A Hierarchical Framework for Long-Term Power Planning Models

Tang & Ferris

René Glogg
Dasun Perera
Martin Repoux
Quanjiang Yu

Zinal Winter School 2017
Outline

• Context of the problem

• Energy-economic model

• Solving methods

• Numerical example
Context of the problem

• Where energy systems meet optimization
• Distributed generation is getting popular
 • Renewable energy integration
 • Flexible demand and generation
 • Real time pricing
 • Virtual power plants
• Number of parties involved
 • Power generation companies
 • Distributors + transmission
 • Regulators
 • Consumers
• Long term planning, system designing and operation is challenging
Context of the problem

<table>
<thead>
<tr>
<th>Authors</th>
<th>Journal</th>
<th>Year</th>
<th>Method</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maroufmashat et-al</td>
<td>Egy</td>
<td>2015</td>
<td>MILP</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rad & Moravej</td>
<td>Egy</td>
<td>2017</td>
<td>BB</td>
<td></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bages & Elsayed</td>
<td>EPSR</td>
<td>2017</td>
<td>BB</td>
<td></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Tang & Ferris</td>
<td>IEEE T POWER SYST</td>
<td>2015</td>
<td>MOPEC</td>
<td>++</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>++</td>
</tr>
</tbody>
</table>

1. Node dispatch
2. OPF
3. System sizing problem
4. Transmission planning A: Line sizing
5. Transmission Planning B: System sizing/locating
6. Transmission Planning C: Connectivity

![Image 1](image1.png)
![Image 2](image2.png)
Context of the problem

Regional transmission organizations (RTO)

Independent system operators (ISO)

Firm

Nash Equilibrium

Model: Hierarchical framework

UPPER LEVEL: expansion

LOWER LEVEL: market = supply and demand
Expansion Model

- Minimization over expansion on specific transmission lines
- Uses information from the lower hierarchy, specifically what the LMP is and whether a generator is dispatched or not
Expansion Model (RTO)

\[
\min_{x \in X} \left(\psi(x) + \sum_{\omega \in \Omega} \pi_\omega \sum_{j \in N} \left(d_j^\omega p_j^\omega(x) + u_j^\omega(x) c_j^\omega(x) \right) \right)
\]

s.t. \(L(x) \leq 0. \) (1)

<table>
<thead>
<tr>
<th>Set</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\omega \in \Omega)</td>
<td>Demand scenarios</td>
</tr>
<tr>
<td>(i, j \in N)</td>
<td>Network Vertices</td>
</tr>
<tr>
<td>(ij \in A)</td>
<td>Transmission lines. (A \in {N, N})</td>
</tr>
<tr>
<td>(f \in F)</td>
<td>Firms</td>
</tr>
<tr>
<td>(G)</td>
<td>Generation nodes, (G \subseteq N)</td>
</tr>
<tr>
<td>(G_f \subseteq G)</td>
<td>Generation nodes belonging to firm (f)</td>
</tr>
<tr>
<td>(E(j) \in N)</td>
<td>Edges connected to node (j)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Model</th>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>RTO</td>
<td>(x)</td>
<td>Investment in transmission line expansion</td>
</tr>
<tr>
<td>Firm</td>
<td>(y_j)</td>
<td>Investment in generator at (j)</td>
</tr>
<tr>
<td>ISO</td>
<td>(z_{ij}^\omega)</td>
<td>Real power flowing along (i - j) in scenario (\omega)</td>
</tr>
<tr>
<td></td>
<td>(\theta_j^\omega)</td>
<td>Voltage phase angle at (j) in scenario (\omega)</td>
</tr>
<tr>
<td></td>
<td>(g_j^\omega)</td>
<td>Real power at (j) in scenario (\omega)</td>
</tr>
<tr>
<td></td>
<td>(u_j^\omega)</td>
<td>Dispatch of generator at (j) in scenario (\omega)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>(d_j^\omega)</td>
<td>Demand at (j) in scenario (\omega)</td>
<td>All</td>
</tr>
<tr>
<td>(\psi(x))</td>
<td>Cost of line investment</td>
<td>RTO</td>
</tr>
<tr>
<td>(c_j^\omega(x))</td>
<td>Generator uplift costs</td>
<td>RTO</td>
</tr>
<tr>
<td>(p_j^\omega(x))</td>
<td>LMP value</td>
<td>RTO</td>
</tr>
<tr>
<td>(L(x))</td>
<td>Budgetary/engineering limitations</td>
<td>RTO</td>
</tr>
<tr>
<td>(\pi_\omega)</td>
<td>Probability of scenario (\omega)</td>
<td>RTO,Firm</td>
</tr>
<tr>
<td>(S_{ij})</td>
<td>Susceptance of line (i - j)</td>
<td>ISO</td>
</tr>
<tr>
<td>([g_j, \bar{g}_j])</td>
<td>Operating limits of generator at (j)</td>
<td>ISO</td>
</tr>
<tr>
<td>(z_{ij})</td>
<td>Capacity of transmission line (i - j)</td>
<td>ISO</td>
</tr>
<tr>
<td>(C_j(g_j^\omega, y_j))</td>
<td>Cost function of generator at (j)</td>
<td>ISO,Firm</td>
</tr>
<tr>
<td>(\Phi(y))</td>
<td>Cost of generator investment</td>
<td>Firm</td>
</tr>
<tr>
<td>(H_f(y))</td>
<td>Budgetary constraints of firm (f)</td>
<td>Firm</td>
</tr>
</tbody>
</table>
Optimal power flow model

• Solved by the ISO to manage grid operations and provide LMP
• Modeled by short term competitive behavior of firms
• Minimize cost of unit commitment
• Solved to equilibrium with the firm models, where each firm has the option to improve efficiency of existing generators or of retiring them
• Provides LMPs and unit commitments to upper hierarchy
Equilibrium

\[\text{OPF}^{\text{UC}} (\forall \omega \in \Omega) : \]
\[\min_{u, g, z, \theta} \sum_{j \in G} u_j^\omega C_j (g_j^\omega, y_j) \]
\[\text{s.t.} \quad g_j^\omega - d_j^\omega = \sum_{i \in E(j)} z_{ij}^\omega \perp p_j^\omega \quad \forall j \in N \]
\[S_{ij} (\theta_i^\omega - \theta_j^\omega) = z_{ij} \quad \forall i, j \in A \]
\[u_j^\omega g_j \leq g_j \leq u_j^\omega g_j \quad \forall j \in N \]
\[z_{ij}^\omega \in [-z_{ij}(x), z_{ij}(x)] \quad \forall i, j \in A \]
\[\text{free}, \ u \in \{0, 1\} \]

Firm \((\forall f \in F) : \)

\[\min_y \sum_{\omega \in \Omega} \sum_{j \in G_f} \left(u_j^\omega C_j (g_j^\omega, y_j) + \Phi(y_j) \right) \]
\[\text{s.t.} \quad H_f(y) \leq 0. \]
Generator Upgrades

The cost of generating g_j units of energy is given by:

$$C_j^0 \left(g_j^\omega \right) = \hat{c}_j \left(g_j^\omega \right)^2 + \hat{c}_j g_j^\omega + \hat{c}_j$$

The paper models the impact of an investment by a diminishing rewards function $\hat{c}_j^* (y_j)$, therefore:

$$C_j \left(g_j^\omega, y_j \right) = \hat{c}_j^* (y_j) g_j^2 + \hat{c}_j y_j + \hat{c}_j$$

New generator capacity or introduction may be accommodated by an additional hierarchy, but due to complexity it is preferable to use additional dispatch variables and constraints.
Solution method: principle

UPPER LEVEL: expansion

Derivative-free optimization

REQUIRES prices p_j^ω

LOWER LEVEL: market

Multiple Optimization Problems

GIVES prices p_j^ω
Lower level: MOPEC

KKT conditions of
\[\min_{u,g,z,\theta} \sum_{j \in G} u_j^\omega C_j(g_j^\omega, y_j) \forall \omega \in \Omega \]

+

KKT conditions of
\[\min_{y} \sum_{\omega \in \Omega} \pi_\omega \sum_{j \in F} (u_j^\omega C_j(g_j^\omega, y_j) + \Phi(y_j)) \forall f \in F \]

=

CP

⚠️ KKT conditions cannot be written due to binary variables \(u \)
Approximation for generator costs

\[u_j^\omega C_j(g_j^\omega, y_j) \rightarrow \tilde{C}_j(g_j^\omega, y_j) \]
Solution method: MCP*

- Smooth and continuous model – KKT conditions can be derived
- Non-convexity of objective functions

```
Procedure 1: MCP Solution Process

Initialization: \( g_j^\omega = 0, y_j = 0 \) \( \forall j \in N, \forall \omega \in \Omega \)

Loop
   // Obtain \( g_j^\omega \) starting points with \( y_j \) fixed, eqns.(11-15)
   \( \tilde{g}_j^\omega \leftarrow \text{OPF}^*(y_j) \) \( \forall \omega \in \Omega \)
   if \( \tilde{g}_j^\omega = g_j^\omega \) then // convergence
      break;
   else // Solve equilibrium with \( \tilde{g}_j^\omega \) starting points
      \( (g_j^\omega, y_j) \leftarrow \text{MCP with } \tilde{g}_j^\omega \) starting points
```

- Obtain good starting points for equilibrium
- Convergence test
- Solving the equilibrium
2nd Solution method: RMCP

\textbf{OBSERVATION:} MCP does not change generators chosen in dispatch

\begin{itemize}
 \item Variables u fixed inside each loop
 \item Convexity of the objectives functions
\end{itemize}

\begin{table}[h]
\centering
\begin{tabular}{|c|}
\hline
\textbf{Procedure 2: Restricted MCP Solution Process} \\
\hline
\textbf{Initialization:} $g_j^\omega = 0$, $y_j = 0$ \quad $\forall j \in N$, $\forall \omega \in \Omega$ \\
\hline
\textbf{Loop} \\
\hline
// Obtain $(\tilde{g}_j^\omega, u_j^\omega)$ with y_j fixed, eqns.(3-8) \\
$(\tilde{g}_j^\omega, u_j^\omega) \leftarrow \text{OPF}^{\text{UC}}(y_j) \quad \forall \omega \in \Omega$
\hline
\textbf{if} $\tilde{g}_j^\omega = g_j^\omega$ \textbf{then} // convergence \\
\hspace{1cm} break; \\
\textbf{else} // Solve RMCP with u_j^ω fixed \\
\hspace{1cm} $(g_j^\omega, y_j) \leftarrow \text{MCP} u_j^\omega$
\hline
\end{tabular}
\end{table}

- Convergence test
- Solving the equilibrium
Results and observations

• Solved using PATH

• Same solutions with the two procedures

• RMCP converges faster

• Uniqueness issues Need to break symmetry
Numerical Example

Graphical depiction of 14-bus example.

<table>
<thead>
<tr>
<th>Description</th>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coefficient for g_j as a fraction of \bar{g}_j</td>
<td></td>
<td>0.3</td>
</tr>
<tr>
<td>Coefficient for \hat{c}_j as a fraction of $C_j (g_j = g_j, y_j = 0)$</td>
<td></td>
<td>0.5</td>
</tr>
<tr>
<td>Firm investment budget ($\text{$ units}$)</td>
<td>Firm f_1 (G_1, G_3, G_8)</td>
<td>300</td>
</tr>
<tr>
<td></td>
<td>Firm f_2 (G_2, G_6)</td>
<td>200</td>
</tr>
<tr>
<td>Generator upgrade parameter, γ ($\text{$ units}$)</td>
<td>Large generator (G_1)</td>
<td>200</td>
</tr>
<tr>
<td></td>
<td>Medium generator (G_2)</td>
<td>150</td>
</tr>
<tr>
<td></td>
<td>Small generator (G_3, G_6, G_8)</td>
<td>100</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Scenario</th>
<th>ω_1</th>
<th>ω_2</th>
<th>ω_3</th>
<th>ω_4</th>
<th>ω_5</th>
</tr>
</thead>
<tbody>
<tr>
<td>π_{ω} probability</td>
<td>0.3</td>
<td>0.3</td>
<td>0.2</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>$d_{\omega j}$ coefficient</td>
<td>1</td>
<td>1.4</td>
<td>1.8</td>
<td>2</td>
<td>2.2</td>
</tr>
</tbody>
</table>
Function Evaluation for Fixed x

Set $y=0$

OPFUC, iteration 1:

<table>
<thead>
<tr>
<th>Scenario</th>
<th>g_1</th>
<th>g_2</th>
<th>g_3</th>
<th>g_6</th>
<th>g_8</th>
</tr>
</thead>
<tbody>
<tr>
<td>ω_1</td>
<td>2.17</td>
<td>0.42</td>
<td></td>
<td></td>
<td>1.00</td>
</tr>
<tr>
<td>ω_2</td>
<td>2.21</td>
<td>0.42</td>
<td></td>
<td></td>
<td>0.84</td>
</tr>
<tr>
<td>ω_3</td>
<td>2.39</td>
<td>0.44</td>
<td>1.00</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>ω_4</td>
<td>2.43</td>
<td>0.75</td>
<td>1.00</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>ω_5</td>
<td>2.44</td>
<td>0.52</td>
<td>0.74</td>
<td>1.00</td>
<td>1.00</td>
</tr>
</tbody>
</table>

RMCP, iteration 1:

<table>
<thead>
<tr>
<th>Scenario</th>
<th>g_1</th>
<th>g_2</th>
<th>g_3</th>
<th>g_6</th>
<th>g_8</th>
</tr>
</thead>
<tbody>
<tr>
<td>ω_1</td>
<td>2.17</td>
<td>0.42</td>
<td></td>
<td></td>
<td>0.67</td>
</tr>
<tr>
<td>ω_2</td>
<td>2.50</td>
<td>0.46</td>
<td></td>
<td></td>
<td>1.00</td>
</tr>
<tr>
<td>ω_3</td>
<td>2.44</td>
<td>0.61</td>
<td>0.61</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>ω_4</td>
<td>2.43</td>
<td>0.75</td>
<td>1.00</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>ω_5</td>
<td>2.46</td>
<td>0.70</td>
<td>0.54</td>
<td>1.00</td>
<td>1.00</td>
</tr>
</tbody>
</table>

OPFUC, iteration 2 and 3 (convergence):

<table>
<thead>
<tr>
<th>Scenario</th>
<th>g_1</th>
<th>g_2</th>
<th>g_3</th>
<th>g_6</th>
<th>g_8</th>
</tr>
</thead>
<tbody>
<tr>
<td>ω_1</td>
<td>2.17</td>
<td>0.42</td>
<td></td>
<td></td>
<td>0.67</td>
</tr>
<tr>
<td>ω_2</td>
<td>2.50</td>
<td>0.50</td>
<td></td>
<td></td>
<td>1.00</td>
</tr>
<tr>
<td>ω_3</td>
<td>2.96</td>
<td>1.06</td>
<td></td>
<td></td>
<td>1.00</td>
</tr>
<tr>
<td>ω_4</td>
<td>2.86</td>
<td>0.75</td>
<td>0.73</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>ω_5</td>
<td>2.88</td>
<td>0.18</td>
<td>1.00</td>
<td>1.00</td>
<td></td>
</tr>
</tbody>
</table>

RMCP, iteration 2 and 3 (convergence):

<table>
<thead>
<tr>
<th>Scenario</th>
<th>g_1</th>
<th>g_2</th>
<th>g_3</th>
<th>g_6</th>
<th>g_8</th>
</tr>
</thead>
<tbody>
<tr>
<td>ω_1</td>
<td>2.17</td>
<td>0.42</td>
<td></td>
<td></td>
<td>0.67</td>
</tr>
<tr>
<td>ω_2</td>
<td>2.50</td>
<td>0.50</td>
<td></td>
<td></td>
<td>1.00</td>
</tr>
<tr>
<td>ω_3</td>
<td>2.60</td>
<td>1.06</td>
<td></td>
<td></td>
<td>1.00</td>
</tr>
<tr>
<td>ω_4</td>
<td>2.43</td>
<td>0.75</td>
<td>1.00</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>ω_5</td>
<td>2.52</td>
<td>1.18</td>
<td>1.00</td>
<td>1.00</td>
<td></td>
</tr>
</tbody>
</table>

Firm

<table>
<thead>
<tr>
<th>f_1</th>
<th>y_1</th>
<th>y_2</th>
<th>y_3</th>
<th>y_6</th>
<th>y_8</th>
</tr>
</thead>
<tbody>
<tr>
<td>245.34</td>
<td>157.52</td>
<td>42.48</td>
<td></td>
<td></td>
<td>54.67</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>f_2</th>
<th>y_1</th>
<th>y_2</th>
<th>y_3</th>
<th>y_6</th>
<th>y_8</th>
</tr>
</thead>
<tbody>
<tr>
<td>245.82</td>
<td>169.54</td>
<td>30.46</td>
<td></td>
<td></td>
<td>54.18</td>
</tr>
</tbody>
</table>
Transmission Expansion

Nash equilibrium gives us the dual variables p_j^ω at the upper hierarchy.

Transmission Expansion Model (RTO)

\[
\min_{x \in X} \alpha \|x\|_1 + \sum_{\omega} \pi_\omega \sum_{j \in N} (d_j^\omega p_j^\omega (x) + u_j^\omega (x) \tilde{c}_j^\omega (x)) \\
\text{s.t. } \|x\|_1 - \xi \leq 0.
\]

Penalty function

\[
\min_{x \in X} \left\{ \alpha \|x\|_1 + \sum_{\omega} \pi_\omega \sum_{j \in N} d_j^\omega p_j^\omega (x) + u_j^\omega (x) \tilde{c}_j^\omega (x) \\
+ \eta \max (\|x\|_1 - \xi, 0) \right\}.
\]
Budgeted Transmission Expansion

<table>
<thead>
<tr>
<th>Description/Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Set of decision variables</td>
<td>{x_{12}, x_{15}, x_{23}, x_{49}, x_{79}, x_{9,10}}</td>
</tr>
<tr>
<td>Physical bound, (\bar{x})</td>
<td>1.0</td>
</tr>
<tr>
<td>Investment budget, (\xi)</td>
<td>2.0</td>
</tr>
<tr>
<td>Line limits, (\bar{z}_{ij}(0))</td>
<td>1.0</td>
</tr>
<tr>
<td>Penalty value, (\eta)</td>
<td>1500</td>
</tr>
</tbody>
</table>

\[\xi = 2 \]
\[
\hat{x} = \begin{pmatrix}
x_{12} \\
x_{15} \\
x_{23} \\
x_{49} \\
x_{79} \\
x_{9\,10}
\end{pmatrix} = \begin{pmatrix}
1.089 \\
0.060 \\
0 \\
0 \\
0.30 \\
0
\end{pmatrix}
\]

\[f(\hat{x}) = 17558.715 \]
MCS iterations = 19
Procedure 2 calls = 1227.

\[\xi = 1 \]
\[
\tilde{x} = \begin{pmatrix}
\tilde{x}_{12} \\
\tilde{x}_{15} \\
\tilde{x}_{23} \\
\tilde{x}_{49} \\
\tilde{x}_{79} \\
\tilde{x}_{9\,10}
\end{pmatrix} = \begin{pmatrix}
0.636 \\
0 \\
0.060 \\
0 \\
0 \\
0
\end{pmatrix}
\]

\[f(\tilde{x}) = 18079.64 \]
MCS iterations = 19
Procedure 2 calls = 798.
Budgeted Transmission Expansion

• When increasing line limits, x, allow for a generator to be dropped from the active dispatch set in order to reduce operational cost.

• The remaining generators in the active set are forced to pick up the slack by increasing their production, which leads to an overall increase in the marginal cost.

• This has a direct impact on consumer cost because the LMP values, p_j^ω, correspond of the marginal cost.

• When the line expansion variable is sufficiently increased, it is possible for the LMP prices p_j^ω to either increase or decrease.
Conclusion

• Framework which takes into account RTO, ISO and firms interactions

• Energy modelling issues
 • Generator expansion
 • RTO objective function
 • AC vs. DC power flow equations
 • Uncertainties

• Only 2 horizons: scaling of the problem and interactions?