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Problem formulation

Consider the following optimization problem in the composite form:

. def
Flx) < ¢ }
min {FG0 R0+ ()
where
» f(-)is a convex function with Lipschitz-continuous Hessian:
(A2) [If"(x) = "Wl < Lallx — vl x,y € dom),
» 1(-) is a simple closed convex function.

Example. (-) is an indicator function of a closed convex set.

Main inequalities: for all x,y € dom v we have
(B2) [If'(y) = £'(x) = £ (x)(y =)l < Zlly — x|,

(G) fly) < fFO)+ (F(x),y —x)

+3(F )y = x),y = x) + lly = x|*.
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Main operation
Define the composite Cubic Newton Step
_ H / _ 1/¢en _ _
Tm(x) = argyegggw{ {F1(x),y = x) + 2 (F/()(y =x),y = x)
2y = x| + () }.
Assumption: Ty (x) is computable.
Optimality condition: at point T = Tpy(x), we have
{ (F10) + F"OT = x) + F (T = x),y = T)
p)
+9(y) = ¢(T), yedomy,
where ry(x) = || T — x||.

NB: Denote g, (T) = — (f'(x) + f"(x)(T — x) + Lrm(x)(T — x)).
Then gy (T) € 0¢(T). Therefore,

F/(T) < £(T) + gy(T)

is indeed a subgradient of function F(-) at T.
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Main properties
If F(T) < F(x) 4+ (F'(x), T — x) + 2{F"(x)(T = x), T — x) + 23, then

(E2) F(x) = F(Tu(x)) = §riy(x)

Proof. Substituting in (D,) y = x, we get
P(x) = (T)+(F(x), T =x) +(F"()T = x), T —x) +

> Y(T)+F(T) = F(x) + 2{F"(x)(T —x), T — x) + 3M=M3

> F(T) = F(x) +o(x) + 5. O

(F2) IIF(Tm(x))Il < =54 1 (x)

Proof. Indeed,
IF'(T) = IF(T) = f'(x) = £ ()T = x) = Zr(T = x)|

I/(T) = £/(x) = F/O)(T = )l + 5

LM 2 0

<
(B2)
s 5



Last property

(F(T),x = T) = M52 y(x)

Proof. Indeed,

(F(T).x—T)
= {F(T)— F() — FOT — 20— (T —x)x— T)
® wn -
Corollary. If M > L, then
() (F(T)x—T) = st [2oyrmy]

Proof: Use (F2).
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Composite Cubic Newton Method

Consider the following scheme.

1. Choose xg € R" and My < L.
2. kth iteration (k > 0)
(H,) | a) Find the smallest iy > 0 such that for T = Ty, (xk) we have

F(T) < FOk) + (F/(a)s T = x) + S(F7()(T = x), T = x) + M22 1,
where r = || T — xx||.

b) Define xx41 = TQikMk (Xk), M1 = max{/\/lo, %2'." Mk}

Clearly, My < My < 2L,. Therefore, by (Ez) and (F;) we have

(B) FOu) — Flxkn) = M [ 21 Gl

NB. ||F'(xk)|| — 0, and this is true for potentially nonsmooth function!
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Complexity analysis

Assumption: Dy = max {I]x = x*|| : F(x) < F(xo)} < +o0.
S

Then [|F/(T)|| > 5, (F/(T), T — x*) > 5.(F(T) = F(x")).

Consequently, in view of () we have

F(xk) — F(xkt1) > % [3L22D0r/2 (F(xk4+1) — F(x*))3/2.

Lemma. Let & — &uq > §k+1 , k>0, with a € (0,1]. Then

G<[(1+€g) 22 k=1

Rate of convergence: |(J)) F(xk)— F(x*) <O (LzDs)
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Number of calls of oracle

In method (H), for some k > 0, the number of calls of oracle can be big.

Can we bound the total number of these calls?

Note that M1 = max{My, 12k M, } > L2i .

Therefore, ix < 1+ log, Mk“.

Consequently, the total number of calls N after T steps is bounded:

;
Nr = S (1+i)<2T+ )—l—ZIogQM*:l
k=0

= 2(T+1)+log, Yt < 2(T +1) + log, 3.

Thus, the average number of calls of oracle per iteration is only TWO!
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Uniformly convex function

Assumption. Function f(+) is uniformly convex of degree three:

fly) > £(x) +(f'(x),y —x) + Flly — x|°
for all x,y € dom ¢ with o3 > 0.

Main property. Then we have
Fy) = F(T)+(F(T),y = T) + %y = x|°, y € dom.
Minimizing both sides of this inequality in y, we get

(K2) F(T) = F(x*) < 55 IF(T)IP?

Corollary. Let us choose My = L,. Then, in view of (k) and (K2) we
have

F(xi) = F(xi+1) 2 3\/§(F(Xk+1) - F(x*)).

This is the linear rate of convergence, which is proportional to , /‘Z—j.
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Global non-degeneracy

Standard setting: for convex f € C2(R"), define positive constants o
and L; such that

orl[h* < (F'(x)h,h) < Lihl?
for all x,y, h € R".
The value 71 (f) = - is called the condition number of f.

(Compatible with definitions in Linear Algebra.)

- L (F(x),x—x") 2y/n(f) n
Geometric interpretation: TP e = T () e R".

Complexity: (1st-order methods)

1 . 1 . pt
PGM: O (15 -Inl), FGM.O<m In6>.

This does not work for the 2nd-order schemes:

Flxe) — F* < o(L2 2.
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Global 2nd-order non-degeneracy

Assumption: for any x,y € R", function f € C?(R") satisfies
inequalities
1F7(x) = "Wl < Lellx =y,

fly) = f(x) = (F(x)y =x) > 3Fosllx—yl?
where o3 > 0.

Value 7»(f) = £ € (0, 1) is called the 2nd-order condition number of f.
(Invariant w.r.t. addition of convex quadratic functions.)

Example: for d(x) = }||x||>, we can prove that v,(d) = 1.

Complexity bound: (Regularized Cubic Newton)
We have seen that
F(xgs1) — F(x*) <

— 1 __(F(xx) — F(x*).
—1+%\/%((k) ()

Hence, for computing e-solution, we need O ( L_|n 1> iterations.

12/19



Accelerated Newton: Cubic prox-function

Problem: min f(x),

x€ERM
where f(-) is convex and Ly(f) < +o0.
Denote d(x) = 3 |x|]°.
Lemma. Cubic prox-function is uniformly convex: for all x,y € R”",
(d(x)=d)x—y) = zlx—yl?

d(x) —d(y) = (d'(y),x—y) > Zlx—yl>
Moreover, its Hessian is Lipschitz continuous:
[d”(x) —d"(W)I < 2[Ix =yl x,y € R

Remark. In our constructions, we are going to use d(-) instead of the
standard strongly convex prox-functions.
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Linear Estimating Functions

We recursively update the following sequences.
» Sequence of estimating functions
Yi(x) = l(x) +d(x —x0), 0 > 1,
where ¢,(-) are linear functions (¢o(-) = 0).
> A minimizing sequence {xx}?2 ;.
> A sequence of scaling parameters {A}%2;:

Av=0, A1 = Ac+aky, k>0

These objects for all k > 0 satisfy the following relations:
(L2) Akf(Xk) < 1/): = mXin 1/Jk(X),

(Mg) ¢k(X) < Akf(X) + d(X - Xo), Vx € R".

From these relations, we have Ag(f(xx) — f(x*)) < d(x* — xp).

For k = 0, they are satisfied.
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Complexity analysis

Denote v, = arg min 1, (x).
X

For some ax11 > 0 and M = 2L,, define

Tk = Akjk-giﬂ € (0’ 1]’
v = (1 —7)xic + v,

Xk+1 = TM(yk)a

i1 (x) = th(x) + aaf (Xes1) + (F (Xer1), x = X))
The last recursions implies (Ma) for all k > 0.

It remains to ensure (Ly).
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Justification of the method

Assume that (L) is valid for some k > 0. Then

¢Z+1 = mXin {wk(x) + aka (F(kn) + (F (kg1)s x — Xk+1>)}
> min {7 + Lx = vell2 + aia (F(xe1) + (F Oxken) x = X)) |

> min { AkF(x) + 21 = vill + a1 (FOxk1) + (7 (x02), X = xi2)) |

Vv
=
=

A f (Xies1) + £l1x = viell® 4 (F (xks1), arrn(x — Xier1) + Ar(xi — Xk+1)>)}

X

3/2
= A f (1) = 32 (@l en)ll) T+ Acsa(F(Xes), vk = Xesa).

In view of (G), we have (f/(xkt1), Yk — Xkt1) > 2 [3L2Hf/(T)H}

3/2 Artagit

This gives us the equation for aj1: A1 = AL
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Rate of convergence

Let the sequence {Ax}k>0 be defined by the following recursion

Ao = 0, 3iﬁ = Y(Ax + ak+1),

Akyi = Ax+akq1, k>0,
where v > 0. Let us estimate from below its rate of growth.
Since function 71/3 is concave for 7 > 0, we have

1/3 1/3 —2/3
Ak/+1 ~AR > %Ak+{ (Akt+1 — Ax)

—2/3
= %Ak+{ (7Ak+1)2/3 — %,},2/3.

Thus, we have proved that A, > 72(§)3.

1
230"

in our case, Y = Hence,
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Accelerated CNM
Initialization: Choose xp € R". Define 1g(x) = d(x — xp).

Iteration k, (k > 0): Compute v, = arg m%lg Pr(x),
xeR?

and ax11 > 0 from the equation aifl = A;\J;;%l. Set Aky1 = Ak + aks1-
2

A a
Choose y, = ﬁxk + Ak:l vk, and compute xk+1 = Tor, (Yk)-

Update ¥k 1(x) = ¥r(x) + axsa[f (xkr1) + (F' (Xkr1), X — xup1)]-

Rate of convergence: |f(xx)—f* < 4L, (%)3 %0 — x*||3

Remark: For updating v(x), we need to update only one vector:
So =0, Skt1 =Sk + Ak+1 f/(Xk+1), k> 0.

Then v, can be computed by an explicit expression.
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Open questions

1. Problem classes.
2. Non-degenerate problems: geometric interpretation?

3. Complexity of strongly convex functions.
(1st-order schemes?)

4. Consequences for polynomial-time methods.
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