Modern Theory of 2nd-Order Methods
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Problem formulation

Let B=B*:E — E* and B = 0. Denote
x| = (Bx,x)/2, x € E, and ||s||. = (s, B~'s)1/2, s € E*.

For A: E — E*, we can define the matrix norm:

1Al = max{[lAxll., Il <1} & (Axx) < [IA]- x> vx € E.

Consider the problem of Composite Minimization

(As) min {F(x) = () + V(x)}

where
» f is a smooth closed function,
» WV is a simple closed convex function with dom W # ().
» domf D domW.

Example: W(x) =Ind Q, where Q is a closed convex set.
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Main assumption

Define a system of Holder constants:

— s =0l
He(v) = sup 5
XAy

with v € [0, 1].
Assumption 1. Hf(v) < +oo at least for one v € [0, 1].

Lemma. Constant Hy(-) is log-convex functions of v.
Proof. Indeed,

in He(v) = sup {In[[F/(x) = ()]l = vinllx = y1I}.
x;};EyE

This is a convex function in v. O

Thus, if Hf(0) < 00 and Hf(1) < +oo, then

Hr(v) < HE T (0)H (1)

for all v € [0, 1].
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Examples

1. If He(1) < oo, we have Lipschitz condition for Hessians:
IF7() = £ (Il < Hr(DlIx =yl ¥x,y € E.

2. If H¢(0) < oo, we have functions with bounded variation of Hessian:
IF7(x) = () < Hr(0) ¥x,y € E.

m

This is true for f(x) = Z ((ai,x) — b;)%, where (1) = max{r,0}.

This function has discontinuous Hessian.

NB: Complexity of problem (As) is not changing after addition of
arbitrary quadratic function.

Hence, the usual condition number does not work.
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Main inequalities

Theorem. For all x,y € dom f we have

’f()/) = () = (F(x),y = x) = 3(F"(x)(y = %),y = x)

(Bs)
H () ly —x***
= (I4v)(2+v)
1F'(y) = £'(x) = F"()(y = x)l«
(G)
< F |y — x|+
Proof: by integration. O
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Regularized Newton Step

Denote

Qliy) = f(x)+(f(x),y —x) +3(F )y = x),y = x),

MU,H(X;}/) = Q(X,y)+m||yix||2+u+w( )

Main property:

it H > He(v), then [F(y) < My n(xiy)]

Regularized step
Define

It is uniquely defined.

To.H(x) = argmin M, y(x; y)
yeE

Assumption 2. T, y(x) is easily computable.
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Main property

Optimality condition
For T =T, n(x), and all y € domV, we have
(F'(x) + £ ONT = x) + 15 Ix = TI"B(T = x),y = T)
TV(y) = W(T).

Denote
WI(T) = = (F6) + 0T =)+ s llx = TIYB(T = x).

Then \ V'(T) e a\U(T)\
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Efficiency of Regularized Step

For T = T, n(x) denote ‘ FI(T)=f'(T)+ V' (T)¢c 6F(T)‘

Lemma 1. If H> (14 v)Hf(v), then
a 240
FOx) = F(T) = (F(T),x = T) = (g5) ™" IF(T)II™.

NB. We can ensure F’(x) — 0 for nondifferentiable function F(-).

Hence, for sharp minimum we have finite termination.

Simple Method: ‘ Xk4+1 = T,,7(1+V)Hf(l,)(xk)‘ Then

1 . 24%
Fxi) = F(xie1) > (gig) ™ (%)H ’

where D = Diam {x : F(x) < F(xo)}.

e

Convergence: | F(xc) — F* < O (1) Complexity: O( L )
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Accelerated method with known v

1. Let xg € domW¥, My > 0. Set Ag =0 and

Po(x) = 55 lIx — x>

2. For t > 0 iterate: a) Find v; = arg mi£ P (x).
x€

b) Find ¢ > 0 such that for a,41 defined by | a2/} = Aebael™ | ang

a
Arp1 = Actae, ar= 275, Ve = (1= ae)xe + arve,

the point ’ Xep1 = Ty (Ve) ‘ satisfies inequality

o 24v
(') ye = xen) 2 (g ) IF (resn) 17

c) Define M,y = 2t~ M, and

Yer1(x) = Pe(x) + @ [f(Xe1) + (F (xe41), X — Xet1) + V(X))

Theorem 1. | F(x;) — F* < 16’7Hf(l’)(4(+t2_”1);2++”u\l><o—X*H“”

Complexity: O (i

et

), as compared with O( L )
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Efficiency of the universal step

We need to estimate from above
Qx;y) + He(@)lly—x|I*t* TV(y) b Qx;y) + Hlly—x]|® )
Y (TH)(2+0) y y Y 6 y)

When this can be done? We need big steps!

Lemma 2. Let xy = Ty p(x). If ||F'(x4)]]« >J and

2
CH: (v o = .
Hz [%} (5) 7 with C>6,

CHr(v)
(1+v)(2+v)H "

He(0) lxe—x|** /'4H><+C—XII3 .

then [[x; — x||*~" > TNy =

Hence,

= 1—v
Lemma 3. 1F1F (el > and 1> [205] ™ ()

* Nlw

then | (F/(xy), x —x4) = 1/ 35 lIF (x4)|l
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Universal accelerated scheme

2 1—v
Let 91/(6) = [(1123221)1/)] 1+V (g) 1+V

<
Choose xg € E and Hy < Oélr;fgle,,(e).
Set 1o(x) = %Hx —xolI}, and Ag =0.

k-th iteration (k > 0) a) Compute vy = arg mi]g Pr(x).
x€

_ 3(Axtak,i, )2

b) Find ix > 0 such that for ai,,k = S Ay used in definitions

ki = A:iiakkk Yioie = (1= aip )Xk + i Vi, and xir1i, = T iy, (Vioii)
z 3
we have (F'(Xk+1,i)s Yh,ic = Xkt 1i) = (ﬁ) N F i )11

c) Set xki1 = Xkt1,is Akl = Ak + aki,, Hip1 = 2% 1Hy, and
Yrr1(x) = Yu(x) + awi [F (k1) + (F'(Xky1), X = Xiey1) + V(X))
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Convergence results

Theorem 2. Assume H¢(v) < +oo for some v € [0, 1].

And let | F(x) — F* > €| at all test points.

Then Hy < 260,(¢) for all k > 0. Moreover, for all k > 2, we have

3
Flx) = F* < G409

Complexity result

k<O ((%)miu))

Calls of oracle: < 2k + log, 6, (¢).

Hint: H . = 2'.’(71Hk.

13/14



Conclusion

1. We managed to accelerate Regularized Newton Method by
aggregating the linear model of the objective function.

2. The complexity results are as follows:

‘ Universal ‘ Known v
- -

DO

() |

One-step scheme

Accelerated scheme

3. For v =1, Universal Scheme is perfect.

1
4, For v = 0, we have an extra factor (%) ¢. Can we do better?
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