemeError: if one of the expressions is invalid, that is neither a numeric value or a biogeme.expressions.Expression object. """ if not (isNumeric(other) or isinstance(other, Expression)): raise excep.biogemeError( f'This is not a valid expression: {other}' ) return NotEqual(self, other)
[docs] def __le__(self, other): """ Operator overloading. Generate an expression for comparison. :param other: expression for less or equal :type other: biogeme.expressions.Expression :return: self <= other :rtype: biogeme.expressions.Expression :raise biogemeError: if one of the expressions is invalid, that is neither a numeric value or a biogeme.expressions.Expression object. """ if not (isNumeric(other) or isinstance(other, Expression)): raise excep.biogemeError( f'This is not a valid expression: {other}' ) return LessOrEqual(self, other)
[docs] def __ge__(self, other): """ Operator overloading. Generate an expression for comparison. :param other: expression for greater or equal :type other: biogeme.expressions.Expression :return: self >= other :rtype: biogeme.expressions.Expression :raise biogemeError: if one of the expressions is invalid, that is neither a numeric value or a biogeme.expressions.Expression object. """ if not (isNumeric(other) or isinstance(other, Expression)): raise excep.biogemeError( f'This is not a valid expression: {other}' ) return GreaterOrEqual(self, other)
[docs] def __lt__(self, other): """ Operator overloading. Generate an expression for comparison. :param other: expression for less than :type other: biogeme.expressions.Expression :return: self < other :rtype: biogeme.expressions.Expression :raise biogemeError: if one of the expressions is invalid, that is neither a numeric value or a biogeme.expressions.Expression object. """ if not (isNumeric(other) or isinstance(other, Expression)): raise excep.biogemeError( f'This is not a valid expression: {other}' ) return Less(self, other)
[docs] def __gt__(self, other): """ Operator overloading. Generate an expression for comparison. :param other: expression for greater than :type other: biogeme.expressions.Expression :return: self > other :rtype: biogeme.expressions.Expression :raise biogemeError: if one of the expressions is invalid, that is neither a numeric value or a biogeme.expressions.Expression object. """ if not (isNumeric(other) or isinstance(other, Expression)): raise excep.biogemeError( f'This is not a valid expression: {other}' ) return Greater(self, other)
def _prepareFormulaForEvaluation(self, database): """Extract from the formula the elementary expressions (parameters, variables, random parameters) and decide a numbering convention. """ self.variableNames = list(database.data.columns.values) ( self.elementaryExpressionIndex, self.allFreeBetas, self.freeBetaNames, self.allFixedBetas, self.fixedBetaNames, self.allRandomVariables, self.randomVariableNames, self.allDraws, self.drawNames, ) = defineNumberingOfElementaryExpressions([self], self.variableNames) # List of ids of the free beta parameters (those to be estimated) self.betaIds = list(range(len(self.freeBetaNames))) # List of values of the free beta parameters (those to be estimated) self.freeBetaValues = [ self.allFreeBetas[x].initValue for x in self.freeBetaNames ] # List of values of the fixed beta parameters (those to be estimated) self.fixedBetaValues = [ self.allFixedBetas[x].initValue for x in self.fixedBetaNames ]
[docs] def getValue_c(self, database, numberOfDraws=1000): """ Evaluation of the expression In Biogeme the complexity of some expressions requires a specific implementation, in C++. This function invokes the C++ code to evaluate the value of the expression for a series of entries in a database. Note that this function will generate draws if needed. :param database: database :type database: biogeme.database.Database :param numberOfDraws: number of draws if needed by Monte-Carlo integration. :type numberOfDraws: int :return: a list where each entry is the result of applying the expression on one entry of the dsatabase. :rtype: numpy.array """ self._prepareFormulaForEvaluation(database) if database.isPanel(): # Object containing the C++ implementation used by Biogeme. theC = cb.pyPanelBiogeme() theC.setDataMap(database.individualMap) else: theC = cb.pyBiogeme() theC.setData(database.data) if self.allDraws: database.generateDraws( self.allDraws, self.drawNames, numberOfDraws ) theC.setDraws(database.theDraws) result = theC.simulateFormula( self.getSignature(), self.freeBetaValues, self.fixedBetaValues, database.data, ) return result
[docs] def setOfBetas(self, free=True, fixed=False): """ Extract the set of parameters from the expression. :param free: if True, the free parameters are included. Default: True. :type free: bool :param fixed: if True, the fixed parameters are included. Default: False. :type fixed: bool :return: returns a set with the beta parameters appearing in the expression. :rtype: set(biogeme.expressions.Expression) """ s = set() for e in self.children: s = s.union(e.setOfBetas(free, fixed)) return s
[docs] def setOfVariables(self): """ Extract the set of variables used in the expression. :return: returns a set with the variables appearing in the expression. :rtype: set(biogeme.expressions.Expression) """ return set(self.dictOfVariables().keys())
[docs] def dictOfBetas(self, free=True, fixed=False): """ Extract the set of parameters from the expression. :param free: if True, the free parameters are included. Default: True. :type free: bool :param fixed: if True, the fixed parameters are included. Default: False. :type fixed: bool :return: a dict with the beta parameters appearing in the expression, the keys being the names of the parameters. :rtype: dict(string:biogeme.expressions.Expression) """ s = {} for e in self.children: d = e.dictOfBetas(free, fixed) s = dict(s, **d) return s
[docs] def dictOfVariables(self): """Recursively extract the variables appearing in the expression, and store them in a dictionary. :return: returns a dict with the variables appearing in the expression the keys being their names. :rtype: dict(string:biogeme.expressions.Expression) """ s = {} for e in self.children: d = e.dictOfVariables() s = dict(s, **d) return s
[docs] def dictOfRandomVariables(self): """Recursively extract the random variables appearing in the expression, and store them in a dictionary. :return: returns a dict with the random variables appearing in the expression the keys being their names. :rtype: dict(string:biogeme.expressions.Expression) """ s = {} for e in self.children: d = e.dictOfRandomVariables() s = dict(s, **d) return s
[docs] def getElementaryExpression(self, name): """Return: an elementary expression from its name if it appears in the expression. :param name: name of the elementary expression. :type name: string :return: the expression if it exists. None otherwise. :rtype: biogeme.expressions.Expression """ for e in self.children: if e.getElementaryExpression(name) is not None: return e.getElementaryExpression(name) return None
[docs] def setRow(self, row): """This function identifies the row of the database from which the values of the variables must be obtained. :param row: id of the row. :type row: int """ # Row of the database where the values of the variables are found self._row = row for e in self.children: e.setRow(row)
[docs] def dictOfDraws(self): """Recursively extract the random variables (draws for Monte-Carlo) appearing in the expression, and store them in a dictionary. :return: dict where the keys are the random variables and the elements the type of draws :rtype: dict(string:string) """ draws = {} for e in self.children: d = e.dictOfDraws() if d: draws = dict(draws, **d) return draws
[docs] def setUniqueId(self, idsOfElementaryExpressions): """Provides a unique id to the elementary expressions. :param idsOfElementaryExpressions: dictionary mapping the name of the elementary expression with their id. :type idsOfElementaryExpressions: dict(string:int) """ for e in self.children: e.setUniqueId(idsOfElementaryExpressions)
[docs] def setSpecificIndices( self, indicesOfFreeBetas, indicesOfFixedBetas, indicesOfRandomVariables, indicesOfDraws, ): """Provides an index to all elementary expressions, specific to their type :param indicesOfFreeBetas: dictionary mapping the name of the free betas with their index :type indicesOfFreeBetas: dict(string:int) :param indicesOfFixedBetas: dictionary mapping the name of the fixed betas with their index :type indicesOfFixedBetas: dict(string:int) :param indicesOfRandomVariables: dictionary mapping the name of the random variables with their index :type indicesOfRandomVariables: dict(string:int) :param indicesOfDraws: dictionary mapping the name of the draws with their index :type indicesOfDraws: dict(string:int) """ for e in self.children: e.setSpecificIndices( indicesOfFreeBetas, indicesOfFixedBetas, indicesOfRandomVariables, indicesOfDraws, )
[docs] def setVariableIndices(self, indicesOfVariables): """ Provide an index to all variables :param indicesOfVariables: dictionary mapping the name of the variables with their index :type indicesOfVariables: dict(string:int) """ for e in self.children: e.setVariableIndices(indicesOfVariables)
[docs] def getClassName(self): """ Obtain the name of the top class of the expression structure :return: the name of the class :rtype: string """ n = type(self).__name__ return n
[docs] def getSignature(self): """The signature of a string characterizing an expression. This is designed to be communicated to C++, so that the expression can be reconstructed in this environment. The list contains the following elements: 1. the signatures of all the children expressions, 2. the name of the expression between < > 3. the id of the expression between { } 4. the number of children between ( ) 5. the ids of each children, preceeded by a comma. Consider the following expression: .. math:: 2 \\beta_1 V_1 - \\frac{\\exp(-\\beta_2 V_2) } { \\beta_3 (\\beta_2 \\geq \\beta_1)}. It is defined as:: 2 * beta1 * Variable1 - expressions.exp(-beta2*Variable2) / (beta3 * (beta2 >= beta1)) And its signature is:: [b'<Numeric>{4780527008},2', b'<Beta>{4780277152}"beta1"[0],0,0', b'<Times>{4780526952}(2),4780527008,4780277152', b'<Variable>{4511837152}"Variable1",5,2', b'<Times>{4780527064}(2),4780526952,4511837152', b'<Beta>{4780277656}"beta2"[0],1,1', b'<UnaryMinus>{4780527120}(1),4780277656', b'<Variable>{4511837712}"Variable2",6,3', b'<Times>{4780527176}(2),4780527120,4511837712', b'<exp>{4780527232}(1),4780527176', b'<Beta>{4780277264}"beta3"[1],2,0', b'<Beta>{4780277656}"beta2"[0],1,1', b'<Beta>{4780277152}"beta1"[0],0,0', b'<GreaterOrEqual>{4780527288}(2),4780277656,4780277152', b'<Times>{4780527344}(2),4780277264,4780527288', b'<Divide>{4780527400}(2),4780527232,4780527344', b'<Minus>{4780527456}(2),4780527064,4780527400'] :return: list of the signatures of an expression and its children. :rtype: list(string) """ listOfSignatures = [] for e in self.children: listOfSignatures += e.getSignature() mysignature = f'<{self.getClassName()}>' mysignature += f'{{{id(self)}}}' mysignature += f'({len(self.children)})' for e in self.children: mysignature += f',{id(e)}' listOfSignatures += [mysignature.encode()] return listOfSignatures
[docs] def isContainedIn(self, t): """Check if the expression is contained in an expression of type t. Typically, this would be used to check that a bioDraws expression is contained in a MonteCarlo expression. If not, it cannot be evaluated. :return: True if the expression is contained in an expression of type t. :rtype: bool. See: :func:`biogeme.expressions.Expression.embedExpression` """ if self.parent is None: return False if self.parent.getClassName() == t: return True return self.parent.isContainedIn(t)
[docs] def embedExpression(self, t): """Check if the expression contains an expression of type t. Typically, this would be used to check that a MonteCarlo expression contains a bioDraws expression. :return: True if the expression contains an expression of type t. :rtype: bool See: Expression.isContainedIn """ if self.getClassName() == t: return True for e in self.children: if e.embedExpression(t): return True return False
[docs] def countPanelTrajectoryExpressions(self): """Count the number of times the PanelLikelihoodTrajectory is used in the formula. It should trigger an error if it is used more than once. :return: number of times the PanelLikelihoodTrajectory is used in the formula :rtype: int """ nbr = 0 for e in self.children: nbr += e.countPanelTrajectoryExpressions() return nbr
[docs] def audit(self, database=None): """Performs various checks on the expressions. :param database: database object :type database: biogeme.database.Database :return: tuple listOfErrors, listOfWarnings :rtype: list(string), list(string) """ listOfErrors = [] listOfWarnings = [] for e in self.children: err, war = e.audit(database) listOfErrors += err listOfWarnings += war return listOfErrors, listOfWarnings
[docs] def changeInitValues(self, betas): """Modifies the initial values of the Beta parameters. The fact that the parameters are fixed or free is irrelevant here. :param betas: dictionary where the keys are the names of the parameters, and the values are the new value for the parameters. :type betas: dict(string:float) """ for e in self.children: e.changeInitValues(betas)
[docs]class BinaryOperator(Expression): """ Base class for arithmetic expressions that are binary operators. This expression is the result of the combination of two expressions, typically addition, substraction, multiplication or division. """
[docs] def __init__(self, left, right): """Constructor :param left: first arithmetic expression :type left: biogeme.expressions.Expression :param right: second arithmetic expression :type right: biogeme.expressions.Expression :raise biogemeError: if one of the expressions is invalid, that is neither a numeric value or a biogeme.expressions.Expression object. """ Expression.__init__(self) if isNumeric(left): self.left = Numeric(left) #: left parent else: if not isinstance(left, Expression): raise excep.biogemeError( f'This is not a valid expression: {left}' ) self.left = left if isNumeric(right): self.right = Numeric(right) #: right parent else: if not isinstance(right, Expression): raise excep.biogemeError( f'This is not a valid expression: {right}' ) self.right = right self.left.parent = self self.right.parent = self self.children.append(self.left) self.children.append(self.right)
[docs]class Plus(BinaryOperator): """ Addition expression """
[docs] def __init__(self, left, right): """Constructor :param left: first arithmetic expression :type left: biogeme.expressions.Expression :param right: second arithmetic expression :type right: biogeme.expressions.Expression """ BinaryOperator.__init__(self, left, right)
def __str__(self): return f'({self.left} + {self.right})'
[docs] def getValue(self): """Evaluates the value of the expression :return: value of the expression :rtype: float """ return self.left.getValue() + self.right.getValue()
[docs]class Minus(BinaryOperator): """ Substraction expression """
[docs] def __init__(self, left, right): """Constructor :param left: first arithmetic expression :type left: biogeme.expressions.Expression :param right: second arithmetic expression :type right: biogeme.expressions.Expression """ BinaryOperator.__init__(self, left, right)
def __str__(self): return f'({self.left} - {self.right})'
[docs] def getValue(self): """Evaluates the value of the expression :return: value of the expression :rtype: float """ return self.left.getValue() - self.right.getValue()
[docs]class Times(BinaryOperator): """ Multiplication expression """
[docs] def __init__(self, left, right): """Constructor :param left: first arithmetic expression :type left: biogeme.expressions.Expression :param right: second arithmetic expression :type right: biogeme.expressions.Expression """ BinaryOperator.__init__(self, left, right)
def __str__(self): return f'({self.left} * {self.right})'
[docs] def getValue(self): """Evaluates the value of the expression :return: value of the expression :rtype: float """ return self.left.getValue() * self.right.getValue()
[docs]class Divide(BinaryOperator): """ Division expression """
[docs] def __init__(self, left, right): """Constructor :param left: first arithmetic expression :type left: biogeme.expressions.Expression :param right: second arithmetic expression :type right: biogeme.expressions.Expression """ BinaryOperator.__init__(self, left, right)
def __str__(self): return f'({self.left} / {self.right})'
[docs] def getValue(self): """Evaluates the value of the expression :return: value of the expression :rtype: float """ return self.left.getValue() / self.right.getValue()
[docs]class Power(BinaryOperator): """ Power expression """
[docs] def __init__(self, left, right): """Constructor :param left: first arithmetic expression :type left: biogeme.expressions.Expression :param right: second arithmetic expression :type right: biogeme.expressions.Expression """ BinaryOperator.__init__(self, left, right)
def __str__(self): return f'({self.left} ** {self.right})'
[docs] def getValue(self): """Evaluates the value of the expression :return: value of the expression :rtype: float """ return self.left.getValue() ** self.right.getValue()
[docs]class bioMin(BinaryOperator): """ Minimum of two expressions """
[docs] def __init__(self, left, right): """Constructor :param left: first arithmetic expression :type left: biogeme.expressions.Expression :param right: second arithmetic expression :type right: biogeme.expressions.Expression """ BinaryOperator.__init__(self, left, right)
def __str__(self): return f'bioMin({self.left}, {self.right})'
[docs] def getValue(self): """Evaluates the value of the expression :return: value of the expression :rtype: float """ if self.left.getValue() <= self.right.getValue(): return self.left.getValue() return self.right.getValue()
[docs]class bioMax(BinaryOperator): """ Maximum of two expressions """
[docs] def __init__(self, left, right): """Constructor :param left: first arithmetic expression :type left: biogeme.expressions.Expression :param right: second arithmetic expression :type right: biogeme.expressions.Expression """ BinaryOperator.__init__(self, left, right)
def __str__(self): return f'bioMax({self.left}, {self.right})'
[docs] def getValue(self): """Evaluates the value of the expression :return: value of the expression :rtype: float """ if self.left.getValue() >= self.right.getValue(): return self.left.getValue() return self.right.getValue()
[docs]class And(BinaryOperator): """ Logical and """
[docs] def __init__(self, left, right): """Constructor :param left: first arithmetic expression :type left: biogeme.expressions.Expression :param right: second arithmetic expression :type right: biogeme.expressions.Expression """ BinaryOperator.__init__(self, left, right)
def __str__(self): return f'({self.left} and {self.right})'
[docs] def getValue(self): """Evaluates the value of the expression :return: value of the expression :rtype: float """ if self.left.getValue() == 0.0: return 0.0 if self.right.getValue() == 0.0: return 0.0 return 1.0
[docs]class Or(BinaryOperator): """ Logical or """
[docs] def __init__(self, left, right): """Constructor :param left: first arithmetic expression :type left: biogeme.expressions.Expression :param right: second arithmetic expression :type right: biogeme.expressions.Expression """ BinaryOperator.__init__(self, left, right)
def __str__(self): return f'({self.left} or {self.right})'
[docs] def getValue(self): """Evaluates the value of the expression :return: value of the expression :rtype: float """ if self.left.getValue() != 0.0: return 1.0 if self.right.getValue() != 0.0: return 1.0 return 0.0
[docs]class Equal(BinaryOperator): """ Logical equal """
[docs] def __init__(self, left, right): """Constructor :param left: first arithmetic expression :type left: biogeme.expressions.Expression :param right: second arithmetic expression :type right: biogeme.expressions.Expression """ BinaryOperator.__init__(self, left, right)
def __str__(self): return f'({self.left} == {self.right})'
[docs] def getValue(self): """Evaluates the value of the expression :return: value of the expression :rtype: float """ r = 1 if self.left.getValue() == self.right.getValue() else 0 return r
[docs]class NotEqual(BinaryOperator): """ Logical not equal """
[docs] def __init__(self, left, right): """Constructor :param left: first arithmetic expression :type left: biogeme.expressions.Expression :param right: second arithmetic expression :type right: biogeme.expressions.Expression """ BinaryOperator.__init__(self, left, right)
def __str__(self): return f'({self.left} != {self.right})'
[docs] def getValue(self): """Evaluates the value of the expression :return: value of the expression :rtype: float """ r = 1 if self.left.getValue() != self.right.getValue() else 0 return r
[docs]class LessOrEqual(BinaryOperator): """ Logical less or equal """
[docs] def __init__(self, left, right): """Constructor :param left: first arithmetic expression :type left: biogeme.expressions.Expression :param right: second arithmetic expression :type right: biogeme.expressions.Expression """ BinaryOperator.__init__(self, left, right)
def __str__(self): return f'({self.left} <= {self.right})'
[docs] def getValue(self): """Evaluates the value of the expression :return: value of the expression :rtype: float """ r = 1 if self.left.getValue() <= self.right.getValue() else 0 return r
[docs]class GreaterOrEqual(BinaryOperator): """ Logical greater or equal """
[docs] def __init__(self, left, right): """Constructor :param left: first arithmetic expression :type left: biogeme.expressions.Expression :param right: second arithmetic expression :type right: biogeme.expressions.Expression """ BinaryOperator.__init__(self, left, right)
def __str__(self): return f'({self.left} >= {self.right})'
[docs] def getValue(self): """Evaluates the value of the expression :return: value of the expression :rtype: float """ r = 1 if self.left.getValue() >= self.right.getValue() else 0 return r
[docs]class Less(BinaryOperator): """ Logical less """
[docs] def __init__(self, left, right): """Constructor :param left: first arithmetic expression :type left: biogeme.expressions.Expression :param right: second arithmetic expression :type right: biogeme.expressions.Expression """ BinaryOperator.__init__(self, left, right)
def __str__(self): return f'({self.left} < {self.right})'
[docs] def getValue(self): """Evaluates the value of the expression :return: value of the expression :rtype: float """ r = 1 if self.left.getValue() < self.right.getValue() else 0 return r
[docs]class Greater(BinaryOperator): """ Logical greater """
[docs] def __init__(self, left, right): """Constructor :param left: first arithmetic expression :type left: biogeme.expressions.Expression :param right: second arithmetic expression :type right: biogeme.expressions.Expression """ BinaryOperator.__init__(self, left, right)
def __str__(self): return f'({self.left} > {self.right})'
[docs] def getValue(self): """Evaluates the value of the expression :return: value of the expression :rtype: float """ r = 1 if self.left.getValue() > self.right.getValue() else 0 return r
[docs]class UnaryOperator(Expression): """ Base class for arithmetic expressions that are unary operators. Such an expression is the result of the modification of another expressions, typically changing its sign. """
[docs] def __init__(self, child): """Constructor :param child: first arithmetic expression :type child: biogeme.expressions.Expression :raise biogemeError: if one of the expressions is invalid, that is neither a numeric value or a biogeme.expressions.Expression object. """ Expression.__init__(self) if isNumeric(child): self.child = Numeric(child) #: child else: if not isinstance(child, Expression): raise excep.biogemeError( f'This is not a valid expression: {child}' ) self.child = child self.child.parent = self self.children.append(self.child)
[docs]class UnaryMinus(UnaryOperator): """ Unary minus expression """
[docs] def __init__(self, child): """Constructor :param child: first arithmetic expression :type child: biogeme.expressions.Expression """ UnaryOperator.__init__(self, child)
def __str__(self): return f'(-{self.child})'
[docs] def getValue(self): """Evaluates the value of the expression :return: value of the expression :rtype: float """ return -self.child.getValue()
[docs]class MonteCarlo(UnaryOperator): """ Monte Carlo integration """
[docs] def __init__(self, child): """Constructor :param child: arithmetic expression :type child: biogeme.expressions.Expression """ UnaryOperator.__init__(self, child)
def __str__(self): return f'MonteCarlo({self.child})'
[docs] def audit(self, database=None): """Performs various checks on the expressions. :param database: database object :type database: biogeme.database.Database :return: tuple listOfErrors, listOfWarnings :rtype: list(string), list(string) """ listOfErrors, listOfWarnings = self.child.audit(database) if database.isPanel() and not self.child.embedExpression( 'PanelLikelihoodTrajectory' ): theError = ( f'As the database is panel, the argument ' f'of MonteCarlo must contain a' f' PanelLikelihoodTrajectory: {self}' ) listOfErrors.append(theError) if not self.child.embedExpression('bioDraws'): theError = ( f'The argument of MonteCarlo must contain a' f' bioDraws: {self}' ) listOfErrors.append(theError) if self.child.embedExpression('MonteCarlo'): theError = ( f'It is not possible to include a MonteCarlo ' f'statement in another one: {self}' ) listOfErrors.append(theError) return listOfErrors, listOfWarnings
[docs]class bioNormalCdf(UnaryOperator): """ Cumulative Distribution Function of a normal random variable """
[docs] def __init__(self, child): """Constructor :param child: first arithmetic expression :type child: biogeme.expressions.Expression """ UnaryOperator.__init__(self, child)
def __str__(self): return f'bioNormalCdf({self.child})'
[docs]class PanelLikelihoodTrajectory(UnaryOperator): """ Likelihood of a sequences of observations for the same individual """
[docs] def __init__(self, child): """Constructor :param child: first arithmetic expression :type child: biogeme.expressions.Expression """ UnaryOperator.__init__(self, child)
def __str__(self): return f'PanelLikelihoodTrajectory({self.child})'
[docs] def countPanelTrajectoryExpressions(self): """Count the number of times the PanelLikelihoodTrajectory is used in the formula. """ return 1 + self.child.countPanelTrajectoryExpressions()
[docs] def audit(self, database=None): """Performs various checks on the expressions. :param database: database object :type database: biogeme.database.Database :return: tuple listOfErrors, listOfWarnings :rtype: list(string), list(string) """ listOfErrors = [] listOfWarnings = [] if not database.isPanel(): theError = ( f'Expression PanelLikelihoodTrajectory can ' f'only be used with panel data. Use the statement ' f'database.panel("IndividualId") to declare the ' f'panel structure of the data: {self}' ) listOfErrors.append(theError) return listOfErrors, listOfWarnings
[docs]class exp(UnaryOperator): """ exponential expression """
[docs] def __init__(self, child): """Constructor :param child: first arithmetic expression :type child: biogeme.expressions.Expression """ UnaryOperator.__init__(self, child)
def __str__(self): return f'exp({self.child})'
[docs] def getValue(self): """Evaluates the value of the expression :return: value of the expression :rtype: float """ return np.exp(self.child.getValue())
[docs]class log(UnaryOperator): """ logarithm expression """
[docs] def __init__(self, child): """Constructor :param child: first arithmetic expression :type child: biogeme.expressions.Expression """ UnaryOperator.__init__(self, child)
def __str__(self): return f'log({self.child})'
[docs] def getValue(self): """Evaluates the value of the expression :return: value of the expression :rtype: float """ return np.log(self.child.getValue())
[docs]class Derive(UnaryOperator): """ Derivative with respect to an elementary expression """
[docs] def __init__(self, child, name): """Constructor :param child: first arithmetic expression :type child: biogeme.expressions.Expression """ UnaryOperator.__init__(self, child) # Name of the elementary expression by which the derivative is taken self.elementaryName = name # Unique ID of the expression self.elementaryIndex = None
[docs] def setUniqueId(self, idsOfElementaryExpressions): """ Provides a unique id to the elementary expressions. :param idsOfElementaryExpressions: dictionary mapping the name of the elementary expression with their id. :type idsOfElementaryExpressions: dict(string:int) :raise biogemeError: if no index is available for an expression. """ if self.elementaryName in idsOfElementaryExpressions: self.elementaryIndex = idsOfElementaryExpressions[ self.elementaryName ] else: error_msg = ( f'No index is available for elementary ' f'expression {self.elementaryName}.' ) raise excep.biogemeError(error_msg) self.child.setUniqueId(idsOfElementaryExpressions)
[docs] def getSignature(self): """The signature of a string characterizing an expression. This is designed to be communicated to C++, so that the expression can be reconstructed in this environment. The list contains the following elements: 1. the signatures of the child expression, 2. the name of the expression between < > 3. the id of the expression between { } 4. the id of the child, preceeded by a comma. Consider the following expression: .. math:: 2 \\beta_1 V_1 - \\frac{\\exp(-\\beta_2 V_2) }{ \\beta_3 (\\beta_2 \\geq \\beta_1)}. It is defined as:: 2 * beta1 * Variable1 - expressions.exp(-beta2*Variable2) / (beta3 * (beta2 >= beta1)) And its signature is:: [b'<Numeric>{4780527008},2', b'<Beta>{4780277152}"beta1"[0],0,0', b'<Times>{4780526952}(2),4780527008,4780277152', b'<Variable>{4511837152}"Variable1",5,2', b'<Times>{4780527064}(2),4780526952,4511837152', b'<Beta>{4780277656}"beta2"[0],1,1', b'<UnaryMinus>{4780527120}(1),4780277656', b'<Variable>{4511837712}"Variable2",6,3', b'<Times>{4780527176}(2),4780527120,4511837712', b'<exp>{4780527232}(1),4780527176', b'<Beta>{4780277264}"beta3"[1],2,0', b'<Beta>{4780277656}"beta2"[0],1,1', b'<Beta>{4780277152}"beta1"[0],0,0', b'<GreaterOrEqual>{4780527288}(2),4780277656,4780277152', b'<Times>{4780527344}(2),4780277264,4780527288', b'<Divide>{4780527400}(2),4780527232,4780527344', b'<Minus>{4780527456}(2),4780527064,4780527400'] :return: list of the signatures of an expression and its children. :rtype: list(string) """ listOfSignatures = [] listOfSignatures += self.child.getSignature() mysignature = f'<{self.getClassName()}>' mysignature += f'{{{id(self)}}}' mysignature += f',{id(self.child)}' mysignature += f',{self.elementaryIndex}' listOfSignatures += [mysignature.encode()] return listOfSignatures
def __str__(self): return 'Derive({self.child}, "{self.elementName}")'
[docs]class Integrate(UnaryOperator): """ Numerical integration """
[docs] def __init__(self, child, name): """Constructor :param child: first arithmetic expression :type child: biogeme.expressions.Expression :param name: name of the random variable for the integration. :type name: string """ UnaryOperator.__init__(self, child) self.randomVariableName = name self.randomVariableIndex = None
[docs] def audit(self, database=None): """Performs various checks on the expressions. :param database: database object :type database: biogeme.database.Database :return: tuple listOfErrors, listOfWarnings :rtype: list(string), list(string) """ listOfErrors, listOfWarnings = self.child.audit(database) if not self.child.embedExpression('RandomVariable'): theError = ( f'The argument of Integrate must contain a ' f'RandomVariable: {self}' ) listOfErrors.append(theError) return listOfErrors, listOfWarnings
[docs] def setUniqueId(self, idsOfElementaryExpressions): """Provides a unique id to the elementary expressions. Overloads the generic function :param idsOfElementaryExpressions: dictionary mapping the name of the elementary expression with their id. :type idsOfElementaryExpressions: dict(string:int) :raise biogemeError: if no index is available for a random variable. """ if self.randomVariableName in idsOfElementaryExpressions: self.randomVariableIndex = idsOfElementaryExpressions[ self.randomVariableName ] else: error_msg = ( f'No index is available for random variable ' f'{self.randomVariableName}.' ) raise excep.biogemeError(error_msg) self.child.setUniqueId(idsOfElementaryExpressions)
[docs] def setSpecificIndices( self, indicesOfFreeBetas, indicesOfFixedBetas, indicesOfRandomVariables, indicesOfDraws, ): """ Provide an index to all elementary expressions, specific to their type Overloads the generic function. :param indicesOfFreeBetas: dictionary mapping the name of the free betas with their index :type indicesOfFreeBetas: dict(string:int) :param indicesOfFixedBetas: dictionary mapping the name of the fixed betas with their index :type indicesOfFixedBetas: dict(string:int) :param indicesOfRandomVariables: dictionary mapping the name of the random variables with their index :type indicesOfRandomVariables: dict(string:int) :param indicesOfDraws: dictionary mapping the name of the draws with their index :type indicesOfDraws: dict(string:int) :raise biogemeError: if no index is available for a random variable. """ if self.randomVariableName in indicesOfRandomVariables: self.randomVariableIndex = indicesOfRandomVariables[ self.randomVariableName ] else: error_msg = ( f'No index is available for random variable ' f'{self.randomVariableName}. Known random variables:' f' {indicesOfRandomVariables.keys()}' ) raise excep.biogemeError(error_msg) self.child.setSpecificIndices( indicesOfFreeBetas, indicesOfFixedBetas, indicesOfRandomVariables, indicesOfDraws, )
[docs] def getSignature(self): """The signature of a string characterizing an expression. This is designed to be communicated to C++, so that the expression can be reconstructed in this environment. The list contains the following elements: 1. the signatures of the child expression, 2. the name of the expression between < > 3. the id of the expression between { }, preceeded by a comma 4. the id of the children, preceeded by a comma 5. the index of the randon variable, preceeded by a comma Consider the following expression: .. math:: 2 \\beta_1 V_1 - \\frac{\\exp(-\\beta_2 V_2) } { \\beta_3 (\\beta_2 \\geq \\beta_1)}. It is defined as:: 2 * beta1 * Variable1 - expressions.exp(-beta2*Variable2) / (beta3 * (beta2 >= beta1)) And its signature is:: [b'<Numeric>{4780527008},2', b'<Beta>{4780277152}"beta1"[0],0,0', b'<Times>{4780526952}(2),4780527008,4780277152', b'<Variable>{4511837152}"Variable1",5,2', b'<Times>{4780527064}(2),4780526952,4511837152', b'<Beta>{4780277656}"beta2"[0],1,1', b'<UnaryMinus>{4780527120}(1),4780277656', b'<Variable>{4511837712}"Variable2",6,3', b'<Times>{4780527176}(2),4780527120,4511837712', b'<exp>{4780527232}(1),4780527176', b'<Beta>{4780277264}"beta3"[1],2,0', b'<Beta>{4780277656}"beta2"[0],1,1', b'<Beta>{4780277152}"beta1"[0],0,0', b'<GreaterOrEqual>{4780527288}(2),4780277656,4780277152', b'<Times>{4780527344}(2),4780277264,4780527288', b'<Divide>{4780527400}(2),4780527232,4780527344', b'<Minus>{4780527456}(2),4780527064,4780527400'] :return: list of the signatures of an expression and its children. :rtype: list(string) """ listOfSignatures = [] listOfSignatures += self.child.getSignature() mysignature = f'<{self.getClassName()}>' mysignature += f'{{{id(self)}}}' mysignature += f',{id(self.child)}' mysignature += f',{self.randomVariableIndex}' listOfSignatures += [mysignature.encode()] return listOfSignatures
def __str__(self): return f'Integrate({self.child}, "{self.randomVariableName}")'
[docs]class Elementary(Expression): """Elementary expression. It is typically defined by a name appearing in an expression. It can be a variable (from the database), or a parameter (fixed or to be estimated using maximum likelihood), a random variable for numrerical integration, or Monte-Carlo integration. """
[docs] def __init__(self, name): """Constructor :param name: name of the elementary experession. :type name: string """ Expression.__init__(self) self.name = name #: name of the elementary expressiom self.uniqueId = None """The id should be unique for all elementary expressions appearing in a given set of formulas. """
def __str__(self): """string method :return: name of the expression :rtype: str """ return self.name
[docs] def getElementaryExpression(self, name): """ :return: an elementary expression from its name if it appears in the expression. None otherwise. :rtype: biogeme.Expression """ if self.name == name: return self return None
[docs] def setUniqueId(self, idsOfElementaryExpressions): """ Provides a unique id to the elementary expressions. Overloads the generic function :param idsOfElementaryExpressions: dictionary mapping the name of the elementary expression with their id. :type idsOfElementaryExpressions: dict(string:int) :raise biogemeError: if no index is available for an expression. """ if self.name in idsOfElementaryExpressions: self.uniqueId = idsOfElementaryExpressions[self.name] else: error_msg = ( f'No index is available for expression {self.name}.' f' List of available indices: ' f'{[n for n, i in idsOfElementaryExpressions.items() ]}' ) raise excep.biogemeError(error_msg)
[docs]class bioDraws(Elementary): """ Draws for Monte-Carlo integration """
[docs] def __init__(self, name, drawType): """Constructor :param name: name of the random variable with a series of draws. :type name: string :param drawType: type of draws. :type drawType: string """ Elementary.__init__(self, name) self.drawType = drawType self.drawId = None
def __str__(self): return f'bioDraws("{self.name}", "{self.drawType}")'
[docs] def setSpecificIndices( self, indicesOfFreeBetas, indicesOfFixedBetas, indicesOfRandomVariables, indicesOfDraws, ): """ Provide an index to all elementary expressions, specific to their type Overloads the generic function. :param indicesOfFreeBetas: dictionary mapping the name of the free betas with their index :type indicesOfFreeBetas: dict(string:int) :param indicesOfFixedBetas: dictionary mapping the name of the fixed betas with their index :type indicesOfFixedBetas: dict(string:int) :param indicesOfRandomVariables: dictionary mapping the name of the random variables with their index :type indicesOfRandomVariables: dict(string:int) :param indicesOfDraws: dictionary mapping the name of the draws with their index :type indicesOfDraws: dict(string:int) :raise biogemeError: if no index is available for one draw type. """ if self.name in indicesOfDraws: self.drawId = indicesOfDraws[self.name] else: error_msg = ( f'No index is available for draw {self.drawType}.' f' Known types of draws: {indicesOfDraws.keys()}' ) raise excep.biogemeError(error_msg)
[docs] def getSignature(self): """The signature of a string characterizing an expression. This is designed to be communicated to C++, so that the expression can be reconstructed in this environment. The list contains the following elements: 1. the name of the expression between < > 2. the id of the expression between { }, preceeded by a comma 3. the name of the draws 4. the unique ID (preceeded by a comma), 5. the draw ID (preceeded by a comma). Consider the following expression: .. math:: 2 \\beta_1 V_1 - \\frac{\\exp(-\\beta_2 V_2) }{ \\beta_3 (\\beta_2 \\geq \\beta_1)}. It is defined as:: 2 * beta1 * Variable1 - expressions.exp(-beta2*Variable2) / (beta3 * (beta2 >= beta1)) And its signature is:: [b'<Numeric>{4780527008},2', b'<Beta>{4780277152}"beta1"[0],0,0', b'<Times>{4780526952}(2),4780527008,4780277152', b'<Variable>{4511837152}"Variable1",5,2', b'<Times>{4780527064}(2),4780526952,4511837152', b'<Beta>{4780277656}"beta2"[0],1,1', b'<UnaryMinus>{4780527120}(1),4780277656', b'<Variable>{4511837712}"Variable2",6,3', b'<Times>{4780527176}(2),4780527120,4511837712', b'<exp>{4780527232}(1),4780527176', b'<Beta>{4780277264}"beta3"[1],2,0', b'<Beta>{4780277656}"beta2"[0],1,1', b'<Beta>{4780277152}"beta1"[0],0,0', b'<GreaterOrEqual>{4780527288}(2),4780277656,4780277152', b'<Times>{4780527344}(2),4780277264,4780527288', b'<Divide>{4780527400}(2),4780527232,4780527344', b'<Minus>{4780527456}(2),4780527064,4780527400'] :return: list of the signatures of an expression and its children. :rtype: list(string) :raise biogeme.exceptions.biogemeError: if no id has been defined for elementary expression :raise biogeme.exceptions.biogemeError: if no id has been defined for draw """ if self.uniqueId is None: error_msg = ( f'No id has been defined for elementary ' f'expression {self.name}.' ) raise excep.biogemeError(error_msg) if self.drawId is None: error_msg = f'No id has been defined for draw {self.name}.' raise excep.biogemeError(error_msg) signature = f'<{self.getClassName()}>' signature += f'{{{id(self)}}}' signature += f'"{self.name}",{self.uniqueId},{self.drawId}' return [signature.encode()]
[docs] def dictOfDraws(self): """Recursively extract the random variables (draws for Monte-Carlo). Overloads the generic function. appearing in the expression, and store them in a dictionary. :return: dict where the keys are the random variables and the elements the type of draws. Here, contains only one element. :rtype: dict(string:string) """ return {self.name: self.drawType}
[docs] def setDrawIndex(self, idsOfDraws): """ Provide an index to a series of draw for a random variable. Overload the generic function. :param idsOfDraws: dictionary mapping the name of the draws with their id. :type idsOfDraws: dict(string:int) :raise biogemeError: if no id is available for a draw. """ if self.name in idsOfDraws: self.drawId = idsOfDraws[self.name] else: error_msg = ( f'No id is available for draw {self.name}. ' f'List of available indices: ' f'{[n for n, i in idsOfDraws.items()]}' ) raise excep.biogemeError(error_msg)
[docs] def audit(self, database=None): """Performs various checks on the expressions. :param database: database object :type database: biogeme.database.Database :return: tuple listOfErrors, listOfWarnings :rtype: list(string), list(string) """ listOfErrors = [] listOfWarnings = [] if not self.isContainedIn('MonteCarlo'): theError = ( f'bioDraws expression must be embedded into a ' f'MonteCarlo: {self}' ) listOfErrors.append(theError) return listOfErrors, listOfWarnings
[docs]class Numeric(Expression): """ Numerical expression for a simple number """
[docs] def __init__(self, value): """Constructor :param value: numerical value :type value: float """ Expression.__init__(self) self.value = value #: numeric value
def __str__(self): return '`' + str(self.value) + '`'
[docs] def getValue(self): """Evaluates the value of the expression :return: value of the expression :rtype: float """ return self.value
[docs] def getSignature(self): """The signature of a string characterizing an expression. This is designed to be communicated to C++, so that the expression can be reconstructed in this environment. The list contains the following elements: 1. the name of the expression between < > 2. the id of the expression between { } 3. the value, preceeded by a comma. Consider the following expression: .. math:: 2 \\beta_1 V_1 - \\frac{\\exp(-\\beta_2 V_2) }{ \\beta_3 (\\beta_2 \\geq \\beta_1)}. It is defined as:: 2 * beta1 * Variable1 - expressions.exp(-beta2*Variable2) / (beta3 * (beta2 >= beta1)) And its signature is:: [b'<Numeric>{4780527008},2', b'<Beta>{4780277152}"beta1"[0],0,0', b'<Times>{4780526952}(2),4780527008,4780277152', b'<Variable>{4511837152}"Variable1",5,2', b'<Times>{4780527064}(2),4780526952,4511837152', b'<Beta>{4780277656}"beta2"[0],1,1', b'<UnaryMinus>{4780527120}(1),4780277656', b'<Variable>{4511837712}"Variable2",6,3', b'<Times>{4780527176}(2),4780527120,4511837712', b'<exp>{4780527232}(1),4780527176', b'<Beta>{4780277264}"beta3"[1],2,0', b'<Beta>{4780277656}"beta2"[0],1,1', b'<Beta>{4780277152}"beta1"[0],0,0', b'<GreaterOrEqual>{4780527288}(2),4780277656,4780277152', b'<Times>{4780527344}(2),4780277264,4780527288', b'<Divide>{4780527400}(2),4780527232,4780527344', b'<Minus>{4780527456}(2),4780527064,4780527400'] :return: list of the signatures of an expression and its children. :rtype: list(string) """ signature = f'<{self.getClassName()}>' signature += f'{{{id(self)}}}' signature += f',{self.value}' return [signature.encode()]
[docs]class Variable(Elementary): """Explanatory variable This represents the explanatory variables of the choice model. Typically, they come from the data set. """
[docs] def __init__(self, name): """Constructor :param name: name of the variable. :type name: string """ Elementary.__init__(self, name) # Index of the variable self.variableId = None
[docs] def getValue(self): """Evaluates the value of the expression :return: value of the expression :rtype: float """ return self._row[self.name]
[docs] def dictOfVariables(self): """Recursively extract the variables appearing in the expression, and store them in a dictionary. Overload the generic function. :return: returns a dict with the variables appearing in the expression the keys being their names. Here, it contains only one element. :rtype: dict(string:biogeme.expressions.Expression) """ return {self.name: self}
[docs] def audit(self, database=None): """Performs various checks on the expressions. :param database: database object :type database: biogeme.database.Database :return: tuple listOfErrors, listOfWarnings :rtype: list(string), list(string) :raise biogemeError: if no database is provided. :raise biogemeError: if the name of the variable does not appear in the database. """ listOfErrors = [] listOfWarnings = [] if database is None: raise excep.biogemeError( 'The database must be provided to audit the variable.' ) if self.name not in database.data.columns: theError = f'Variable {self.name} not found in the database.' listOfErrors.append(theError) return listOfErrors, listOfWarnings
[docs] def setVariableIndices(self, indicesOfVariables): """ Provide an index to all variables :param indicesOfVariables: dictionary mapping the name of the variables with their index :type indicesOfVariables: dict(string:int) """ if self.name in indicesOfVariables: self.variableId = indicesOfVariables[self.name]
[docs] def getSignature(self): """The signature of a string characterizing an expression. This is designed to be communicated to C++, so that the expression can be reconstructed in this environment. The list contains the following elements: 1. the name of the expression between < > 2. the id of the expression between { } 3. the name of the variable, 4. the unique ID, preceeded by a comma. 5. the variabvle ID, preceeded by a comma. Consider the following expression: .. math:: 2 \\beta_1 V_1 - \\frac{\\exp(-\\beta_2 V_2) }{ \\beta_3 (\\beta_2 \\geq \\beta_1)}. It is defined as:: 2 * beta1 * Variable1 - expressions.exp(-beta2*Variable2) / (beta3 * (beta2 >= beta1)) And its signature is:: [b'<Numeric>{4780527008},2', b'<Beta>{4780277152}"beta1"[0],0,0', b'<Times>{4780526952}(2),4780527008,4780277152', b'<Variable>{4511837152}"Variable1",5,2', b'<Times>{4780527064}(2),4780526952,4511837152', b'<Beta>{4780277656}"beta2"[0],1,1', b'<UnaryMinus>{4780527120}(1),4780277656', b'<Variable>{4511837712}"Variable2",6,3', b'<Times>{4780527176}(2),4780527120,4511837712', b'<exp>{4780527232}(1),4780527176', b'<Beta>{4780277264}"beta3"[1],2,0', b'<Beta>{4780277656}"beta2"[0],1,1', b'<Beta>{4780277152}"beta1"[0],0,0', b'<GreaterOrEqual>{4780527288}(2),4780277656,4780277152', b'<Times>{4780527344}(2),4780277264,4780527288', b'<Divide>{4780527400}(2),4780527232,4780527344', b'<Minus>{4780527456}(2),4780527064,4780527400'] :return: list of the signatures of an expression and its children. :rtype: list(string) :raise biogeme.exceptions.biogemeError: if no id has been defined for elementary expression :raise biogeme.exceptions.biogemeError: if no id has been defined for variable """ if self.uniqueId is None: error_msg = ( f'No id has been defined for elementary expression ' f'{self.name}.' ) raise excep.biogemeError(error_msg) if self.variableId is None: error_msg = f'No id has been defined for variable {self.name}.' raise excep.biogemeError(error_msg) signature = f'<{self.getClassName()}>' signature += f'{{{id(self)}}}' signature += f'"{self.name}",{self.uniqueId},{self.variableId}' return [signature.encode()]
[docs]class DefineVariable(Variable): """Expression that defines a new variable and add a column in the database. This expression allows the use to define a new variable that will be added to the database. It avoids that it is recalculated each time it is needed. """
[docs] def __init__(self, name, expression, database): """Constructor :param name: name of the variable. :type name: string :param expression: formula that defines the variable :param type: biogeme.expressions.Expression :param database: object identifying the database. :type database: biogeme.database.Database :raise biogemeError: if the expression is invalid, that is neither a numeric value or a biogeme.expressions.Expression object. """ Variable.__init__(self, name) if isNumeric(expression): database.addColumn(Numeric(expression), name) else: if not isinstance(expression, Expression): raise excep.biogemeError( f'This is not a valid expression: {expression}' ) database.addColumn(expression, name)
[docs]class RandomVariable(Elementary): """ Random variable for numerical integration """
[docs] def __init__(self, name): """Constructor :param name: name of the random variable involved in the integration. :type name: string. """ Elementary.__init__(self, name) # Index of the random variable self.rvId = None
[docs] def audit(self, database=None): """Performs various checks on the expressions. :param database: database object :type database: biogeme.database.Database :return: tuple listOfErrors, listOfWarnings :rtype: list(string), list(string) """ listOfErrors = [] listOfWarnings = [] if not self.isContainedIn('Integrate'): theError = ( f'RandomVariable expression must be embedded into ' f'a integrate: {self}' ) listOfErrors.append(theError) return listOfErrors, listOfWarnings
[docs] def dictOfRandomVariables(self): """Recursively extract the random variables appearing in the expression, and store them in a dictionary. Overloads the generic function. :return: returns a dict with the random variables appearing in the expression the keys being their names. :rtype: dict(string:biogeme.expressions.Expression) """ return {self.name: self}
[docs] def setSpecificIndices( self, indicesOfFreeBetas, indicesOfFixedBetas, indicesOfRandomVariables, indicesOfDraws, ): """ Provide an index to all elementary expressions, specific to their type Overloads the generic function. :param indicesOfFreeBetas: dictionary mapping the name of the free betas with their index :type indicesOfFreeBetas: dict(string:int) :param indicesOfFixedBetas: dictionary mapping the name of the fixed betas with their index :type indicesOfFixedBetas: dict(string:int) :param indicesOfRandomVariables: dictionary mapping the name of the random variables with their index :type indicesOfRandomVariables: dict(string:int) :param indicesOfDraws: dictionary mapping the name of the draws with their index :type indicesOfDraws: dict(string:int) :raise biogemeError: if no index is available for a random variable. """ if self.name in indicesOfRandomVariables: self.rvId = indicesOfRandomVariables[self.name] else: error_msg = ( f'No index is available for random variable ' f'{self.name}. Known random variables: ' f'{indicesOfRandomVariables.keys()}' ) raise excep.biogemeError(error_msg)
[docs] def getSignature(self): """The signature of a string characterizing an expression. This is designed to be communicated to C++, so that the expression can be reconstructed in this environment. The list contains the following elements: 1. the name of the expression between < > 2. the id of the expression between { } 3. the name of the random variable, 4. the unique ID, preceeded by a comma, 5. the ID of the random variable. Consider the following expression: .. math:: 2 \\beta_1 V_1 - \\frac{\\exp(-\\beta_2 V_2) }{ \\beta_3 (\\beta_2 \\geq \\beta_1)}. It is defined as:: 2 * beta1 * Variable1 - expressions.exp(-beta2*Variable2) / (beta3 * (beta2 >= beta1)) And its signature is:: [b'<Numeric>{4780527008},2', b'<Beta>{4780277152}"beta1"[0],0,0', b'<Times>{4780526952}(2),4780527008,4780277152', b'<Variable>{4511837152}"Variable1",5,2', b'<Times>{4780527064}(2),4780526952,4511837152', b'<Beta>{4780277656}"beta2"[0],1,1', b'<UnaryMinus>{4780527120}(1),4780277656', b'<Variable>{4511837712}"Variable2",6,3', b'<Times>{4780527176}(2),4780527120,4511837712', b'<exp>{4780527232}(1),4780527176', b'<Beta>{4780277264}"beta3"[1],2,0', b'<Beta>{4780277656}"beta2"[0],1,1', b'<Beta>{4780277152}"beta1"[0],0,0', b'<GreaterOrEqual>{4780527288}(2),4780277656,4780277152', b'<Times>{4780527344}(2),4780277264,4780527288', b'<Divide>{4780527400}(2),4780527232,4780527344', b'<Minus>{4780527456}(2),4780527064,4780527400'] :return: list of the signatures of an expression and its children. :rtype: list(string) :raise biogeme.exceptions.biogemeError: if no id has been defined for elementary expression :raise biogeme.exceptions.biogemeError: if no id has been defined for random variable """ if self.uniqueId is None: error_msg = ( f'No id has been defined for elementary ' f'expression {self.name}.' ) raise excep.biogemeError(error_msg) if self.rvId is None: error_msg = ( f'No id has been defined for random variable {self.name}.' ) raise excep.biogemeError(error_msg) signature = f'<{self.getClassName()}>' signature += f'{{{id(self)}}}' signature += f'"{self.name}",{self.uniqueId},{self.rvId}' return [signature.encode()]
[docs]class Beta(Elementary): """ Unknown parameters to be estimated from data. """
[docs] def __init__(self, name, value, lowerbound, upperbound, status): """Constructor :param name: name of the parameter. :type name: string :param value: default value. :type value: float :param lowerbound: if different from None, imposes a lower bound on the value of the parameter during the optimization. :type lowerbound: float :param upperbound: if different from None, imposes an upper bound on the value of the parameter during the optimization. :type upperbound: float :param status: if different from 0, the parameter is fixed to its default value, and not modified by the optimization algorithm. :type status: int :raise biogemeError: if the first parameter is not a str. :raise biogemeError: if the second parameter is not a int or a float. """ if not isinstance(value, (int, float)): error_msg = ( f'The second parameter for {name} must be ' f'a float and not a {type(value)}: {value}' ) raise excep.biogemeError(error_msg) if not isinstance(name, str): error_msg = ( f'The first parameter must be a string and ' f'not a {type(name)}: {name}' ) raise excep.biogemeError(error_msg) Elementary.__init__(self, name) self.initValue = value self.lb = lowerbound self.ub = upperbound self.status = status self.betaId = None
def __str__(self): return f'{self.name}({self.initValue})'
[docs] def setOfBetas(self, free=True, fixed=False): """Extract the set of parameters from the expression. Overload the generic function. :param free: if True, the free parameters are included. Default: True. :type free: bool :param fixed: if True, the fixed parameters are included. Default: False. :type fixed: bool :return: returns a set with the beta parameters appearing in the expression. :rtype: set(biogeme.expressions.Expression) """ if fixed and self.status != 0: return set([self.name]) if free and self.status == 0: return set([self.name]) return set()
[docs] def setSpecificIndices( self, indicesOfFreeBetas, indicesOfFixedBetas, indicesOfRandomVariables, indicesOfDraws, ): """ Provide an index to all elementary expressions, specific to their type :param indicesOfFreeBetas: dictionary mapping the name of the free betas with their index :type indicesOfFreeBetas: dict(string:int) :param indicesOfFixedBetas: dictionary mapping the name of the fixed betas with their index :type indicesOfFixedBetas: dict(string:int) :param indicesOfRandomVariables: dictionary mapping the name of the random variables with their index :type indicesOfRandomVariables: dict(string:int) :param indicesOfDraws: dictionary mapping the name of the draws with their index :type indicesOfDraws: dict(string:int) :raise biogemeError: if no index is available for one of the parameters """ if self.status != 0: if self.name in indicesOfFixedBetas: self.betaId = indicesOfFixedBetas[self.name] else: error_msg = ( f'No index is available for fixed parameter ' f'{self.name}. Known fixed parameters: ' '{indicesOfFixedBetas.keys()}' ) raise excep.biogemeError(error_msg) else: if self.name in indicesOfFreeBetas: self.betaId = indicesOfFreeBetas[self.name] else: error_msg = ( f'No index is available for free parameter ' f'{self.name}. Known free parameters: ' f'{indicesOfFreeBetas.keys()}' ) raise excep.biogemeError(error_msg)
[docs] def dictOfBetas(self, free=True, fixed=False): """Extract the set of parameters from the expression. Overload the generic function. :param free: if True, the free parameters are included. Default: True. :type free: bool :param fixed: if True, the fixed parameters are included. Default: False. :type fixed: bool :return: a dict with the beta parameters appearing in the expression, the keys being the names of the parameters. :rtype: dict(string:biogeme.expressions.Expression) """ if fixed and self.status != 0: return {self.name: self} if free and self.status == 0: return {self.name: self} return dict()
[docs] def getValue(self): """Evaluates the value of the expression :return: value of the expression :rtype: float """ return self.initValue
[docs] def changeInitValues(self, betas): """Modifies the initial values of the Beta parameters. The fact that the parameters are fixed or free is irrelevant here. :param betas: dictionary where the keys are the names of the parameters, and the values are the new value for the parameters. :type betas: dict(string:float) """ if self.name in betas: self.initValue = betas[self.name]
[docs] def getSignature(self): """The signature of a string characterizing an expression. This is designed to be communicated to C++, so that the expression can be reconstructed in this environment. The list contains the following elements: 1. the name of the expression between < > 2. the id of the expression between { } 3. the name of the parameter, 4. the status between [ ] 5. the unique ID, preceeded by a comma 6. the beta ID, preceeded by a comma Consider the following expression: .. math:: 2 \\beta_1 V_1 - \\frac{\\exp(-\\beta_2 V_2) }{ \\beta_3 (\\beta_2 \\geq \\beta_1)}. It is defined as:: 2 * beta1 * Variable1 - expressions.exp(-beta2*Variable2) / (beta3 * (beta2 >= beta1)) And its signature is:: [b'<Numeric>{4780527008},2', b'<Beta>{4780277152}"beta1"[0],0,0', b'<Times>{4780526952}(2),4780527008,4780277152', b'<Variable>{4511837152}"Variable1",5,2', b'<Times>{4780527064}(2),4780526952,4511837152', b'<Beta>{4780277656}"beta2"[0],1,1', b'<UnaryMinus>{4780527120}(1),4780277656', b'<Variable>{4511837712}"Variable2",6,3', b'<Times>{4780527176}(2),4780527120,4511837712', b'<exp>{4780527232}(1),4780527176', b'<Beta>{4780277264}"beta3"[1],2,0', b'<Beta>{4780277656}"beta2"[0],1,1', b'<Beta>{4780277152}"beta1"[0],0,0', b'<GreaterOrEqual>{4780527288}(2),4780277656,4780277152', b'<Times>{4780527344}(2),4780277264,4780527288', b'<Divide>{4780527400}(2),4780527232,4780527344', b'<Minus>{4780527456}(2),4780527064,4780527400'] :return: list of the signatures of an expression and its children. :rtype: list(string) :raise biogeme.exceptions.biogemeError: if no id has been defined for elementary expression :raise biogeme.exceptions.biogemeError: if no id has been defined for parameter """ if self.uniqueId is None: error_msg = ( f'No id has been defined for elementary ' f'expression {self.name}.' ) raise excep.biogemeError(error_msg) if self.betaId is None: raise excep.biogemeError( f'No id has been defined for parameter {self.name}.' ) signature = f'<{self.getClassName()}>' signature += f'{{{id(self)}}}' signature += ( f'"{self.name}"[{self.status}],{self.uniqueId},{self.betaId}' ) return [signature.encode()]
[docs]class LogLogit(Expression): """Expression capturing the logit formula. It contains one formula for the target alternative, a dict of formula for the availabilities and a dict of formulas for the utilities """
[docs] def __init__(self, util, av, choice): """Constructor :param util: dictionary where the keys are the identifiers of the alternatives, and the elements are objects defining the utility functions. :type util: dict(int:biogeme.expressions.Expression) :param av: dictionary where the keys are the identifiers of the alternatives, and the elements are object of type biogeme.expressions.Expression defining the availability conditions. If av is None, all the alternatives are assumed to be always available :type av: dict(int:biogeme.expressions.Expression) :param choice: formula to obtain the alternative for which the logit probability must be calculated. :type choice: biogeme.expressions.Expression :raise biogemeError: if one of the expressions is invalid, that is neither a numeric value or a biogeme.expressions.Expression object. """ Expression.__init__(self) self.util = {} #: dict of utility functions for i, e in util.items(): if isNumeric(e): self.util[i] = Numeric(e) else: if not isinstance(e, Expression): raise excep.biogemeError( f'This is not a valid expression: {e}' ) self.util[i] = e self.av = {} #: dict of availability formulas if av is None: self.av = {k: Numeric(1) for k, v in util.items()} else: for i, e in av.items(): if isNumeric(e): self.av[i] = Numeric(e) else: if not isinstance(e, Expression): raise excep.biogemeError( f'This is not a valid expression: {e}' ) self.av[i] = e if isNumeric(choice): self.choice = Numeric(choice) """expression for the chosen alternative""" else: if not isinstance(choice, Expression): raise excep.biogemeError( f'This is not a valid expression: {choice}' ) self.choice = choice self.choice.parent = self self.children.append(self.choice) for i, e in self.util.items(): e.parent = self self.children.append(e) for i, e in self.av.items(): e.parent = self self.children.append(e)
[docs] def audit(self, database=None): """Performs various checks on the expressions. :param database: database object :type database: biogeme.database.Database :return: tuple listOfErrors, listOfWarnings :rtype: list(string), list(string) """ listOfErrors = [] listOfWarnings = [] for e in self.children: err, war = e.audit(database) listOfErrors += err listOfWarnings += war if self.util.keys() != self.av.keys(): theError = ( 'Incompatible list of alternatives in logit expression. ' ) consistent = False myset = self.util.keys() - self.av.keys() if myset: mysetContent = ', '.join(f'{str(k)} ' for k in myset) theError += ( 'Id(s) used for utilities and not for ' 'availabilities: ' ) + mysetContent myset = self.av.keys() - self.util.keys() if myset: mysetContent = ', '.join(f'{str(k)} ' for k in myset) theError += ( ' Id(s) used for availabilities and not ' 'for utilities: ' ) + mysetContent listOfErrors.append(theError) else: consistent = True listOfAlternatives = list(self.util) choices = database.valuesFromDatabase(self.choice) correctChoices = choices.isin(listOfAlternatives) indexOfIncorrectChoices = correctChoices.index[ correctChoices == False ].tolist() if indexOfIncorrectChoices: incorrectChoices = choices[indexOfIncorrectChoices] content = '-'.join( '{}[{}]'.format(*t) for t in zip(indexOfIncorrectChoices, incorrectChoices) ) truncate = 100 if len(content) > truncate: content = f'{content[:truncate]}...' theError = ( f'The choice variable [{self.choice}] does not ' f'correspond to a valid alternative for the ' f'following observations (rownumber[choice]): ' ) + content listOfErrors.append(theError) if consistent: choiceAvailability = database.checkAvailabilityOfChosenAlt( self.av, self.choice ) indexOfUnavailableChoices = choiceAvailability.index[ choiceAvailability == False ].tolist() if indexOfUnavailableChoices: incorrectChoices = choices[indexOfUnavailableChoices] content = '-'.join( '{}[{}]'.format(*t) for t in zip(indexOfUnavailableChoices, incorrectChoices) ) truncate = 100 if len(content) > truncate: content = f'{content[:truncate]}...' theError = ( f'The chosen alternative [{self.choice}] ' f'is not available for the following ' f'observations (rownumber[choice]): ' ) + content listOfWarnings.append(theError) return listOfErrors, listOfWarnings
[docs] def getValue(self): """Evaluates the value of the expression :return: value of the expression :rtype: float """ choice = int(self.choice.getValue()) if choice not in self.util: self.logger.warning( f'Choice is {choice}. List of alternatives ' f'is {self.util.keys()}' ) return np.nan if self.av[choice].getValue() == 0.0: return -np.log(0) Vchosen = self.util[choice].getValue() denom = 0.0 for i, V in self.util.items(): if self.av[i].getValue() != 0.0: denom += np.exp(V.getValue() - Vchosen) return -np.log(denom)
def __str__(self): s = self.getClassName() s += '(' first = True for i, e in self.util.items(): if first: s += f'{int(i)}:{e}' first = False else: s += f', {int(i)}:{e}' s += ')' return s
[docs] def getSignature(self): """The signature of a string characterizing an expression. This is designed to be communicated to C++, so that the expression can be reconstructed in this environment. The list contains the following elements: 1. the signatures of all the children expressions, 2. the name of the expression between < > 3. the id of the expression between { } 4. the number of alternatives between ( ) 5. the id of the expression for the chosen alternative, preceeded by a comma. 6. for each alternative, separated by commas: a. the number of the alternative, as defined by the user, b. the id of the expression for the utility, c. the id of the expression for the availability condition. Consider the following expression: .. math:: 2 \\beta_1 V_1 - \\frac{\\exp(-\\beta_2 V_2) }{ \\beta_3 (\\beta_2 \\geq \\beta_1)}. It is defined as:: 2 * beta1 * Variable1 - expressions.exp(-beta2*Variable2) / (beta3 * (beta2 >= beta1)) And its signature is:: [b'<Numeric>{4780527008},2', b'<Beta>{4780277152}"beta1"[0],0,0', b'<Times>{4780526952}(2),4780527008,4780277152', b'<Variable>{4511837152}"Variable1",5,2', b'<Times>{4780527064}(2),4780526952,4511837152', b'<Beta>{4780277656}"beta2"[0],1,1', b'<UnaryMinus>{4780527120}(1),4780277656', b'<Variable>{4511837712}"Variable2",6,3', b'<Times>{4780527176}(2),4780527120,4511837712', b'<exp>{4780527232}(1),4780527176', b'<Beta>{4780277264}"beta3"[1],2,0', b'<Beta>{4780277656}"beta2"[0],1,1', b'<Beta>{4780277152}"beta1"[0],0,0', b'<GreaterOrEqual>{4780527288}(2),4780277656,4780277152', b'<Times>{4780527344}(2),4780277264,4780527288', b'<Divide>{4780527400}(2),4780527232,4780527344', b'<Minus>{4780527456}(2),4780527064,4780527400'] :return: list of the signatures of an expression and its children. :rtype: list(string) """ listOfSignatures = [] for e in self.children: listOfSignatures += e.getSignature() signature = f'<{self.getClassName()}>' signature += f'{{{id(self)}}}' signature += f'({len(self.util)})' signature += f',{id(self.choice)}' for i, e in self.util.items(): signature += f',{i},{id(e)},{id(self.av[i])}' listOfSignatures += [signature.encode()] return listOfSignatures
class _bioLogLogit(LogLogit): """log of logit formula This expression captures the logarithm of the logit formula. It contains one formula for the target alternative, a dict of formula for the availabilities and a dict of formulas for the utilities It uses only the C++ implementation. """ class _bioLogLogitFullChoiceSet(LogLogit): """This expression captures the logarithm of the logit formula, where all alternatives are supposed to be always available. It contains one formula for the target alternative and a dict of formulas for the utilities. It uses only the C++ implementation. """
[docs]class bioMultSum(Expression): """This expression returns the sum of several other expressions. It is a generalization of 'Plus' for more than two terms """
[docs] def __init__(self, listOfExpressions): """Constructor :param listOfExpressions: list of objects representing the terms of the sum. :type listOfExpressions: list(biogeme.expressions.Expression) :raise biogemeError: if one of the expressions is invalid, that is neither a numeric value or a biogeme.expressions.Expression object. """ Expression.__init__(self) if isinstance(listOfExpressions, dict): for e in listOfExpressions.values(): if isNumeric(e): theExpression = Numeric(e) theExpression.parent = self self.children.append(theExpression) else: if not isinstance(e, Expression): raise excep.biogemeError( f'This is not a valid expression: {e}' ) e.parent = self self.children.append(e) elif isinstance(listOfExpressions, list): for e in listOfExpressions: if isNumeric(e): theExpression = Numeric(e) theExpression.parent = self self.children.append(theExpression) else: if not isinstance(e, Expression): raise excep.biogemeError( f'This is not a valid expression: {e}' ) e.parent = self self.children.append(e) else: raise excep.biogemeError( 'Argument of bioMultSum must be a dict or a list.' )
[docs] def getValue(self): """Evaluates the value of the expression :return: value of the expression :rtype: float """ result = 0.0 for e in self.children: result += e.getValue() return result
def __str__(self): s = 'bioMultSum(' + ', '.join([f'{e}' for e in self.children]) + ')' return s
[docs]class Elem(Expression): """This returns the element of a dictionary. The key is evaluated from an expression. """
[docs] def __init__(self, dictOfExpressions, keyExpression): """Constructor :param dictOfExpressions: dict of objects with numerical keys. :type dictOfExpressions: dict(int: biogeme.expressions.Expression) :param keyExpression: object providing the key of the element to be evaluated. :type keyExpression: biogeme.expressions.Expression :raise biogemeError: if one of the expressions is invalid, that is neither a numeric value or a biogeme.expressions.Expression object. """ Expression.__init__(self) self.dictOfExpressions = {} #: dict of expressions for k, v in dictOfExpressions.items(): if isNumeric(v): self.dictOfExpressions[k] = Numeric(v) else: if not isinstance(v, Expression): raise excep.biogemeError( f'This is not a valid expression: {v}' ) self.dictOfExpressions[k] = v self.dictOfExpressions[k].parent = self self.children.append(self.dictOfExpressions[k]) if isinstance(keyExpression, bool): self.keyExpression = Numeric(1) if keyExpression else Numeric(0) elif isNumeric(keyExpression): self.keyExpression = Numeric(keyExpression) else: if not isinstance(keyExpression, Expression): raise excep.biogemeError( f'This is not a valid expression: {keyExpression}' ) self.keyExpression = keyExpression #: expression for the key self.keyExpression.parent = self self.children.append(self.keyExpression)
[docs] def getValue(self): """Evaluates the value of the expression :return: value of the expression :rtype: float """ key = int(self.keyExpression.getValue()) if key in self.dictOfExpressions: return self.dictOfExpressions[key].getValue() return 0.0
def __str__(self): s = '{{' first = True for k, v in self.dictOfExpressions.items(): if first: s += '{}:{}'.format(k, v) first = False else: s += ', {}:{}'.format(k, v) s += '}}[{}]'.format(self.keyExpression) return s
[docs] def getSignature(self): """The signature of a string characterizing an expression. This is designed to be communicated to C++, so that the expression can be reconstructed in this environment. The list contains the following elements: 1. the signature of the expression defining the key 2. the signatures of all the children expressions, 3. the name of the expression between < > 4. the id of the expression between { } 5. the number of elements between ( ) 6. the id of the expression defining the key 7. for each element: the value of the key and the id of the expression, separated by commas. Consider the following expression: .. math:: 2 \\beta_1 V_1 - \\frac{\\exp(-\\beta_2 V_2) }{ \\beta_3 (\\beta_2 \\geq \\beta_1)}. It is defined as:: 2 * beta1 * Variable1 - expressions.exp(-beta2*Variable2) / (beta3 * (beta2 >= beta1)) And its signature is:: [b'<Numeric>{4780527008},2', b'<Beta>{4780277152}"beta1"[0],0,0', b'<Times>{4780526952}(2),4780527008,4780277152', b'<Variable>{4511837152}"Variable1",5,2', b'<Times>{4780527064}(2),4780526952,4511837152', b'<Beta>{4780277656}"beta2"[0],1,1', b'<UnaryMinus>{4780527120}(1),4780277656', b'<Variable>{4511837712}"Variable2",6,3', b'<Times>{4780527176}(2),4780527120,4511837712', b'<exp>{4780527232}(1),4780527176', b'<Beta>{4780277264}"beta3"[1],2,0', b'<Beta>{4780277656}"beta2"[0],1,1', b'<Beta>{4780277152}"beta1"[0],0,0', b'<GreaterOrEqual>{4780527288}(2),4780277656,4780277152', b'<Times>{4780527344}(2),4780277264,4780527288', b'<Divide>{4780527400}(2),4780527232,4780527344', b'<Minus>{4780527456}(2),4780527064,4780527400'] :return: list of the signatures of an expression and its children. :rtype: list(string) """ listOfSignatures = [] listOfSignatures += self.keyExpression.getSignature() for i, e in self.dictOfExpressions.items(): listOfSignatures += e.getSignature() signature = '<{}>'.format(self.getClassName()) signature += '{{{}}}'.format(id(self)) signature += '({})'.format(len(self.dictOfExpressions)) signature += ',{}'.format(id(self.keyExpression)) for i, e in self.dictOfExpressions.items(): signature += f',{i},{id(e)}' listOfSignatures += [signature.encode()] return listOfSignatures
[docs]class bioLinearUtility(Expression): """When the utility function is linear, it is expressed as a list of terms, where a parameter multiplies a variable. """
[docs] def __init__(self, listOfTerms): """Constructor :param listOfTerms: a list of tuple. Each tuple contains first a beta parameter, second the name of a variable. :type listOfTerms: list(biogeme.expressions.Expression, biogeme.expressions.Expression) :raises biogeme.exceptions.biogemeError: if the object is not a list of tuples (parameter, variable) """ Expression.__init__(self) theError = "" first = True for b, v in listOfTerms: if not isinstance(b, Beta): if first: theError += ( 'Each element of the bioLinearUtility ' 'must be a tuple (parameter, variable). ' ) first = False theError += f' Expression {b} is not a parameter.' if not isinstance(v, Variable): if first: theError += ( 'Each element of the list should be ' 'a tuple (parameter, variable).' ) first = False theError += f' Expression {v} is not a variable.' if not first: raise excep.biogemeError(theError) self.betas, self.variables = zip(*listOfTerms) self.betas = list(self.betas) #: list of parameters self.variables = list(self.variables) #: list of variables self.listOfTerms = list(zip(self.betas, self.variables)) """ List of terms """ self.children += self.betas + self.variables
def __str__(self): return ' + '.join([f'{b} * {x}' for b, x in self.listOfTerms])
[docs] def setOfBetas(self, free=True, fixed=False): """ Extract the set of parameters from the expression. :param free: if True, the free parameters are included. Default: True. :type free: bool :param fixed: if True, the fixed parameters are included. Default: False. :type fixed: bool :return: returns a set with the beta parameters appearing in the expression. :rtype: set(biogeme.expressions.Expression) """ if free: return set(self.betas) return set()
[docs] def dictOfBetas(self, free=True, fixed=False): """ Extract the set of parameters from the expression. :param free: if True, the free parameters are included. Default: True. :type free: bool :param fixed: if True, the fixed parameters are included. Default: False. :type fixed: bool :return: a dict with the beta parameters appearing in the expression, the keys being the names of the parameters. :rtype: dict(string:biogeme.expressions.Expression) """ freenames = {x.name: x for x in self.betas if x.status == 0} fixednames = {x.name: x for x in self.betas if x.status != 0} if free and fixed: allnames = {**freenames, **fixednames} return allnames if free: return freenames if fixed: return fixednames return dict()
[docs] def dictOfVariables(self): """Recursively extract the variables appearing in the expression, and store them in a dictionary. Overloads the generic function. :return: returns a dict with the variables appearing in the expression the keys being their names. :rtype: dict(string:biogeme.expressions.Expression) """ return {x.name: x for x in self.variables}
[docs] def dictOfRandomVariables(self): """Recursively extract the random variables appearing in the expression, and store them in a dictionary. :return: returns a dict with the random variables appearing in the expression the keys being their names. :rtype: dict(string:biogeme.expressions.Expression) """ return dict()
[docs] def dictOfDraws(self): """Recursively extract the random variables (draws for Monte-Carlo). Overloads the generic function. appearing in the expression, and store them in a dictionary. :return: dict where the keys are the random variables and the elements the type of draws. Here, returns an empty dict. :rtype: dict(string:string) """ return dict()
[docs] def getSignature(self): """The signature of a string characterizing an expression. This is designed to be communicated to C++, so that the expression can be reconstructed in this environment. The list contains the following elements: 1. the signatures of all the children expressions, 2. the name of the expression between < > 3. the id of the expression between { } 4. the number of terms in the utility ( ) 5. for each term: a. the id of the beta parameter b. the unique id of the beta parameter c. the name of the parameter d. the id of the variable e. the unique id of the variable f. the name of the variable Consider the following expression: .. math:: 2 \\beta_1 V_1 - \\frac{\\exp(-\\beta_2 V_2) }{ \\beta_3 (\\beta_2 \\geq \\beta_1)}. It is defined as:: 2 * beta1 * Variable1 - expressions.exp(-beta2*Variable2) / (beta3 * (beta2 >= beta1)) And its signature is:: [b'<Numeric>{4780527008},2', b'<Beta>{4780277152}"beta1"[0],0,0', b'<Times>{4780526952}(2),4780527008,4780277152', b'<Variable>{4511837152}"Variable1",5,2', b'<Times>{4780527064}(2),4780526952,4511837152', b'<Beta>{4780277656}"beta2"[0],1,1', b'<UnaryMinus>{4780527120}(1),4780277656', b'<Variable>{4511837712}"Variable2",6,3', b'<Times>{4780527176}(2),4780527120,4511837712', b'<exp>{4780527232}(1),4780527176', b'<Beta>{4780277264}"beta3"[1],2,0', b'<Beta>{4780277656}"beta2"[0],1,1', b'<Beta>{4780277152}"beta1"[0],0,0', b'<GreaterOrEqual>{4780527288}(2),4780277656,4780277152', b'<Times>{4780527344}(2),4780277264,4780527288', b'<Divide>{4780527400}(2),4780527232,4780527344', b'<Minus>{4780527456}(2),4780527064,4780527400'] :return: list of the signatures of an expression and its children. :rtype: list(string) """ listOfSignatures = [] for e in self.children: listOfSignatures += e.getSignature() signature = f'<{self.getClassName()}>' signature += f'{{{id(self)}}}' signature += '({})'.format(len(self.listOfTerms)) for b, v in self.listOfTerms: signature += ( f',{id(b)},{b.uniqueId},{b.name},{id(v)},{v.uniqueId},{v.name}' ) listOfSignatures += [signature.encode()] return listOfSignatures
[docs]def defineNumberingOfElementaryExpressions( collectionOfFormulas, variableNames ): """Provides indices for elementary expressions The numbering is done in the following order: (i) free betas, (ii) fixed betas, (iii) random variables for numrerical integration, (iv) random variables for Monte-Carlo integration, (v) variables The numbering convention will be performed for all expressions together, so that the same elementary expressions in several expressions will have the same index. :param collectionOfFormulas: collection of Biogeme expressions. :type collectionOfFormulas: list(biogeme.expressions.Expression) :param variableNames: list of the names of the variables :type variableNames: list(string) :return: dict, free, freeNames, fixed, fixedNames, rv, rvNames, draws, drawsNames where - dict is a dictionary mapping the names of the elementary expressions with their index, - free is a dict with the free betas, - freeNames is a list of the names of the free betas, - fixed is a dict with the fixed betas, - fixedNames is the list of the names of the fixed betas, - rv is a dict with the random variables for numerical integration, - rvNames is a list with their names, - draws is a dict of the draws, and - drawsNames is a list with their names. :rtype: tuple(dict(str: class Expression), dict(str: class Beta), list(str), dict(str: class Beta), list(str), dict(str: class RandomVariable), list(str), dict(str: class bioDraws), list(str)) :raise biogemeError: if some elementary expressions are defined more than once. """ # Free parameters (to be estimated), sorted by alphatical order. allFreeBetas = dict() freeBetaIndex = {} for f in collectionOfFormulas: d = f.dictOfBetas(free=True, fixed=False) allFreeBetas = dict(allFreeBetas, **d) freeBetaNames = sorted(allFreeBetas) # for i in range(len(freeBetaNames)): for i, v in enumerate(freeBetaNames): freeBetaIndex[v] = i # Fixed parameters (not to be estimated), sorted by alphatical order. allFixedBetas = dict() fixedBetaIndex = {} for f in collectionOfFormulas: d = f.dictOfBetas(free=False, fixed=True) allFixedBetas = dict(allFixedBetas, **d) fixedBetaNames = sorted(allFixedBetas) # for i in range(len(fixedBetaNames)): for i, v in enumerate(fixedBetaNames): fixedBetaIndex[v] = i # Random variables for numerical integration allRandomVariables = dict() randomVariableIndex = {} for f in collectionOfFormulas: d = f.dictOfRandomVariables() allRandomVariables = dict(allRandomVariables, **d) randomVariableNames = sorted(allRandomVariables) # for i in range(len(randomVariableNames)): for i, v in enumerate(randomVariableNames): randomVariableIndex[v] = i # Draws allDraws = dict() drawIndex = {} for f in collectionOfFormulas: d = f.dictOfDraws() allDraws = dict(allDraws, **d) drawNames = sorted(allDraws) # for i in range(len(drawNames)): for i, v in enumerate(drawNames): drawIndex[v] = i # Variables variableIndex = {} # for i in range(len(variableNames)): for i, v in enumerate(variableNames): variableIndex[v] = i # Merge all the names allElementaryExpressions = ( freeBetaNames + fixedBetaNames + randomVariableNames + drawNames + variableNames ) if len(allElementaryExpressions) != len(set(allElementaryExpressions)): duplicates = { x for x in allElementaryExpressions if allElementaryExpressions.count(x) > 1 } error_msg = ( f'The following elementary expressions are defined ' f'more than once: {duplicates}.' ) raise excep.biogemeError(error_msg) elementaryExpressionIndex = {} for i, v in enumerate(allElementaryExpressions): elementaryExpressionIndex[v] = i for f in collectionOfFormulas: f.setUniqueId(elementaryExpressionIndex) f.setSpecificIndices( freeBetaIndex, fixedBetaIndex, randomVariableIndex, drawIndex ) f.setVariableIndices(variableIndex) return ( elementaryExpressionIndex, allFreeBetas, freeBetaNames, allFixedBetas, fixedBetaNames, allRandomVariables, randomVariableNames, allDraws, drawNames, )