Modern Theory of 2nd-Order Methods

Lecture 3: Universal 2nd-order methods

Yurii Nesterov (CORE/INMA, UCLouvain)

Minicourse: August 16-20, 2021 (Zinal)

Contents

Problem formulation

Hölder classes for second derivative

Main inequalities

Regularized methods for particular Hölder class

Accelerated method

Universal accelerated method

Problem formulation

Let
$$B=B^*:\mathbb{E}\to\mathbb{E}^*$$
, and $B\succ 0$. Denote

$$\|x\|=\langle Bx,x\rangle^{1/2}$$
, $x\in\mathbb{E}$, and $\|s\|_*=\langle s,B^{-1}s\rangle^{1/2}$, $s\in\mathbb{E}^*$.

For $A: \mathbb{E} \to \mathbb{E}^*$, we can define the matrix norm:

$$\|A\| = \max_{x \in \mathbb{E}} \{ \|Ax\|_*, \ \|x\| \le 1 \} \qquad \Leftrightarrow \quad \langle Ax, x \rangle \le \|A\| \cdot \|x\|^2 \quad \forall x \in \mathbb{E}.$$

Consider the problem of Composite Minimization

$$(A_3) \quad \min_{x \in \mathbb{E}} \left\{ F(x) = f(x) + \Psi(x) \right\}$$

where

- ▶ *f* is a smooth closed function.
- Ψ is a *simple* closed convex function with dom $\Psi \neq \emptyset$.
- $ightharpoonup dom f \supset dom \Psi.$

Example: $\Psi(x) = \operatorname{Ind} Q$, where Q is a closed convex set.

Main assumption

Define a system of Hölder constants:

$$H_f(\nu) = \sup_{\substack{x,y \in \mathbb{E} \\ x \neq y}} \frac{\|f''(x) - f''(y)\|}{\|x - y\|^{\nu}}$$

with $\nu \in [0, 1]$.

Assumption 1. $H_f(\nu) < +\infty$ at least for one $\nu \in [0,1]$.

Lemma. Constant $H_f(\cdot)$ is log-convex functions of ν .

Proof. Indeed,

$$\ln H_f(\nu) = \sup_{x,y \in \mathbb{E} \atop x \neq y} \Big\{ \ln \|f''(x) - f''(y)\| - \nu \ln \|x - y\| \Big\}.$$

This is a convex function in ν .

Thus, if $H_f(0) < +\infty$ and $H_f(1) < +\infty$, then

$$H_f(\nu) \leq H_f^{(1-
u)}(0)H_f^{
u}(1)$$

for all $\nu \in [0,1]$.

Examples

1. If $H_f(1) < \infty$, we have Lipschitz condition for Hessians:

$$||f''(x)-f''(y)|| \leq H_f(1)||x-y|| \quad \forall x,y \in \mathbb{E}.$$

2. If $H_f(0) < \infty$, we have functions with <u>bounded variation</u> of Hessian:

$$||f''(x) - f''(y)|| \le H_f(0) \quad \forall x, y \in \mathbb{E}.$$

This is true for
$$f(x) = \sum_{k=1}^{m} (\langle a_i, x \rangle - b_i)_+^2$$
, where $(\tau)_+ = \max\{\tau, 0\}$.

This function has discontinuous Hessian.

NB: Complexity of problem (A_3) is not changing after addition of arbitrary quadratic function.

Hence, the usual condition number does not work.

Main inequalities

Theorem. For all $x, y \in \text{dom } f$ we have

(B₃)
$$\begin{cases} |f(y) - f(x) - \langle f'(x), y - x \rangle - \frac{1}{2} \langle f''(x)(y - x), y - x \rangle| \\ \\ \leq \frac{H_f(\nu) ||y - x||^{2+\nu}}{(1+\nu)(2+\nu)}, \end{cases}$$

$$(C_3) \begin{cases} ||f'(y) - f'(x) - f''(x)(y - x)||_* \\ \\ \leq \frac{H_f(\nu)}{1+\nu} ||y - x||^{1+\nu}. \end{cases}$$

Proof: by integration.

Regularized Newton Step

Denote

$$Q(x;y) = f(x) + \langle f'(x), y - x \rangle + \frac{1}{2} \langle f''(x)(y - x), y - x \rangle,$$

$$M_{\nu,H}(x;y) = Q(x;y) + \frac{H}{(1+\nu)(2+\nu)} ||y - x||^{2+\nu} + \Psi(y).$$

Main property:

if
$$H \ge H_f(\nu)$$
, then $F(y) \le M_{\nu,H}(x;y)$

Regularized step

Define
$$T_{
u,H}(x) = \arg\min_{y \in \mathbb{E}} M_{
u,H}(x;y)$$

It is uniquely defined.

Assumption 2. $T_{\nu,H}(x)$ is easily computable.

Main property

Optimality condition

For
$$T=T_{\nu,H}(x)$$
, and all $y\in \mathrm{dom}\,\Psi$, we have
$$\langle f'(x)+f''(x)(T-x)+\tfrac{H}{1+\nu}\|x-T\|^\nu B(T-x),y-T\rangle$$

$$+\Psi(y)\geq \Psi(T).$$

Denote

$$\Psi'(T) = -\left(f'(x) + f''(x)(T - x) + \frac{H}{1 + \nu} \|x - T\|^{\nu} B(T - x)\right).$$
 Then
$$\boxed{\Psi'(T) \in \partial \Psi(T)}$$

Efficiency of Regularized Step

For
$$T=T_{
u,H}(x)$$
 denote $\boxed{F'(T)=f'(T)+\Psi'(T)\in\partial F(T)}$

Lemma 1. If $H \ge (1 + \nu)H_f(\nu)$, then

$$F(x) - F(T) \geq \langle F'(T), x - T \rangle \geq \left(\frac{1}{8H}\right)^{\frac{1}{1+\nu}} \left\| F'(T) \right\|_{+\nu}^{\frac{2+\nu}{1+\nu}}.$$

NB. We can ensure $F'(x) \to 0$ for nondifferentiable function $F(\cdot)$. Hence, for sharp minimum we have *finite termination*.

Simple Method:
$$x_{k+1} = T_{\nu,(1+\nu)H_r(\nu)}(x_k)$$
 Then

$$F(x_k) - F(x_{k+1}) \geq \left(\frac{1}{8H}\right)^{\frac{1}{1+\nu}} \left(\frac{F(x_{k+1}) - F^*}{D}\right)^{\frac{2+\nu}{1+\nu}},$$

where $D = \operatorname{Diam} \{x : F(x) \leq F(x_0)\}.$

Convergence:
$$F(x_k) - F^* \le O\left(\frac{1}{k^{1+\nu}}\right)$$
 Complexity: $O\left(\frac{1}{e^{\frac{1}{1+\nu}}}\right)$.

Accelerated method with known ν

- **1.** Let $x_0 \in \text{dom } \Psi$, $M_0 > 0$. Set $A_0 = 0$ and $|\psi_0(x) = \frac{1}{2+\nu} ||x x_0||^{2+\nu}$
- **2. For** $t \geq 0$ **iterate:** a) Find $v_t = \arg\min_{x \in \mathbb{R}} \psi_t(x)$.
- **b)** Find $i_t \geq 0$ such that for a_{t+1} defined by $\left\lfloor a_{t+1}^{2+\nu} = \frac{(A_t + a_{t+1})^{1+\nu}}{16M_t \cdot 2^{i_t}} \right\rfloor$ and $A_{t+1} = A_t + a_{t+1}, \quad \alpha_t = \frac{a_{t+1}}{A_{t+1}}, \quad y_t = (1-\alpha_t)x_t + \alpha_t v_t,$ the point $\left\lfloor x_{t+1} = T_{\nu, M_t \cdot 2^{i_t}}(y_t) \right\rfloor$ satisfies inequality

$$\langle F'(x_{t+1}), y_t - x_{t+1} \rangle \ge \left(\frac{1}{8M_t \cdot 2^{j_t}}\right)^{\frac{1}{1+\nu}} \|F'(x_{t+1})\|_{+\nu}^{\frac{2+\nu}{1+\nu}}.$$

c) Define $M_{t+1} = 2^{i_t-1}M_t$ and

$$\psi_{t+1}(x) = \psi_t(x) + a_{t+1}[f(x_{t+1}) + \langle f'(x_{t+1}), x - x_{t+1} \rangle + \Psi(x)].$$

Theorem 1.
$$F(x_t) - F^* \le \frac{16\gamma H_f(\nu)(4+2\nu)^{1+\nu} \|x_0 - x^*\|^{2+\nu}}{(t-1)^{2+\nu}}$$

Complexity: $O\left(\frac{1}{\epsilon^{\frac{1}{1+\nu}}}\right)$, as compared with $O\left(\frac{1}{\epsilon^{\frac{1}{1+\nu}}}\right)$.

Efficiency of the universal step

We need to estimate from above

$$Q(x;y) + \frac{H_f(\nu)\|y-x\|^{2+\nu}}{(1+\nu)(2+\nu)} + \Psi(y)$$
 by $Q(x;y) + \frac{H\|y-x\|^3}{6} + \Psi(y)$.

When this can be done? We need big steps!

Lemma 2. Let $x_{+} = T_{1,H}(x)$. If $||F'(x_{+})||_{*} \geq \delta$ and

$$H \geq \left[\frac{CH_f(\nu)}{(1+\nu)(2+\nu)}\right]^{\frac{2}{1+\nu}} \left(\frac{1}{\delta}\right)^{\frac{1-\nu}{1+\nu}} \text{ with } C \geq 6,$$

then
$$\|x_+ - x\|^{1-\nu} \ge \frac{CH_f(\nu)}{(1+\nu)(2+\nu)H}$$
. Hence, $\frac{H_f(\nu)\|x_+ - x\|^{2+\nu}}{(1+\nu)(2+\nu)} \le \frac{H\|x_+ - x\|^3}{C}$.

Lemma 3. If $||F'(x_+)||_* \ge \delta$ and $H \ge \left\lceil \frac{12H_f(\nu)}{(1+\nu)(2+\nu)} \right\rceil^{\frac{\ell}{1+\nu}} \left(\frac{1}{\delta}\right)^{\frac{1-\nu}{1+\nu}}$,

then
$$\left|\langle F'(x_+), x - x_+ \rangle \geq \sqrt{\frac{4}{3H}} \|F'(x_+)\|_*^{\frac{3}{2}} \right|$$

Universal accelerated scheme

Let
$$\theta_{
u}(\epsilon) = \left[\frac{12H_{f}(
u)}{(1+
u)(2+
u)} \right]^{rac{2}{1+
u}} \left(rac{D}{\epsilon}
ight)^{rac{1-
u}{1+
u}}$$

Choose $x_0 \in \mathbb{E}$ and $H_0 \leq \inf_{0 \leq \nu \leq 1} \theta_{\nu}(\epsilon)$.

Set $\psi_0(x) = \frac{1}{3} ||x - x_0||^3$, and $A_0 = 0$.

k-th iteration $(k \ge 0)$ a) Compute $v_k = \arg\min_{x \in \mathbb{R}} \psi_k(x)$.

- **b)** Find $i_k \geq 0$ such that for $a_{k,i_k}^3 = \frac{3(A_k + a_{k,i_k})^2}{2(2^{i_k} H_k)}$ used in definitions $\alpha_{k,i_k} = \frac{a_{k,i_k}}{A_k + a_{k,i_k}}$, $y_{k,i_k} = (1 \alpha_{k,i_k})x_k + \alpha_{k,i_k}v_k$, and $x_{k+1,i_k} = T_{1,2^{i_k} H_k}(y_{k,i_k})$ we have $\langle F'(x_{k+1,i_k}), y_{k,i_k} x_{k+1,i_k} \rangle \geq \left(\frac{4}{3(2^{i_k} H_k)}\right)^{\frac{1}{2}} \|F'(x_{k+1,i_k})\|_*^{\frac{3}{2}}$.
 - c) Set $x_{k+1} = x_{k+1,i_k}$, $A_{k+1} = A_k + a_{k,i_k}$, $H_{k+1} = 2^{i_k-1}H_k$, and $\psi_{k+1}(x) = \psi_k(x) + a_{k,i_k}[f(x_{k+1}) + \langle f'(x_{k+1}), x x_{k+1} \rangle + \Psi(x)]$.

Convergence results

Theorem 2. Assume $H_f(\nu) < +\infty$ for some $\nu \in [0,1]$.

And let $F(x) - F^* \ge \epsilon$ at all test points.

Then $H_k \leq 2\theta_{\nu}(\epsilon)$ for all $k \geq 0$. Moreover, for all $k \geq 2$, we have

$$F(x_k) - F^* \le \frac{48\theta_{\nu}(\epsilon)D^3}{(k-1)^3}$$

Complexity result

$$k \leq O\left(\left(\frac{1}{\epsilon}\right)^{\frac{2}{3(1+\nu)}}\right)$$

Calls of oracle: $\leq 2k + \log_2 \theta_{\nu}(\epsilon)$.

Hint: $H_{k+1} = 2^{i_k-1}H_k$.

Conclusion

- 1. We managed to accelerate Regularized Newton Method by aggregating the linear model of the objective function.
- 2. The complexity results are as follows:

	Universal	Known ν
One-step scheme	$\left(\frac{1}{\epsilon}\right)^{\frac{1}{1+\nu}}$	$\left(\frac{1}{\epsilon}\right)^{\frac{1}{1+\nu}}$
Accelerated scheme	$\left(\frac{1}{\epsilon}\right)^{\frac{2}{3(1+ u)}}$	$\left(\frac{1}{\epsilon}\right)^{\frac{1}{2+ u}}$

- **3.** For $\nu = 1$, Universal Scheme is perfect.
- **4.** For $\nu=0$, we have an extra factor $\left(\frac{1}{\epsilon}\right)^{\frac{1}{6}}$. Can we do better?