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Taylor Approximation

Let x ∈ int (dom f ). Then

f (x + h) = Φx,p(h) + o(‖h‖p), x + h ∈ dom f ,

where Φx,p(y)
def
= f (x) +

p∑
i=1

1
i!D

i f (x)[y − x ]i , y ∈ E and

Dpf (x)[h1, . . . , hp]

is the directional derivative of f at x along directions hi ∈ E, i = 1, . . . , p.

Note:

1. Dpf (x)[·] is a symmetric p-linear form.

2. If h1 = · · · = hp, we use notation Dpf (x)[h]p
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Measuring the quality of approximations

Let us fix a norm ‖ · ‖ in E and define the norm

‖Dpf (x)‖ = max
h

{∣∣∣Dpf (x)[h]p
∣∣∣ : ‖h‖ ≤ 1

}
.

Then we can introduce Lipschitz constants for derivatives:

‖Dpf (x)− Dpf (y)‖ ≤ Lp‖x − y‖, x , y ∈ dom f

These constants ensure the high-quality of local approximations:

A. Function: |f (y)− Φx,p(y)| ≤ Lp

(p+1)!‖y − x‖p+1

B. Gradient: ‖f ′(y)− Φ′x,p(y)‖∗ ≤ Lp

p! ‖y − x‖p

C. Hessian: ‖f ′′(y)− Φ′′x,p(y)‖ ≤ Lp

(p−1)!‖y − x‖p−1

and so on ...
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And what?

Note that:

1. For p ≥ 3, Φx,p(y) is a non-convex multivariate polynomial.

2. Up to now, Algebraic Geometry cannot provide us with efficient tools
for computing even its stationary points

(not speaking about the global minimum)

Consequence

Practical Optimization goes up to the 2nd-order methods.
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Let us look ...
Let us fix B = B∗ � 0 : E→ E∗ and define the norms

‖x‖ = 〈Bx , x〉1/2, x ∈ E, ‖g‖∗ = 〈g ,B−1g〉1/2, g ∈ E∗.

Let us introduce the power function dp(x) = 1
p‖x‖

p, p ≥ 2 with

d ′p(x) = ‖x‖p−2Bx ,

d ′′p (x) = ‖x‖p−2B + (p − 2)‖x‖p−4Bxx∗B

� ‖x‖p−2B.

Define Ωx,p,M(y) = Φx,p(y) + M
p!dp+1(y − x)

NB: 1. If M ≥ Lp, then f (y)
(A)

≤ Ωx,p,M(y) for all y ∈ E.

2. The epigraph {(x , t) : t ≥ f (x)} is a convex set.

Question: Is it easy to put a nonconvex object into the convex one?

The answer is: NO!
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Main Theorem

Let M ≥ pLp. Then function Ωx,p,M(·) is convex.

Proof. Φ′′x,p(·) is a Taylor approximation of f ′′(·).

Therefore, for any y ∈ E we have

0 � f ′′(y) � Φ′′x,p(y) +
Lp

(p−1)!‖y − x‖p−1B

� Φ′′x,p(y) + M
p!‖y − x‖p−1B

� Ω′′x,p,M(y).

Consequences

1. For M > pLp the point Tp,M(x) = arg min
y∈E

Ωx,p,M(y) is well defined.

2. It can be computed by the techniques of Convex Optimization.

3. It can be used for solving the problem f∗ = min
x∈E

f (x)

in the case Lp(f ) < +∞.
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Properties of the Tensor Step

Let T = Tp,M(x) be the solution of the equation

Φ′x,p(T ) + M
p! r

p−1B(T − x) = 0

where r = ‖T − x‖.

‖f ′(T )‖ ≤ Lp+M
p! rp

Proof.

‖f ′(T )‖ = ‖f ′(T )− Φ′x,p(T )− M
p! r

p−1B(T − x)‖

≤ ‖f ′(T )− Φ′x,p(T )‖+ M
p! r

p ≤ M+Lp

p! rp.

〈f ′(T ), x − T 〉 ≥ M−Lp

p! rp+1

Proof.

〈f ′(T ), x − T 〉 = 〈f ′(T )− Φ′x,p(T )− M
p! r

p−1B(T − x), x − T 〉

≥ M−Lp

p! rp+1.
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Local Method

For M ≥ pLp, consider the process

xt+1 = Tp,M(xt), t ≥ 0.

Theorem 2. For all t ≥ 0 we have f (xt+1) ≤ f (xt).

At the same time, f (xt)− f∗ ≤ (M+Lp)D
p+1

p!

(
p+1
t

)p
, t ≥ 1

where D = max
x∈E
{‖x − x∗‖ : f (x) ≤ f (x0)}.

Proof. We have

f (xk)− f (xk+1) ≥ O(rp+1
k ) ≥ O(‖f ′(xk+1)‖

p+1
p )

≥ O((f (xk+1)− f ∗)
p+1
p ).
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Accelerated Tensor Method

NB: We apply the standard technique of estimating sequences

We choose M ≥ pLp and recursively update the following sequences.

1. Sequence of estimating functions

ψk(x) = `k(x) + C
p!dp+1(x − x0), k ≥ 1,

where `k(·) are linear functions in x ∈ E, and C > 0.

2. Minimizing sequence {xk}∞k=1.

3. Sequence of scaling parameters {Ak}∞k=1: Ak+1
def
= Ak + ak , k ≥ 1.

For these objects, we are going to maintain the following relations:

R1
k : Ak f (xk) ≤ ψ∗k ≡ min

x∈E
ψk(x),

R2
k : ψk(x) ≤ Ak f (x) +

M+Lp+C
p! dp+1(x − x0), ∀x ∈ E, k ≥ 1.
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Define Ak =
[
(p−1)(M2−p2L2

p)

4(p+1)M2

] p
2
(

k
p+1

)p+1

, ak+1 = Ak+1 − Ak , k ≥ 0.

Initialization: Choose x0 ∈ E and M > pLp.

Define C = p
2

√
(p+1)
(p−1) (M2 − p2L2p) and ψ0(x) = C

p!dp+1(x − x0).

Iteration k, (k ≥ 1):

1. Compute vk = arg min
x∈E

ψk(x) and choose yk = Ak

Ak+1
xk + ak+1

Ak+1
vk .

2. Compute xk+1 = Tp,M(yk) and update

ψk+1(x) = ψk(x) + ak+1[f (xk+1) + 〈f ′(xk+1), x − xk+1〉].

Convergence:

f (xk)− f (x∗) ≤ M+Lp+C
(p+1)!

[
4(p+1)M2

(p−1)(M2−p2L2
p)

] p
2 ( p+1

k

)p+1 ‖x0 − x∗‖p+1.
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Lower Complexity Bounds
Assumption: Method can move only to the point generated by
pth-order information.

Difficult function. Define ηp+1(x) = 1
p+1

n∑
i=1

|x (i)|p+1, x ∈ Rn.

Let Uk =


1 −1 . . . 0
0 1 . . . 0

. . .
0 0 . . . −1
0 0 . . . 1

 ∈ Rk×k , and Ak =

(
Uk 0
0 In−k

)
.

Consider the function fk(x) = ηp+1(Akx)− x (1), 2 ≤ k ≤ p

Theorem 3. Let for any function f with Lp(f ) < +∞ method M
ensures the rate of convergence

min
0≤k≤t

f (xk)− f∗ ≤ Lp‖x0−x∗‖p+1

(p+1)! κ(t) , t ≥ 1.

Then for all t : 2t + 1 ≤ n we have κ(t) ≤ 1
3p 2p+1 (2t + 2)

3p+1
2 .

NB: for p = 2 the lower bound is O
(

1
k3.5

)
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Degree of Non-Optimality
Accelerated method:

I Rate of convergence: O
((

1
t

)p+1
)

.

I Complexity bound: O
((

1
ε

) 1
p+1

)
.

Lower bound:

I Rate of convergence: O

((
1
t

) 3p+1
2

)
.

I Complexity bound: O
((

1
ε

) 2
3p+1

)
.

Extra factor: O

((
1
ε

) p−1
(p+1)(3p+1)

)
.

NB: p = 1⇒ ( 1
ε )0 , p = 2⇒ ( 1

ε )
1
21 , p = 3⇒ ( 1

ε )
1
20 .

At the same time, 220 ≈ 106.

Conclusion: “Optimal methods” with expensive line search should not
work in practice.
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Third-order methods: implementation details

Taylor polynomial:

Φx(h) = 〈f ′(x), h〉+ 1
2 〈f
′′(x)h, h〉+ 1

6D
3f (x)[h]3.

Auxiliary Problem: Ωx,M(h)
def
= Φx(h) + M

24‖h‖
4 → min

h∈E
.

Main Theorem: for all h ∈ E we have

0 � f ′′(x) + D3f (x)[±h] + 1
2L3‖h‖

2B.

Conclusion: For any h ∈ E, the Hessian Φ′′x (h) is similar to the
Hessian of the function

ρx(h) = 1
2 (1− 1

τ )〈f ′′(x)h, h〉+ M−τL3

10 ‖h‖4

with some τ > 1.
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Relative Smoothness Condition

Definition: Function f (·) satisfies the strong relative smoothness
condition with respect to ρ(·) if

µρ′′(x) � f ′′(x) � Lρ′′(x).

Define the Bregman distance βρ(x , y) = ρ(y)− ρ(x)− 〈ρ′(x), y − x〉.
Consider the method:

xk+1 = arg min
y∈E
{〈f ′(xk), y − xk〉+ Lβρ(xk , y)}. (∗).

Theorem 4. f (xk)− f ∗ ≤ µβρ(x0,x
∗)

( L
L−µ )k−1

.

NB: 1. For 3rd-order method with ρ = ρx , we have µ = 1, L = τ+1
τ−1 .

2. Solution of problem (*) is simple:

min
h∈E
{〈g , h〉+ 1

2 〈Gh, h〉+ γ‖h‖4},

especially after an appropriate factorization of matrix G � 0.
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Remarks
1. There exists an accelerated 3rd order schemes for minimizing smooth
convex functions with the global rate of convergence O( 1

k4 ).

This is the fastest sublinear rate known so far.

2. These schemes are implementable. Complexity of each iteration is
comparable with that of the 2nd-order methods:

I Linear convergence rate of auxiliary process depends only on
absolute constant.

I Algorithmic complexity of one iteration is O(n2).

I The oracle is simple: we need to compute the vector D3f (x)[h]2.

(e.g. Separable Optimization:
N∑
i=1

fi (〈ai , x〉), functions with explicit

structure (by fast backward differentiation), etc.)

I The vector D3f (x)[h]2 can be approximate by the 2nd-order oracle.

Then we get 2nd-order method with the rate of convergence O( 1
k4 ).

No contradiction with the lower bounds since this is for another
problem class.
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