Modern Theory of 2nd-Order Methods

Lecture 1: Global complexity bounds for 2nd-order methods. Systems of equations

Yurii Nesterov (CORE/INMA, UCLouvain)

Minicourse: August 16-20, 2021 (Zinal)

General Contents

<u>Lecture 1:</u> Global complexity bounds for 2nd-order methods. Systems of nonlinear equations.

<u>Lecture 2:</u> Accelerated second-order methods. Lower complexity bounds.

Lecture 3: Universal 2nd-order methods.

<u>Lecture 4:</u> Implementable Tensor Methods.

References, I

- **1.** Yu. Nesterov, B. Polyak. Cubic regularization of Newton's method and its global performance. *Mathematical Programming*, **108**(1), 177-205 (2006).
- **2.** Yu. Nesterov. Accelerating the cubic regularization of Newton's method on convex problems. *Mathematical Programming*, **112**(1) 159-181 (2008)
- **3.** Yu. Nesterov. Modified Gauss-Newton scheme with worst-case guarantees for its global performance. *Optimization Methods and Software*, **22**(3) 469-483 (2007)
- **4.** Yu. Nesterov. Complexity bounds for primal-dual methods minimizing the model of objective function. *Mathematical Programming*, **171**, 311330 (2018)
- **5.** G.N. Grapiglia, Yu. Nesterov. Regularized Newton methods for minimizing functions with Hölder continuous Hessians. *SIOPT*, **27**(1), 478-506 (2017).

References, II

- **6.** H.Lu, R.Freund, and Yu.Nesterov. Relatively smooth convex optimization by first-order methods. *SIOPT*, **28**(1), 333-354 (2018).
- **7.** Yu. Nesterov. Superfast 2nd-order methods for unconstrained convex optimization. CORE Discussion Paper, Dec. 2019.

OR (instead of 1-5): sections 4.1-4.4, and section 6.4.6 of

Yu. Nesterov. Lecture notes on Convex Optimization. Springer (2018).

This Lecture

Historical remarks

Trust region methods

Cubic regularization of second-order model

Local and global convergence

Solving the system of nonlinear equations

Numerical experiments

Historical remarks

Problem: $f(x) \rightarrow \min: x \in \mathbb{R}^n$

is replaced by a system of non-linear equations f'(x) = 0

Linearization: $f'(\bar{x}) + f''(\bar{x})(x_+ - \bar{x}) = 0.$

Newton method: $x_{k+1} = x_k - [f''(x_k)]^{-1} f'(x_k).$

Standard objections:

- ▶ The method can brake down (det $f''(x_k) = 0$).
- Possible divergence.
- Possible convergence to a saddle point or even to a local maximum.
- Possible chaotic global behavior.

Pre-History (see Ortega, Rheinboldt [1970])

- ▶ Bennet [1916]: first use of Newton's method in existence theorem.
- Levenberg [1944]: Regularization. If $f''(x) \not\succ 0$, then use $d = G^{-1}f'(x)$ with $G = f''(x) + \gamma I \succ 0$. (See also Marquardt [1963].)
- ► Kantorovich [1948]: First proof of local quadratic convergence.

Assumptions:

- a) $f \in C^3(\mathbb{R}^n)$.
- b) $||f''(x) f''(y)|| \le L_2 ||x y||$.
- c) $f''(x^*) > 0$.
- d) $x_0 \approx x^*$.

Proof: Let $||f''(x)u|| \ge \mu ||u||$ for all u and x with $\mu > 0$. Then $||f'(x_+)|| = ||f'(x_+) - f'(x) - f''(x)(x_+ - x)||$ $\le \frac{1}{2}L_2||x_+ - x||^2 \le \frac{L_2}{2\mu}||f'(x)||^2$.

Thus, $x: ||f'(x)|| < \frac{2\mu}{L_2}$ is in the region of quadratic convergence.

Global analysis

Global convergence: Use line search (good advice).

Global performance: Not addressed.

Complexity for convex functions

Assumptions

▶ **Strong convexity:** $\nabla^2 f(x) \succeq \mu I$ for all x. Consequence:

$$f(y) \ge f(x) + \langle f'(x), y - x \rangle + \frac{\mu}{2} ||y - x||^2.$$

Minimizing this inequality in y, we get

$$\frac{1}{2\mu} \|f'(x)\|^2 \ge f(x) - f^*$$

Lipschitz continuous gradient: $||f'(x) - f'(y)|| \le L_1 ||x - y||$. By integration, we get

$$f(y) \le f(x) + \langle f'(x), y - x \rangle + \frac{L_1}{2} ||x - y||^2$$

Convergence rate

Gradient method

$$x_{k+1} = x_k - \frac{1}{L_1} f'(x_k)$$

Thus, at every iteration we have

$$f(x_k) - f(x_{k+1}) \ge \frac{1}{2L_1} ||f'(x_k)||^2 \ge \frac{\mu}{2L_1} (f(x_k) - f^*).$$

Newton Method

$$x_{k+1} = x_k - \tau [f''(x_k)]^{-1} f'(x_k)$$

Then

$$f(x_{k+1}) - f(x_k) \le -\tau \langle f'(x_k), [f''(x_k)]^{-1} f'(x_k) \rangle + \frac{L_1}{2} \tau^2 ||[f''(x_k)]^{-1} f'(x_k)||^2$$

$$\leq \left[-\tau + \frac{L_1}{2\mu}\tau^2\right] \langle f'(x_k), [f''(x_k)]^{-1}f'(x_k) \rangle.$$

Minimization in au gives

$$f(x_{k+1}) - f(x_k) \le -\frac{\mu}{2L_1} \langle f'(x_k), [f''(x_k)]^{-1} f'(x_k) \rangle.$$

Since
$$\langle f'(x_k), [f''(x_k)]^{-1} f'(x_k) \rangle \ge \frac{1}{L_1} ||f'(x_k)||^2 \ge \frac{2\mu}{L_1} (f(x_k) - f^*),$$

we get
$$f(x_k) - f(x_{k+1}) \ge \left(\frac{\mu}{L_1}\right)^2 (f(x_k) - f^*).$$

This is worse than for GM!

Modern History (Conn, Gould and Toint [2000])

Main idea: Trust Region Approach.

1. Use some norm $\|\cdot\|_k$ for defining a trust region

$$\mathcal{B}_k = \{ x \in \mathbb{R}^n : \| x - x_k \|_k \le \Delta_k \}.$$

2. Denote $m_k(x) = f(x_k) + \langle f'(x_k), x - x_k \rangle + \frac{1}{2} \langle G_k(x - x_k), x - x_k \rangle$.

Variants: $G_k = f''(x_k)$, $G_k = f''(x_k) + \gamma_k I > 0$, etc.

- 3. Compute the trial point $\hat{x}_k = \arg\min_{x \in \mathcal{B}_k} m_k(x)$.
- 4. Compute the ratio $\rho_k = \frac{f(x_k) f(\hat{x}_k)}{f(x_k) m_k(\hat{x}_k)}$.
- 5. In accordance to ρ_k , either accept $x_{k+1} = \hat{x}_k$, or decrease the value Δ_k and repeat the steps above.

Comments

Advantages:

- ▶ More parameters ⇒ Flexibility
- ► Convergence to a point, which satisfies second-order necessary optimality condition:

$$f'(x^*) = 0, \quad f''(x^*) \succeq 0.$$

Disadvantages:

- Complicated strategies for parameters' coordination.
- ▶ For certain $\|\cdot\|_k$, the auxiliary problem is difficult.
- Line search abilities are limited.
- Unselective theory (local convergence).
- ▶ Global complexity issues are not addressed, even in convex case.

Trust Region Method with Contraction

Consider the problem: $\min_{x \in Q} f(x)$,

where Q is a bounded closed convex set, and f is a closed convex function.

Assumptions: $L_1(f) < +\infty$, $L_2(f) < +\infty$.

Method:

- **1.** Choose arbitrary $x_0 \in Q$.
- **2. For** $k \ge 0$ **iterate**: Choose $\tau_k \in (0,1)$ and compute

$$\min_{x} \{ \langle f'(x_k), y - x_k \rangle + \frac{1}{2} \langle f''(x_k)(y - x_k), y - x_k \rangle : y = (1 - \tau_k)x_k + \tau_k x, x \in Q \}.$$

Theorem. If $\tau_k = \frac{6(k+1)}{(k+2)(2k+3)}$, $k \ge 0$, then $f(x_k) - f^* \le \frac{18L_2D^3}{(k+1)(2k+1)} + \frac{9L_1D^2}{2(2k+1)}$,

where D = diam Q.

Development of numerical schemes

Classical style: Problem formulation ⇒ Method

Examples:

- ► Gradient and Newton methods in optimization.
- ► Runge-Kutta method for ODE, etc.

2. Modern style:
$$\begin{array}{c} \mathsf{Problem\ formulation} \\ \mathsf{Problem\ class} \end{array} \right\} \ \ \Rightarrow \ \ \mathsf{Method}$$

Examples:

- Non-smooth convex minimization.
- Smooth minimization: $\min_{x \in Q} f(x)$, with $f \in C^{1,1}$.

Gradient mapping (Nemirovsky&Yudin 77):

$$x_+ = T(x) \equiv \arg\min_{y \in Q} m_1(y),$$

$$m_1(y) \equiv f(x) + \langle f'(x), y - x \rangle + \frac{L_1}{2} ||y - x||^2.$$

Justification: $f(y) \le m_1(y)$ for all $y \in Q$.

Using the second-order model

Problem: f(x) min : $x \in \mathbb{R}^n$.

Assumption: Let \mathcal{F} be an open convex set. Then

$$||f''(x) - f''(y)|| \le L_2||x - y|| \quad \forall x, y \in \mathcal{F},$$

$$\mathcal{L}(x_0) = \{x \in \mathbb{R}^n : \ f(x) \le f(x_0)\} \subset \mathcal{F}.$$

Define

$$m_2(x,y) = f(x) + \langle f'(x), y - x \rangle + \frac{1}{2} \langle f''(x)(y-x), y - x \rangle,$$

 $m'_2(x,y) = f'(x) + f''(x)(y-x).$

Lemma 1. For any $x, y \in \mathcal{F}$, $||f'(y) - m'_2(x, y)|| \le \frac{1}{2}L_2||y - x||^2$,

$$|f(y)-m_2(x,y)| \leq \frac{1}{6}L_2||y-x||^3.$$

Corollary: For any x and y from \mathcal{F} ,

$$f(y) \le m_2(x,y) + \frac{1}{6}L_2||y-x||^3$$
.

Cubic regularization

For M>0, define $\hat{f}_M(x,y)=m_2(x,y)+\frac{1}{6}M\|y-x\|^3$, and $T_M(x)\in \mathrm{Arg\,min}\ \hat{f}_M(x,y),$

where "Arg" indicates that $T_M(x)$ is the global minimum.

Computability: If $\|\cdot\|$ is a Euclidean norm, then $T_M(x)$ can be computed from as a solution of *convex* problem.

$$\min_{y \in \mathbb{R}^{n}} \quad \{ \langle f'(x), y - x \rangle + \frac{1}{2} \langle f''(x)(y - x), y - x \rangle + \frac{M}{6} \|y - x\|^{3} \}$$

$$= \min_{y \in \mathbb{R}^{n}} \max_{r \ge 0} \quad \{ \langle f'(x), y - x \rangle + \frac{1}{2} \langle f''(x)(y - x), y - x \rangle + \frac{Mr}{4} \|y - x\|^{2} - \frac{Mr^{3}}{12} \}$$

$$\geq \max_{r \ge 0} \min_{y \in \mathbb{R}^{n}} \quad \{ \langle f'(x), y - x \rangle + \frac{1}{2} \langle f''(x)(y - x), y - x \rangle + \frac{Mr}{4} \|y - x\|^{2} - \frac{Mr^{3}}{12} \}$$

$$= \sup_{r\geq 0} \left\{ -\frac{1}{2} \langle f'(x), [f''(x) + \frac{Mr}{2}I]^{-1} f'(x) \rangle - \frac{Mr^3}{12} : f''(x) + \frac{Mr}{2}I \succ 0 \right\}.$$

Dual problem

For
$$r \in \mathcal{D} \equiv \{r \in R : f''(x) + \frac{M}{2}rI \succ 0, r \ge 0\},$$

Denote $v(r) = -\frac{1}{2}\langle f'(x), [f''(x) + \frac{Mr}{2}I]^{-1}f'(x)\rangle - \frac{M}{12}r^3.$

Lemma. For any M > 0, we have

$$\min_{h\in\mathbb{R}^n}\hat{f}_M(x,x+h) = \sup_{r\in\mathcal{D}}v(r).$$

(No duality gap.)

If the *sup* is attained at r^* : $f''(x) + \frac{Mr^*}{2}I > 0$, then

$$h^* = -[f''(x) + \frac{Mr^*}{2}I]^{-1}f'(x),$$

where $r^* > 0$ is a unique solution to the equation

$$r = \|[f''(x) + \frac{Mr}{2}I]^{-1}f'(x)\|.$$

Underlying fact: Convexity of numerical range.

Theorem. The set $\{u \in \mathbb{R}^2 : u^{(1)} = q_1(x), u^{(2)} = q_2(x), x \in \mathbb{R}^n\}$, where functions $q_1(\cdot)$ and $q_2(\cdot)$ are quadratic and $n \geq 2$, is <u>convex</u>.

Our case: minimize $u^{(1)} + \frac{M}{6}(u^{(2)})^{3/2}$.

Simple properties, I

Denote $r_M(x) = ||x - T_M(x)||$. Then, by the first-order optimality condition we have

$$(A_1): \quad f'(x) + f''(x)(T_M(x) - x) + \frac{Mr_M(x)}{2}(T_M(x) - x) = 0.$$

Moreover, since $r_M(x)$ is dual feasible, we have

$$(B_1): f''(x) + \frac{1}{2}Mr_M(x)I \succeq 0.$$

1. We have $\langle f'(x), x - T_M(x) \rangle \geq 0$.

Proof. In view of (A_1) we have

$$\langle f'(x), x - T_M(x) \rangle = \langle [f''(x) + \frac{1}{2}Mr_M(x)I](x - T_M(x)), x - T_M(x) \rangle.$$

It is non-negative in view of (B_1) .

2.
$$f(x) - \bar{f}_M(x) \ge \frac{M}{12} r_M^3(x)$$
. If $M \ge L$, then $\bar{f}_M(x) \ge f(T_M(x))$. Hence $f(x) - f(T_M(x)) \ge \frac{M}{12} r_M^3(x)$. (Convexity: $\frac{M}{3} r_M^3(x)$.)

Proof. For $T = T_M(x)$ and $r = r_M(x)$, by (A_1) and (B_1) we have $f(x) - \overline{f}_M(x) = \langle f'(x), x - T \rangle - \frac{1}{2} \langle f''(x)(T - x), T - x \rangle - \frac{M}{6} r^3$ $= \frac{1}{2} \langle f''(x)(T - x), T - x \rangle + \frac{M}{2} r^3.$

Simple properties, II

3. For any M > 0, we have

$$r_M^2(x) \ge \frac{2}{L_2+M} \|f'(T_M(x))\|.$$

Proof. Indeed, for $T = T_M(x)$ and $r = r_M(x)$, by (A_1) we have

$$||f'(T)|| = ||f'(T) - f'(x) - f''(x)(T - x) - \frac{M}{2}r(T - x)||$$

$$\leq \|f'(T) - f'(x) - f''(x)(T - x)\| + \frac{M}{2}r^2 \leq \frac{L_2 + M}{2}r^2.$$

4. For any M > 0 we have

$$\bar{f}_M(x) \leq \min_{y} \left[f(y) + \frac{L_2 + M}{6} ||y - x||^3 \right].$$

Proof. Indeed,

$$\bar{f}_{M}(x) = \min_{y} \{f(x) + \langle f'(x), y - x \rangle + \frac{1}{2} \langle f''(x)(y - x), y - x \rangle + \frac{M}{6} \|y - x\|^{3} \} \\
\leq \min_{y} \{f(y) + \frac{L_{2} + M}{6} \|y - x\|^{3} \}.$$

Corollary 1: For $M \ge L_2$, we have $f(x_1) - f^* \le \frac{L_2 + M}{6} D^3$.

Cubic regularization of Newton method

Consider the process: $x_{k+1} = T_L(x_k), k = 0, 1, ...$

Note that $f(x_{k+1}) \leq f(x_k)$.

Saddle points. Let $f'(x^*)=0$ and $f''(x^*)\not\succeq 0$. Then $\exists \epsilon,\delta>0$ such that

$$\boxed{\|x-x^*\| \leq \epsilon, \ f(x) \geq f(x^*)} \Rightarrow \boxed{f(T_L(x)) \leq f(x^*) - \delta}$$

Example. Let f'(x) = 0 and $f''(x) \not\succeq 0$. Then $\bar{f}_M(T) < f(x)$. Hence, if $M > L_2(f)$, then f(T) < f(x).

Local rate of convergence: Quadratic.

Proof. Indeed, $||f'(T)|| \le \frac{1}{2}(L_2 + M)r_M^2(x)$. At the same time, $r_M(x) = ||[f''(x) + \frac{1}{2}Mr_M(x)I]^{-1}f'(x)||$.

Behavior of minimizing sequence

Let x_* be a limiting point of the sequence $\{x_k\}_{k\geq 0}$. Then

$$f'(x_*) = 0$$
 and $f''(x_*) \succeq 0$.

Proof. Follows from the following facts:

- $f(x_k) f(x_{k+1}) \ge \frac{M}{12} r_M^3(x_k),$
- $||f'(x_{k+1})|| \leq \frac{L_2+M}{2}r_M^2(x_k),$
- $f''(x_x) + \frac{M}{2}r_M(x_k)I \succeq 0. \quad \Box$

Global convergence

Denote
$$g_k \equiv \min_{1 \leq i \leq k} \|f'(x_i)\|$$
. Then $g_k \leq O\left(\frac{1}{k^{2/3}}\right)$

NB: For the gradient method, we can guarantee only $g_k \leq O\left(\frac{1}{k^{1/2}}\right)$.

Global performance: Star-convex functions

Def. For any x^* , any $x \in \mathbb{R}^n$, and $\alpha \in [0,1]$, we have

$$f(\alpha x^* + (1 - \alpha)x) \le \alpha f(x^*) + (1 - \alpha)f(x).$$

Theorem 1.

1. If
$$f(x_0) - f^* \ge \frac{3}{2}L_2D^3$$
, then $f(x_1) - f^* \le \frac{1}{2}L_2D^3$.

2. If
$$f(x_0) - f^* \le \frac{3}{2}L_2D^3$$
, then $f(x_k) - f^* \le \frac{3L_2D^3}{2(1+\frac{1}{2}k)^2}$.

Proof.

$$f(x_{k+1}) \leq \min_{x} \left\{ f(x) + \frac{L_2 + M}{6} \|x - x_k\|^3 \right\}$$

$$\leq \min_{\alpha \in [0, 1]} \left\{ f(x) - \alpha (f(x) - f^*) + \frac{L_2 + M}{6} \alpha^3 D^3 \right\}.$$

Our conditions ensure $\alpha_k^* \in [0,1]$. Then

$$f(x_k) - f(x_{k+1}) \ge O((f(x_k) - f^*)^{3/2}).$$

This means that $f(x_k) - f^* = O(\frac{1}{k^2})$.

Superlinear convergence

Let the set of optimal solutions X^* be non-degenerate:

$$f(x) - f^* \ge \frac{\gamma}{2} \rho^2(x, X^*).$$

Denote $\bar{\omega} = \frac{1}{L_2^2} (\frac{\gamma}{2})^3$.

Theorem 2. Let k_0 the first number with $f(x_{k_0}) - f^* \leq \frac{4}{9}\bar{\omega}$.

If
$$k \leq k_0$$
, then $f(x_k) - f^* \leq \left[(f(x_0) - f^*)^{1/4} - \frac{k}{6} \sqrt{\frac{2}{3}} \bar{\omega}^{1/4} \right]^4$.

For
$$k \ge k_0$$
, we have $f(x_{k+1}) - f^* \le \frac{1}{2} (f(x_k) - f^*) \sqrt{\frac{f(x_k) - f^*}{\bar{\omega}}}$.

Proof. Indeed,

$$f(x_{k+1}) \leq \min_{x \in X^*} \left\{ f(x) + \frac{L_2 + M}{6} \|x - x_k\|^3 \right\}$$

$$= f^* + \frac{L_2 + M}{6} \left[\left(\frac{2}{\gamma} (f(x_k) - f^*) \right)^{1/2} \right]^3. \quad \Box$$

NB The Hessian $f''(x^*)$ can be degenerate!

Global performance: Gradient-dominated functions

Definition. For any $x \in \mathcal{F}$, and $x^* \in X^*$, we have

$$f(x) - f(x^*) \le \tau_f ||f'(x)||^p$$

with $\tau_f > 0$ and $p \in [1,2]$ (degree of domination).

Example 1. Convex functions:

$$f(x) - f^* \le \langle f'(x), x - x^* \rangle \le R \|f'(x)\|$$

for $||x - x^*|| \le R$. Thus, p = 1, $\tau_f = \frac{1}{2}D$.

Example 2. Strongly convex functions: $\forall x, y \in \mathbb{R}^n$

$$f(x) \le f(y) + \langle f'(y), x - y \rangle + \frac{1}{2\gamma} \|f'(x) - f'(y)\|^2.$$

Thus,
$$f(x) - f^* \le \frac{1}{2\gamma} \|f'(x)\|^2 \quad \Rightarrow \quad p = 2, \ \tau_f = \frac{1}{2\gamma}.$$

Gradient dominated functions, II

Example 3. Sum of squares. Consider the system

$$g(x) = 0 \in \mathbb{R}^m, \quad x \in \mathbb{R}^n$$
,

which has a solution x^* , $g(x^*) = 0$.

Assume that $m \le n$ and the Jacobian $J(x) = (g_1'(x), \dots, g_m'(x))$ is uniformly non-degenerate:

$$\sigma \equiv \inf_{x \in \mathbb{D}_n} \lambda_{\min}(J^T(x)J(x)) > 0.$$

Theorem 3. Consider the function $f(x) = \sum_{i=1}^{m} g_i^2(x)$. Then

$$f(x) - f^* \le \frac{1}{2\sigma} ||f'(x)||^2$$
.

Thus, p=2 and $\tau_f=\frac{1}{2\sigma}$.

Proof. Indeed, f'(x) = J(x)g(x). Therefore,

$$||f'(x)||^2 = \langle (J^T(x)J(x))g(x), g(x)\rangle$$

$$\geq \sigma \|g(x)\|^2 = 2\sigma(f(x) - f^*).$$

Gradient dominated functions: convergence rate

Theorem 3. Let p=1. Denote $\hat{\omega}=\frac{2}{3}L(6\tau_f)^3$.

Let k_0 be defined as $f(x_{k_0}) - f^* \le \xi^2 \hat{\omega}$ for some $\xi > 1$.

Then for $k < k_0$ we have

$$\ln\left(\frac{1}{\hat{\omega}}(f(x_k)-f^*)\right) \leq \left(\frac{2}{3}\right)^k \ln\left(\frac{1}{\hat{\omega}}(f(x_0)-f^*)\right).$$

Otherwise, $f(x_k) - f^* \le \hat{\omega} \cdot \frac{\xi^2(2+\frac{3}{2}\xi)^2}{(2+(k+\frac{3}{2})\cdot\xi)^2}$.

Proof. Indeed, we have

- $f(x_k) f(x_{k+1}) \ge c_1 ||f'(x_{k+1})||^{3/2},$
- $||f'(x_{k+1})|| \geq \frac{1}{\tau_f} (f(x_{k+1}) f^*).$

Therefore, $f(x_k) - f^* = O(\frac{1}{k^2})$.

Superlinear rate of convergence

Theorem 4. Let
$$p=2$$
. Denote $\tilde{\omega}=\frac{1}{(144L)^2\tau_f^3}$.

Let k_0 be defined as $f(x_{k_0}) - f^* \leq \tilde{\omega}$.

Then for $k \leq k_0$ we have $f(x_k) - f^* \leq (f(x_0) - f^*) \cdot e^{-k\sigma}$

with
$$\sigma=rac{ ilde{\omega}^{1/4}}{ ilde{\omega}^{1/4}+(f(x_0)-f^*)^{1/4}}.$$

Otherwise,
$$f(x_{k+1}) - f^* \leq \tilde{\omega} \cdot \left(\frac{f(x_k) - f^*}{\tilde{\omega}}\right)^{4/3}$$
.

Proof. Indeed

$$f(x_k) - f(x_{k+1}) \ge c_1 ||f'(x_{k+1})||^{3/2}$$

 $\ge c_1 \left[\frac{1}{\tau_f} (f(x_{k+1}) - f^*)\right]^{3/4}$

NB: Superlinear convergence without direct nondegeneracy assumption for the Hessian.

Transformations of convex functions

Let $u(x): \mathbb{R}^n \to \mathbb{R}^n$ be non-degenerate. Denote by v(u) its inverse:

$$v(u(x)) \equiv x$$
.

Consider the function $f(x) = \phi(u(x))$, where $\phi(u)$ is a convex function. Denote

$$\sigma = \max_{u} \{ \|v'(u)\| : \phi(u) \le f(x_0) \},$$

$$D = \max_{u} \{ \|u - u^*\| : \phi(u) \le f(x_0) \}.$$

Theorem 5.

1. If
$$f(x_0) - f^* \ge \frac{3}{2}L(\sigma D)^3$$
, then $f(x_1) - f^* \le \frac{1}{2}L(\sigma D)^3$.

2. If
$$f(x_0) - f^* \le \frac{3}{2}L(\sigma D)^3$$
, then $f(x_k) - f^* \le \frac{3L(\sigma D)^3}{2(1+\frac{1}{2}k)^2}$.

Proof. It is based on non-degeneracy of $u'(\cdot)$ and the reasoning for star-convex functions.

Example. For arbitrary functions $\phi_i(\cdot)$, i = 1, ..., n-1, define

$$u_1(x) = x_1, u_2(x) = x_2 + \phi_1(x_1), \dots, u_n(x) = x_n + \phi_{n-1}(x_1, \dots, x_{n-1}).$$

Solving the systems of nonlinear equations

1. Standard Gauss-Newton method

Problem: Find $x \in \mathbb{R}^n$ satisfying the system $F(x) = 0 \in \mathbb{R}^m$.

Assumption: $\forall x, y \in \mathbb{R}^n$ $||F'(x) - F'(y)|| \le L||x - y||$.

Gauss-Newton method: Choose a merit function $\phi(u) \ge 0$, $\phi(0) = 0$, $u \in \mathbb{R}^m$.

Compute $x_+ \in \operatorname{Arg\,min}_y \left[\phi(F(x) + F'(x)(y-x))\right].$

Usual choice: $\phi(u) = \sum_{i=1}^{m} u_i^2$. (Justification: *Why not?*)

Remarks

- Local quadratic convergence $(m \ge n, \text{ non-degeneracy and } F(x^*) = 0$ (?)).
- ▶ If m < n, then the method is not well-defined.
- ► No global complexity results.

Modified Gauss-Newton method

Lemma. For all $x, y \in \mathbb{R}^n$, we have

$$||F(y) - F(x) - F'(x)(y - x)|| \le \frac{1}{2}L||y - x||^2.$$

Corollary. Denote f(y) = ||F(y)||. Then

$$f(y) \le ||F(x) + F'(x)(y - x)|| + \frac{1}{2}L||y - x||^2.$$

Modified method:

$$x_{k+1} = \arg\min_{y} \left[\|F(x_k) + F'(x_k)(y - x_k)\| + \frac{1}{2}L\|y - x_k\|^2 \right].$$

Remarks

- ▶ The merit function is non-smooth.
- Nevertheless, $f(x_{k+1}) < f(x_k)$ unless x_k is a stationary point.
- Quadratic convergence for non-degenerate solutions.
- Global efficiency bounds.
- ▶ Problem of finding x_{k+1} is convex.
- ▶ Different norms in \mathbb{R}^n and \mathbb{R}^m can be used.

Implementation for Euclidean norm

$$\min_{y} \quad \left[\|F(x_{k}) + F'(x_{k})(y - x_{k})\| + \frac{1}{2}L\|y - x_{k}\|^{2} \right]
= \quad \min_{y} \min_{\tau > 0} \quad \left[\frac{1}{2\tau} \|F(x_{k}) + F'(x_{k})(y - x_{k})\|^{2} + \frac{1}{2}\tau^{2} + \frac{1}{2}L\|y - x_{k}\|^{2} \right]
= \quad \min_{\tau > 0} \quad \left[\frac{1}{2\tau} \|F(x_{k})\|^{2} + \frac{1}{2}\tau^{2} - \frac{1}{2\tau}\langle F'(x_{k})^{T}F(x_{k}), [F'(x_{k})F'(x_{k})^{T} + \tau LI]^{-1}F'(x_{k})^{T}F(x_{k}) \rangle \right].$$

This is a convex univariate function.

Testing CNM: Chebyshev oscilator

Consider
$$f(x) = \frac{1}{4}(1 - x^{(1)})^2 + \sum_{i=1}^{n-1} (x^{(i+1)} - p_2(x^{(i)}))^2$$
,

with $p_2(\tau) = 2\tau^2 - 1$.

Note that p_2 is a Chebyshev polynomial: $p_k(\tau) = \cos(k \arccos(\tau))$.

Hence, the equations for the "central path" is

$$x^{(i+1)} = p_2(x^{(i)}) = p_4(x^{(i-1)}) = \ldots = p_{2^i}(x^{(1)}).$$

This is an exponential oscillation!

However, all coefficients in function and derivatives are small.

NB: f(x) is unimodular and $x^* = (1, ..., 1)$.

In our experiments we usually take $x_0 = (-1, 1, \dots, 1)$.

Drawback: $x_0 - 2\nabla f(x_0) = x^*$. Hence, sometimes we use $x_0 = (-1, 0.9, \dots, 0.9)$.

Solving Chebyshev oscilator by CN: $\|\nabla f(x)\|_{(2)} \leq 10^{-8}$

n	lter	DF	GNorm	NumF	Time (s)
2	14	$7.0 \cdot 10^{-19}$	$4.2 \cdot 10^{-09}$	18	0.032
3	33	$1.1 \cdot 10^{-24}$	$7.5 \cdot 10^{-12}$	51	0.031
4	82	$1.7 \cdot 10^{-20}$	$9.3 \cdot 10^{-10}$	148	0.047
5	207	$4.5 \cdot 10^{-19}$	$1.2 \cdot 10^{-09}$	395	0.078
6	541	$1.0 \cdot 10^{-17}$	$5.6 \cdot 10^{-09}$	1062	0.266
7	1490	$1.4 \cdot 10^{-18}$	$2.9 \cdot 10^{-09}$	2959	0.609
8	4087	$2.7 \cdot 10^{-17}$	$9.1 \cdot 10^{-09}$	8153	1.782
9	11205	$1.6 \cdot 10^{-16}$	$9.6 \cdot 10^{-09}$	22389	5.922
10	30678	$2.7 \cdot 10^{-15}$	$9.6 \cdot 10^{-09}$	61335	18.89
11	79292	$7.7 \cdot 10^{-14}$	$1.0 \cdot 10^{-08}$	158563	57.813
12	171522	$9.7 \cdot 10^{-13}$	$9.9 \cdot 10^{-09}$	343026	144.266
13	385353	$1.3 \cdot 10^{-11}$	$9.9 \cdot 10^{-09}$	770691	347.094
14	938758	$2.1 \cdot 10^{-11}$	$1.0 \cdot 10^{-08}$	1877500	1232.953
15	2203700	$7.8 \cdot 10^{-11}$	$1.0 \cdot 10^{-08}$	4407385	3204.359

Other methods

	Trust	region	Knitro	Minos	5.5	Snopt	
n	Inner	lter	lter	Iter	NFG	Iter [#]	NFG
3	129	50	30	44	120	106	78
4	431	123	80	136	309	268	204
5	1310	299	203	339	793	647	509
6	3963	722	531	871	2022	1417	1149*
7	12672	1921	1467	2291	5404	* * *	
8	40036	5234	4040	6109	14680		
9	120873	13907	11062	11939	28535		
10	358317	36837	29729*	***			
11	842368	78854	***				
12	2121780	182261					

Notation: * early termination, (***) numerical difficulties/ inaccurate solution, # needs an alternative starting point.

Trust region: very reliable, but T(12) = 2577 sec (Matlab), $T(n) = Const * (4.5)^n$.