This file has automatically been generated.
Thu Jul 7 17:44:57 2016
Tip: click on the columns headers to sort a table [Credits]
Example of a mixture of logit model with panel data for a transportation mode choice with 3 alternatives: |
- Train |
- Car |
- Swissmetro, an hypothetical high-speed train |
The time coefficient is normally distributed. This is an example of a mixture of logit model. |
The syntax for a distributed coefficient is B_TIME [ B_TIME_S ], where |
B_TIME is the mean and B_TIME_S squared is the variance. |
The square brackets are associated with a normal distribution. |
For seminonparametric terms are included to test the distribution of the error component for the Train alternative (see Fosgerau and Bierlaire, 2007) |
Model: | Mixed Logit for panel data |
Number of Hess-Train draws: | 500 |
Number of estimated parameters: | 9 |
Number of observations: | 6768 |
Number of individuals: | 752 |
Null log likelihood: | -6964.663 |
Init log likelihood: | -4359.824 |
Final log likelihood: | -4306.211 |
Likelihood ratio test: | 5316.904 |
Rho-square: | 0.382 |
Adjusted rho-square: | 0.380 |
Final gradient norm: | +5.038e-05 |
Diagnostic: | Normal termination. Obj: 6.05545e-06 Const: 6.05545e-06 |
Iterations: | 34 |
Run time: | 02h 52:13 |
Variance-covariance: | from finite difference hessian |
Sample file: | ../swissmetro.dat |
Name | Value | Std err | t-test | p-value | Robust Std err | Robust t-test | p-value | ||
---|---|---|---|---|---|---|---|---|---|
ASC_CAR | 0.297 | 0.0592 | 5.01 | 0.00 | 0.115 | 2.58 | 0.01 | ||
ASC_SM | 0.00 | fixed | |||||||
ASC_TRAIN | -0.606 | 0.0856 | -7.08 | 0.00 | 0.155 | -3.92 | 0.00 | ||
B_COST | -1.69 | 0.0799 | -21.13 | 0.00 | 0.292 | -5.77 | 0.00 | ||
B_TIME | -3.72 | 0.451 | -8.26 | 0.00 | 0.459 | -8.11 | 0.00 | ||
B_TIME_S | 9.89 | 0.871 | 11.35 | 0.00 | 0.965 | 10.25 | 0.00 | ||
SMP1 | 0.233 | 0.166 | 1.40 | 0.16 | * | 0.147 | 1.58 | 0.11 | * |
SMP2 | -0.629 | 0.141 | -4.45 | 0.00 | 0.111 | -5.65 | 0.00 | ||
SMP3 | -0.357 | 0.126 | -2.83 | 0.00 | 0.115 | -3.11 | 0.00 | ||
SMP4 | 0.874 | 0.181 | 4.83 | 0.00 | 0.163 | 5.38 | 0.00 |
Id | Name | Availability | Specification |
---|---|---|---|
1 | A1_TRAIN | TRAIN_AV_SP | ASC_TRAIN * one + B_TIME [ B_TIME_S ] * TRAIN_TT_SCALED + B_COST * TRAIN_COST_SCALED |
2 | A2_SM | SM_AV | ASC_SM * one + B_TIME [ B_TIME_S ] * SM_TT_SCALED + B_COST * SM_COST_SCALED |
3 | A3_Car | CAR_AV_SP | ASC_CAR * one + B_TIME [ B_TIME_S ] * CAR_TT_SCALED + B_COST * CAR_CO_SCALED |
Base parameter: B_TIME_B_TIME_S
List of terms:
Term of order | Coefficient |
---|---|
1 | SMP1 |
2 | SMP2 |
3 | SMP3 |
4 | SMP4 |
Name | Value | Std err | t-test | Robust Std err | Robust t-test |
---|---|---|---|---|---|
B_TIME_B_TIME_S | 97.9 | 17.2 | 5.68 |
Coefficient1 | Coefficient2 | Covariance | Correlation | t-test | p-value | Rob. cov. | Rob. corr. | Rob. t-test | p-value | ||
---|---|---|---|---|---|---|---|---|---|---|---|
ASC_TRAIN | SMP2 | -0.000585 | -0.0484 | 0.14 | 0.89 | * | -0.00177 | -0.103 | 0.11 | 0.91 | * |
ASC_CAR | SMP1 | -0.000645 | -0.0657 | 0.35 | 0.72 | * | -0.00303 | -0.179 | 0.31 | 0.75 | * |
ASC_TRAIN | SMP3 | -5.48e-05 | -0.00507 | -1.62 | 0.10 | * | -0.000150 | -0.00844 | -1.28 | 0.20 | * |
SMP2 | SMP3 | -0.00375 | -0.210 | -1.30 | 0.19 | * | -0.00516 | -0.403 | -1.43 | 0.15 | * |
SMP1 | SMP3 | -0.0175 | -0.837 | 2.11 | 0.04 | -0.0141 | -0.833 | 2.35 | 0.02 | ||
SMP1 | SMP4 | -0.00126 | -0.0419 | -2.56 | 0.01 | -0.00939 | -0.392 | -2.48 | 0.01 | ||
ASC_CAR | SMP4 | 0.000957 | 0.0893 | -3.11 | 0.00 | 0.00317 | 0.170 | -3.16 | 0.00 | ||
B_COST | SMP2 | 0.000336 | 0.0298 | -6.61 | 0.00 | -0.00110 | -0.0337 | -3.35 | 0.00 | ||
ASC_TRAIN | B_COST | 0.000888 | 0.130 | 9.90 | 0.00 | 0.00991 | 0.219 | 3.62 | 0.00 | ||
ASC_TRAIN | SMP1 | -0.000821 | -0.0578 | -4.39 | 0.00 | -0.00222 | -0.0974 | -3.75 | 0.00 | ||
ASC_CAR | SMP3 | 5.67e-05 | 0.00758 | 4.70 | 0.00 | 0.000696 | 0.0526 | 4.13 | 0.00 | ||
B_COST | SMP3 | -0.000241 | -0.0239 | -8.80 | 0.00 | 0.000337 | 0.0100 | -4.25 | 0.00 | ||
B_COST | B_TIME | 0.00295 | 0.0819 | 4.51 | 0.00 | 0.0500 | 0.373 | 4.60 | 0.00 | ||
SMP1 | SMP2 | -0.00154 | -0.0657 | 3.83 | 0.00 | 0.00416 | 0.253 | 5.36 | 0.00 | ||
B_COST | SMP1 | -0.000248 | -0.0187 | -10.35 | 0.00 | -0.00618 | -0.143 | -5.56 | 0.00 | ||
ASC_CAR | SMP2 | -0.000321 | -0.0383 | 5.96 | 0.00 | -0.000972 | -0.0760 | 5.58 | 0.00 | ||
SMP2 | SMP4 | -0.0227 | -0.889 | -4.80 | 0.00 | -0.0154 | -0.853 | -5.69 | 0.00 | ||
B_TIME | SMP2 | -0.0279 | -0.438 | -5.86 | 0.00 | -0.0270 | -0.528 | -5.88 | 0.00 | ||
ASC_TRAIN | B_TIME | -0.00321 | -0.0832 | 6.70 | 0.00 | -0.00561 | -0.0790 | 6.29 | 0.00 | ||
ASC_CAR | B_COST | 0.000840 | 0.178 | 21.91 | 0.00 | 0.00575 | 0.171 | 6.72 | 0.00 | ||
B_TIME | SMP1 | -0.0541 | -0.723 | -6.80 | 0.00 | -0.0503 | -0.742 | -6.86 | 0.00 | ||
ASC_CAR | ASC_TRAIN | 0.00330 | 0.650 | 13.85 | 0.00 | 0.0110 | 0.618 | 7.34 | 0.00 | ||
ASC_TRAIN | SMP4 | 0.00160 | 0.103 | -7.70 | 0.00 | 0.00538 | 0.214 | -7.44 | 0.00 | ||
SMP3 | SMP4 | 0.00404 | 0.177 | -6.11 | 0.00 | 0.00696 | 0.372 | -7.67 | 0.00 | ||
B_COST | SMP4 | 0.000192 | 0.0133 | -13.01 | 0.00 | 0.00850 | 0.179 | -8.32 | 0.00 | ||
ASC_CAR | B_TIME | -0.00236 | -0.0886 | 8.75 | 0.00 | -0.00397 | -0.0753 | 8.35 | 0.00 | ||
B_TIME | SMP3 | 0.0432 | 0.758 | -9.24 | 0.00 | 0.0382 | 0.723 | -8.76 | 0.00 | ||
B_TIME_S | SMP1 | -0.0675 | -0.467 | 10.06 | 0.00 | -0.0893 | -0.627 | 9.08 | 0.00 | ||
ASC_CAR | B_TIME_S | 0.00632 | 0.122 | -11.08 | 0.00 | 0.0213 | 0.192 | -10.10 | 0.00 | ||
B_TIME_S | SMP2 | -0.0781 | -0.635 | 10.88 | 0.00 | -0.0652 | -0.607 | 10.15 | 0.00 | ||
B_TIME_S | SMP4 | 0.0973 | 0.617 | 11.67 | 0.00 | 0.0938 | 0.597 | 10.27 | 0.00 | ||
ASC_TRAIN | B_TIME_S | 0.00278 | 0.0373 | -12.03 | 0.00 | 0.00637 | 0.0427 | -10.81 | 0.00 | ||
B_COST | B_TIME_S | -0.00831 | -0.119 | -13.09 | 0.00 | -0.0535 | -0.190 | -10.92 | 0.00 | ||
B_TIME_S | SMP3 | 0.0666 | 0.604 | 12.79 | 0.00 | 0.0723 | 0.651 | 11.45 | 0.00 | ||
B_TIME | SMP4 | 0.0454 | 0.557 | -12.07 | 0.00 | 0.0491 | 0.658 | -12.33 | 0.00 | ||
B_TIME | B_TIME_S | 0.213 | 0.542 | -18.59 | 0.00 | 0.196 | 0.441 | -15.71 | 0.00 |
Smallest singular value of the hessian: 0.315356