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Historical remarks

Problem: f(x) — min: xecR”
is replaced by a system of non-linear equations |f’(x) =0
Linearization: f'(X) + f(X)(x+ — X) = 0.
Newton method: Xk4+1 = Xk — [f”(Xk)]_lf/(Xk).
Standard objections:

» The method can brake down (det f”(xx) = 0).

> Possible divergence.

» Possible convergence to a saddle point or even to a local maximum.

» Possible chaotic global behavior.
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Pre-History (see Ortega, Rheinboldt [1970])

» Bennet [1916]: first use of Newton's method in existence theorem.
» Levenberg [1944]: Regularization.
If f(x) # 0, then use d = G~1f'(x) with G = f"(x) +~I = 0.
(See also Marquardt [1963].)
» Kantorovich [1948]: First proof of local quadratic convergence.

Assumptions:
a) f e C(R").

b) [[f"(x) - f”( ) < Laflx = yl|.

; f‘//(X )

Xo =~

Proof: Let ||f"(x)ul| > p||u| for all u and x with 4 > 0. Then

1F6e)] = [1F) = F/0) — F(x)(xs — )]
< 3Lallxy = x[? < ZIF ()|

Thus, x: ||[f'(x)] < %‘ is in the region of quadratic convergence.
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Global analysis

Global convergence: Use line search (good advice).

Global performance: Not addressed.

COMPLEXITY FOR CONVEX FUNCTIONS

Assumptions
» Strong convexity: V2f(x) = pul for all x. Consequence:
Fly) = )+ (F(x).y —x) + 5lly — x|*.
Minimizing this inequality in y, we get

sl NP = f(x) — £

> Lipschitz continuous gradient: ||f'(x) — f'(y)|| < Li]|x — y/.
By integration, we get

Fly) < FO0) + (F/(x),y = x) + Zx =yl
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Convergence rate

Gradient method Xk+1 = Xk — *f/(Xk)

Thus, at every iteration we have
F(xi) = Fxkan) = o1 IF G 1P = 5 (F () — ).

Newton Method | i1 = x — 7" ()] () |

Then
F(ar1) = FO) < = (F (), [F7 ()11 (k) + 521 [F7 o)l () 12

< [7+ B72] (P 0 [P/ 0] (xe))-
Minimization in 7 gives
Flon) = FO) < = (F (), [P ()] ().
Since (/(xe), [F"(a)] () = £ 1FCa) 2 2 3 (F(x) — £7),

2
we get  f(xe) — fxes1) > (Lﬂ) (F(xe) — £%).
This is worse than for GM!
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Modern History (Conn, Gould and Toint [2000])

Main idea: Trust Region Approach.

1. Use some norm || - || for defining a trust region
Bi = {X e R": ||X*Xka < Ak}

2. Denote my(x) = f(xk) + (F'(xk),x — xk) + %(Gk(x — Xk ), X — Xk)-
Variants: G, = "(xx), Gk =" (xk) +v«! = 0, etc.

3. Compute the trial point X, = arg milg my(x).
xeByg

f(xi)—f (%)

4. Compute the ratio px = o) =m0

5. In accordance to pk, either accept xx11 = Xk, or decrease the value
Ay and repeat the steps above.
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Comments

Advantages:
» More parameters = Flexibility

» Convergence to a point, which satisfies second-order necessary
optimality condition:

Fi(x*) =0, F'(x)=0.

Disadvantages:
» Complicated strategies for parameters’ coordination.
For certain || - |

k., the auxiliary problem is difficult.

>

> Line search abilities are limited.

» Unselective theory (local convergence).
>

Global complexity issues are not addressed, even in convex case.
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Trust Region Method with Contraction

Consider the problem: miS f(x),
xe

where @ is a bounded closed convex set, and f is a closed convex
function.

Assumptions: L;(f) < +o0, Ly(f) < +o0.

Method:
1. Choose arbitrary xp € Q.
2. For k > 0 iterate: Choose 74 € (0,1) and compute

min{  (f'(x),y = x) + 3(F"(a)(y = %),y — ) :
y = (1 —7)xk + Tix, x € Q}.

Theorem. If 7, = %, k >0, then

* 18L,D° 9L,D?
fxi) = £ < ot + e

where D = diam Q.
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Development of numerical schemes

Classical style: Problem formulation = Method

Examples:
» Gradient and Newton methods in optimization.
» Runge-Kutta method for ODE, etc.

Problem formulation

2. Modern style: Problem class

} = Method

Examples:
» Non-smooth convex minimization.
» Smooth minimization: mig f(x), with f € CHL.
xe
Gradient mapping (Nemirovsky& Yudin 77):

x. = T(x)=argmin m ,
= T()=argmin m(y)

m(y) = f(x)+{F(x),y —x) + 3y - x|*

Justification: f(y) < my(y) for all y € Q.
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Using the second-order model

Problem: f(x) min: x € R".
Assumption: Let F be an open convex set. Then
[F7(x) = "Wl < Lallx —yll Vx,y € F,

L(x)={xeR": f(x)<f(x)} CF.
Define
ma(x,y) = F(x) + (f'(x),y —x) + 3{(f"(x)(y — x),y — x),

my(x,y) = f'(x) + " (x)(y — x).

Lemma 1. Forany x,y € F, 1" (y) — mh(x, y)|| < %L2||y — x|,

f(y) = ma(x,y)| < glally — x|

Corollary: For any x and y from F,

f(y) < ma(x,y) + g Lally — x|
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Cubic regularization

For M > 0, define fy(x,y) = ma(x,y) + M|y — x|, and
Tum(x) € Argmin fu(x,y),

where “Arg” indicates that Tpy(x) is tyhe global minimum.

Computability: If || - || is a Euclidean norm, then Ty (x) can be
computed from as a solution of convex problem.

min {(F/(x),y = %) + 30Ny =)y = x)+ Zlly = xIP}

— yné]ilgn rpZaé( {f'(x),y — x) + %<f//(x)(y —x),y — x)

3
Belly = x|? - ¥

Y%

max min  {{(f'(x),y —x) + %(f”(x)(y = X),¥ = X)

r>0 yeRn
3
‘Azr”y - X||2 A{'Q

- sup { = J(F0), IF(x) + 012 (x) — M5 F(x) + M0 - o).
r>0



Dual problem
ForreD={reR:f'(x)+%r>0,r>0}
Denote v(r) = —3(f'(x),[f"(x) + M171f'(x)) — Mr3.
Lemma. For any M >0, we have

min fu(x,x+h) = féjg v(r).
(No duality gap.)
If the sup is attained at r*: f"(x) + Mzr*l >~ 0, then
b = —1F(x) + M0 ),
where r* > 0 is a unique solution to the equation
r=[lf"(x) + ZNH (]

Underlying fact: Convexity of numerical range.
Theorem. The set {u € R?: v = g;(x), u® = go(x), x € R"},
where functions g;(-) and g»(+) are quadratic and n > 2, is convex.

Our case: minimize u® + ¥ (u(2))3/2,
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Simple properties, |

Denote ry(x) = ||x — Tm(x)||. Then, by the first-order optimality
condition we have

(A1) 0 F(x)+ F7()(Tm(x) — x) + %(TM(X) —x)=0.
Moreover, since ry(x) is dual feasible, we have
(B): f"(x)+ %MI’M(X)I = 0.
1. We have (f'(x),x — Tu(x)) > 0.
Proof. In view of (A;) we have
(F(x), x = Tm(x)) = ([f"(x) + 3Mm () 11(x = T (x)), x = Tum(x)).
It is non-negative in view of (By). O
2. f(x)—fu(x) > Mrd(x). If M > L, then fiyy(x) > f(Tm(x)). Hence
f(x) — F(Tm(x)) > ¥ r3)(x). (Convexity: ¥ r3 (x).)
Proof. For T = Ty(x) and r = ry(x), by (A1) and (B;) we have
F) — u(x) = (F(x)x—T) = J(FI0(T =), T —x) — 73
= HFO)NT —x), T—x)+ 4. O
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Simple properties, |l

3. For any M > 0, we have
rin(x) = 2wl (Tm(x)]-
Proof. Indeed, for T = Ty(x) and r = ry(x), by (A1) we have
(D = £ (T) = F1(x) = FONT = x) = Fr(T = x|

IN

4. For any M > 0 we have
fu(x) < myin [F(y) + &My — x|®].

Proof. Indeed,

fu(x) = min {F(x)+(F'(x),y =x) + 5{F" () = x),y =)
+ lly = xI1*}
< min {f(y) + 28y — x|} D

Corollary 1: For M > L,, we have f(x;) — f* < LJGFM D3,

IF/(T) = £/(x) = F/O)NT =) + Fr> < B8

18/33



Cubic regularization of Newton method

Consider the process: xk+1 = Ti(x), k=0,1,....
Note that f(xk+1) < F(xk).

Saddle points. Let f'(x*) =0 and f”(x*) # 0. Then 3¢, > 0 such
that

[Ix = x" < e F(x) > F(x")

= [(Tu(x) < f(x) - 4]

Example. Let f'(x) =0 and f”(x) # 0. Then fy(T) < f(x).
Hence, if M > L(f), then f(T) < f(x). O
Local rate of convergence: Quadratic.
Proof. Indeed, ||f'/(T)|| < 3(La+ M)rZ(x). At the same time,
rm(x) = [|[F"(x) + 3 M ()17 (3.
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Behavior of minimizing sequence

Let x. be a limiting point of the sequence {xx}x>0. Then
f'(x.) =0 and f’(x,) *= 0.
Proof. Follows from the following facts:
> f(xk) — F(Xky1) = %",‘T’//(Xk)
> | o) | < B (),

> (x) + Yry(x)! = 0. O

Global convergence

. 1
Denote g = min, [£/(x;)ll. Then|gk < O (15)

NB: For the gradient method, we can guarantee only gi < O (3%)-
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Global performance: Star-convex functions

Def. For any x*, any x € R”, and « € [0,1], we have
flax* + (1 — a)x) < af(x*) + (1 — a)f(x).
Theorem 1.
1. If f(X()) —f*> %LQDS, then f(Xl) —f* < %L2D3.
* * 3L,D°
2. If f(xo) — £* < 3L,D3, then f(x) — f* < 2(1f%k)2.
Proof.

fxkr1) < min{f(x)—i—#“x—xkﬂﬂ

X

IN

; _ _fx L+M 313
a@[:)tll]{f(x) a(f(x) — F*) + L2EMa3p }

Our conditions ensure of € [0,1]. Then
F(xk) = f(xir1) = O((F(xi) — £7)*/2).

This means that f(xc) — F* = O(}%). O
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Superlinear convergence

Let the set of optimal solutions X* be non—degenerate:

f(x) — f* > 2p?(x, X*).
Denote & = %(%)3
Theorem 2. Let kg the first number with f(xy,) — f* < g

f
If k < ko, then Fxi) = £* < [(F(xg) = F1)M/* = \[ 1/4} _

§ 1

IS

For k > ko, we have f(xyy1) — f* < % - )

J)

Proof. Indeed,

. L+M
flxan) < Xrgg{f(x)++||x—xkn3}

S (CUT R N

NB The Hessian f”(x*) can be degenerate!
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Global performance: Gradient-dominated functions

Definition. For any x € F, and x* € X*, we have
F(x) = F(x7) < 7| F/(x)]1P
with 77 > 0 and p € [1,2] (degree of domination).
Example 1. Convex functions:
fF(x) = 7 < (f/(x),x =x*) < R[['(x)]]
for |[x —x*|| < R. Thus, p=1, 7 = 3D.

Example 2. Strongly convex functions: Vx,y € R"
F(x) < Fy) +{F(y)ox = y) + 55 I/ (x) = F)II%
Thus, f(x) £ < 2P = p=2, 7= 2.
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Gradient dominated functions, Il
Example 3. Sum of squares. Consider the system
g(x)=0€R™ xeR",
which has a solution x*, g(x*) = 0.

Assume that m < n and the Jacobian J(x) = (g{(x), ..., &,(x)) is
uniformly non-degenerate:

= | . T
o= xlen]lg” Amin(J " (x)J(x)) > 0.
Theorem 3. Consider the function f(x) = Y g?(x). Then
i=1

F0) — < LGP,
Thus, p=2 and 77 = %
Proof. Indeed, f'(x) = J(x)g(x). Therefore,
12 = (T (x)I(x)g(x). &(x))

> ollg()l? = 20(f(x) = ).

24/33



Gradient dominated functions: convergence rate

Theorem 3. Let p=1. Denote & = 2L(67)>.
Let ko be defined as f(x,) — f* < &£2& for some & > 1.
Then for k < kg we have

In (3(F0) = ) < (3)" In (3(F(x0) = £).
<

Otherwise, f(xx) — * <& - _£e+3e”

Proof. Indeed, we have
> ) = Fxein) > allf (i) P2,
> | Gag)ll > £ (FOusa) — ).

Therefore, f(xx) — * = O(%)
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Superlinear rate of convergence

Theorem 4. Let p=2. Denote & = (

1
144L)273 "

Let ko be defined as f(xk,) — * < &.
Then for k < kg we have f(x¢) — f* < (f(x0) — f*) - e k@

oL/

with o = S (F (o) —F)/ -

Otherwise, f(xk41) — f* <& - (

Proof. Indeed
f(Xk) - f(Xk+1)

>

>

f(xk)ff*>4/3

€

crllF (xus1)|13/2

& |2 (Flxi) = F7)

]3/4 ’

O

NB: Superlinear convergence without direct nondegeneracy assumption

for the Hessian.
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Transformations of convex functions

Let u(x) : R"™ — R" be non-degenerate. Denote by v(u) its inverse:

v(u(x)) = x.
Consider the function  f(x) = ¢(u(x)),  where ¢(u) is a convex
function. Denote

o = max{[[v'(u)] = ¢(u) < f(x0)},
D =max{|lu—u*[|: ¢(u) < f(x0)}-

Theorem 5.

1. If f(xo) — f* > 3L(cD)3, then f(x1) — f* < %L(UD)3.

3
2
3
2

L(oD)?, then f(x,) — f* < 2tlZBX

2. If f(x0) — f* < T

Proof. It is based on non-degeneracy of v/(-) and the reasoning for

star-convex functions. O
Example. For arbitrary functions ¢;(-), i=1,...,n—1, define
ul(x) = X, U2(X) = X2+¢1(X1), ey

Un(X) = Xn+ ¢n—1(X1a cee 7Xn—1)-
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Solving the systems of nonlinear equations

1. Standard Gauss-Newton method

Problem: Find x € R" satisfying the system F(x) =0 € R™.
Assumption:  Vx,y € R" ||F'(x) — F'(y)|| < L|x — y||.
Gauss-Newton method: Choose a merit function ¢(u) > 0, ¢(0) =0,
ueR™

Compute x; € Arg myin [p(F(x) + F'(x)(y — x))].

Usual choice: ¢(u) = > u?. (Justification: Why not?)
i=1

Remarks

» Local quadratic convergence (m > n, non-degeneracy and F(x*) =0
(7).

» If m < n, then the method is not well-defined.

» No global complexity results.
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Modified Gauss-Newton method

Lemma. For all x,y € R", we have
IF(y) = F(x) = F'()(y = x)I| < 5Ly — x|
Corollary. Denote f(y) = ||F(y)||. Then
Fy) < IFG)+ F Oy =)+ 3Llly — [
Modified method:
X1 = argmin [ F(xa) + F/Ca)(y —xll + 3Ly —xdl* ].

Remarks
» The merit function is non-smooth.
» Nevertheless, f(xxt1) < f(xk) unless x, is a stationary point.

Quadratic convergence for non-degenerate solutions.

4

» Global efficiency bounds.

» Problem of finding xx41 is convex.
>

Different norms in R” and R™ can be used.
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Implementation for Euclidean norm

min [ |[F(xk) + F'(x)(y — )l + 3Ly — x|? ]

= minmin [ = IF () + F'(a)(y — xi)l1?+ 372+ 5Ly — xi|l? ]

— H 1 2 1.2
= min [EIFG)IP+

— o= (F' () TF (i), [F (i) F' (i) T+ T LI F () TF () -

This is a convex univariate function.
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Testing CNM: Chebyshev oscilator

n—1
Consider f(x) = 1(1 — xM)2 4 3 (x(+D) — py(x(D))?,
i=1

with po(7) =272 — 1.
Note that p; is a Chebyshev polynomial:  pi(7) = cos(k arccos(7)).
Hence, the equations for the “central path” is
X(i+1) = p2(X(i)) = p4(X(’.71)) =...= p2,‘(X(1))'
This is an exponential oscillation!

However, all coefficients in function and derivatives are small.

NB: f(x)is unimodular and x* = (1,...,1).

In our experiments we usually take xo = (—1,1,...,1).

Drawback: xg — 2Vf(xp) = x*. Hence, sometimes we use
xo = (—1,0.9....,0.9).
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Solving Chebyshev oscilator by CN: [|[Vf(x)||2) < 10°¢

n Iter DF GNorm NumF | Time (s)
2 14[70-1009[4.2.1079° 18 0.032
3 33[/1.1-107%[75-10° 12 51 0.031
4 82[17-10020193.10°10 148 0.047
5 207 [45-10°19[1.2-107% 395 0.078
6 541 [1.0-10 17 [ 5.6-10"% 1062 0.266
7 1490 [ 1.4-10°18[29.107% 2959 0.609
8 4087 [ 2.7-10"17]9.1-107% 8153 1.782
9 11205 | 1.6-10"1 | 9.6- 10~ 22389 5.922
10| 30678 [27-107°[96-10"0° 61335 18.89
11 79202 [7.7-10° [ 1.0-10"98 | 158563 57.813
12| 171522 [9.7-1073[9.9-10799 | 343026 | 144.266
13| 385353 [1.3-10711[90.9-1079° | 770691 | 347.094
14 | 938758 [ 2.1-10" 1T [ 1.0-10-08 | 1877500 | 1232.953
15 [ 2203700 | 7.8- 10711 [ 1.0- 10798 | 4407385 | 3204.359
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Other methods

Trust  region | Knitro | Minos 5.5 | Snopt

n| Inner Iter lter | Iter NFG| lter” NFG
3 129 50 30 44 120 106 78
4 431 123 80 136 309 268 204
5 1310 299 203 339 793 647 509
6 3963 722 531 871 2022 | 1417 1149*
7 12672 1921 1467 | 2291 5404 | *xx
8 40036 5234 4040 | 6109 14680
9| 120873 13907 | 11062 | 11939 28535

10 | 358317 36837 | 29729* | sk *x

11| 842368 78854 * % %

12 | 2121780 182261

Notation: * early termination, (* * %) numerical difficulties/ inaccurate

solution, # needs an alternative starting point.

Trust region: very reliable, but T(12) = 2577 sec (Matlab),
T(n) = Const * (4.5)".
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