
PythonBiogeme: a short introduction

Michel Bierlaire

July 6, 2016

Report TRANSP-OR 160706
Transport and Mobility Laboratory

School of Architecture, Civil and Environmental Engineering
Ecole Polytechnique Fédérale de Lausanne

transp-or.epfl.ch

Series on Biogeme

1

The package Biogeme (biogeme.epfl.ch) is designed to estimate the
parameters of various models using maximum likelihood estimation. It is
particularly designed for discrete choice models. In this document, we present
step by step how to specify a simple model, estimate its parameters and
interpret the output of the software package. We assume that the reader is
already familiar with discrete choice models, and has successfully installed
PythonBiogeme. This document has been written using PythonBiogeme 2.5,
but should remain valid for future versions.

1 The data file

Biogeme assumes that the data file contains in its first line a list of labels
corresponding to the available data, and that each subsequent line contains
the exact same number of numerical data, each row corresponding to an
observation. Delimiters can be tabs or spaces. The tool biopreparedata can
be used to transform a file in Comma Separated Version (CSV) into the
required format. The tool biocheckdata verifies if the data file complies with
the required format.

The data file used for this example is swissmetro.dat. Note that the
first time a data file is used by Biogeme, it is compressed and saved in binary
format in a file. The name of this file is the same as the original file, preceeded
by __bin_. In our example, the binary file is __bin_optima.dat. If the original
text file is modifed, the binary file must be erased from the directory in order
to account for the changes. The name of the file that has actually been used
is reported in the output file.

Biogeme is available in two versions. BisonBiogeme is designed to esti-
mate the parameters of a list of predetermined discrete choice models such
as logit, binary probit, nested logit, cross-nested logit, multivariate extreme
value models, discrete and continuous mixtures of multivariate extreme value
models, models with nonlinear utility functions, models designed for panel
data, and heteroscedastic models. It is based on a formal and simple language
for model specification. PythonBiogeme is designed for general purpose para-
metric models. The specification of the model and of the likelihood function
is based on an extension of the python programming language. A series of
discrete choice models are precoded for an easy use.

In this document, we describe the model specification for PythonBiogeme.

1

2 The model

The model is a logit model with 3 alternatives: train, Swissmetro and car.
The utility functions are defined as:

V_1 = V_TRAIN = ASC_TRAIN + B_TIME * TRAIN_TT_SCALED

+ B_COST * TRAIN_COST_SCALED

V_2 = V_SM = ASC_SM + B_TIME * SM_TT_SCALED

+ B_COST * SM_COST_SCALED

V_3 = V_CAR = ASC_CAR + B_TIME * CAR_TT_SCALED

+ B_COST * CAR_CO_SCALED

where TRAIN_TT_SCALED, TRAIN_COST_SCALED, SM_TT_SCALED, SM_COST_SCALED, CAR_TT_SCALED,
CAR_CO_SCALED are variables, and ASC_TRAIN, ASC_SM, ASC_CAR, B_TIME, B_COST are
parameters to be estimated. Note that it is not possible to identify all alter-
native specific constants ASC_TRAIN, ASC_SM, ASC_CAR from data. Consequently,
ASC_SM is normalized to 0.

The availability of an alternative i is determined by the variable yi,
i=1,...3, which is equal to 1 if the alternative is available, 0 otherwise. The
probability of choosing an available alternative i is given by the logit model:

P(i|{1, 2, 3}; x, β) =
yie

Vi(x,β)

y1eV1(x,β) + y2eV2(x,β) + y3eV3(x,β)
. (1)

Given a data set of N observations, the log likelihood of the sample is

L =
∑

n

log P(in|{1, 2, 3};β) (2)

where in is the alternative actually chosen by individual n.

3 Model specification: PythonBiogeme

The model specification file must have an extension .py. The file 01logit.py

is reported in Section A.1. We describe here its content.
THe objective is to provide to PythonBiogeme the formula of the log

likelihood function to maximize, using a syntax based on the Python pro-
gramming language, and extended for the specific needs of Biogeme. The file
can contain comments, designed to document the specification. Comments
are included using the characters #, consistently with the Python syntax. All
characters after this command, up to the end of the current line, are ignored
by PythonBiogeme. In our example, the file starts with comments describing
the name of the file, its author and the date when it was created. A short
description of its content is also provided.

2

##

#

@file 01 logit.py

@author: Michel Bierlaire , EPFL

@date: Wed Dec 21 13:23:27 2011

#

Logit model

Three alternatives: Train , Car and Swissmetro

SP data

#

#######################################

These comments are completely ignored by PythonBiogeme. However, it is
recommended to use many comments to describe the model specification, for
future reference, or to help other persons to understand the specification.

The specification file must start by loading the Python libraries needed
by PythonBiogeme. Two libraries are mandatory biogeme and headers. The
first includes the extension of the PYthon programming language needed by
PythonBiogeme. The second imports the names of the headers of the data
file, so that they can be directly used in the specification of the model. In this
example, an additional library is loaded as well: statistics. It implements
some functions that report statistics about the data file.

from biogeme import *

from headers import *

from statistics import *

The next statements use the function Beta to define the parameters to be
estimated. For each parameter, the following information must be mentioned:

1. the name of the parameter,

2. the default value,

3. a lower bound,

4. an upper bound,

5. a flag that indicates if the parameter must be estimated (0) or if it
keeps its default value (1),

6. a description of the parameter, to be used in the LATEX report.

Note that, in Python, case sensitivity is enforced, so that varname and
Varname would represent two different variables. In our example, the default
value of each parameter is 0. If a previous estimation had been performed
before, we could have used the previous estimates as default value. Note

3

that, for the parameters that are estimated by PythonBiogeme, the default
value is used as the starting value for the optimization algorithm. For the
parameters that are not estimated, the default value is used throughout the
estimation process. In our example, the parameter ASC_SM is not estimated
(as specified by the 1 in the fifth argument on the corresponding line), and
its value is fixed to 0. A lower bound and an upper bound must be specified.
By default, we suggest to use -1000 and 1000. If the estimated value of the
parameter happens to equal to one of these bounds, it is a sign that the
bounds are too tight and larger values should be provided. However, most
of the time, if a coefficient reaches the value 1000 or -1000, it means that its
variable is poorly scaled, and that its units should be changed.

ASC_CAR = Beta(’ASC_CAR ’ ,0,-1000,1000,0,’Car cte.’)

ASC_TRAIN = Beta(’ASC_TRAIN ’ ,0,-1000,1000,0,’Train cte.’)

ASC_SM = Beta(’ASC_SM ’ ,0,-1000,1000,1,’Swissmetro cte.’)

B_TIME = Beta(’B_TIME ’ ,0,-1000,1000,0,’Travel time’)

B_COST = Beta(’B_COST ’ ,0,-1000,1000,0,’Travel cost’)

Note that none of the Python variables is used by PythonBiogeme. They are
used only to simplify the writing of the formula. Therefore, nothing prevents
to write

car_cte = Beta(’ASC_CAR ’ ,0,-1000,1000,0,’Car cte.’)

and to use car_cte later in the specification. The variable car_cte will be
unknown by PythonBiogeme and will not appear in any reporting file. We
strongly advise against this practice, and suggest to use the exact same
name for the Python variable on the left hand side, and for the PythonBio-
geme variable, appearing as the first argument of the function, as illustrated
in this example.

It is possible to define new variables in addition to the variables defined
in the data files. It can be done either by defining Python variables using
the Python syntax:

SM_COST = SM_CO * (GA == 0)

TRAIN_COST = TRAIN_CO * (GA == 0)

It can also be done by defining PythonBiogeme variables, using the function
DefineVariable.

CAR_AV_SP = DefineVariable (’CAR_AV_SP ’,CAR_AV * (SP !=

0))

TRAIN_AV_SP = DefineVariable (’TRAIN_AV_SP ’,TRAIN_AV * (SP

!= 0))

The latter definition is equivalent to add a column with the specified header to
the data file. It means that the value of the new variables for each observation
is calculated once before the estimation starts. On the contrary, with the

4

method based on Python variable, the calculation will be applied again and
again, each time it is needed by the algorithm. For small models, it may
not make any difference, and the first method may be more readable. But
for models requiring a significant amount of time to be estimated, the time
savings may be substantial.

When boolean expressions are involved, the value TRUE is represented
by 1, and the value FALSE is represented by 0. Therefore, a multiplication
involving a boolean expression is equivalent to a “AND” operator. The above
code is interpreted in the following way:

• CAR_AV_SP is equal to CAR_AV if SP is different from 0, and is equal to 0
otherwise. TRAIN_AV_SP is defined similarly.

• SM_COST is equal to SM_CO if GA is equal to 0, that is, if the traveler does
not have a yearly pass (called “general abonment”). If the traveler
possesses a yearly pass, then GA is different from 0, and the variable
SM_COST is zero. The variable TRAIN_COST is defined in the same way.

Variables can be also be rescaled. For numerical reasons, it is good prac-
tice to scale the data so that the values of the estimated parameters are
around 1.0. A previous estimation with the unscaled data has generated pa-
rameters around -0.01 for both cost and time. Therefore, time and cost are
divided by 100.

TRAIN_TT_SCALED = DefineVariable (’TRAIN_TT_SCALED ’,\

TRAIN_TT / 100.0)

TRAIN_COST_SCALED = DefineVariable (’TRAIN_COST_SCALED ’,\

TRAIN_COST / 100)

SM_TT_SCALED = DefineVariable (’SM_TT_SCALED ’, SM_TT / 100.0)

SM_COST_SCALED = DefineVariable (’SM_COST_SCALED ’, SM_COST / 100)

CAR_TT_SCALED = DefineVariable (’CAR_TT_SCALED ’, CAR_TT / 100)

CAR_CO_SCALED = DefineVariable (’CAR_CO_SCALED ’, CAR_CO / 100)

We now write the specification of the utility functions.

V1 = ASC_TRAIN + \

B_TIME * TRAIN_TT_SCALED + \

B_COST * TRAIN_COST_SCALED

V2 = ASC_SM + \

B_TIME * SM_TT_SCALED + \

B_COST * SM_COST_SCALED

V3 = ASC_CAR + \

B_TIME * CAR_TT_SCALED + \

B_COST * CAR_CO_SCALED

We need to associate each utility function with the number of the alter-
native, using the numering convention in the data file. In this example, the
convention is described in Table 1. To do this, we use a Python dictionary:

5

V = {1: V1 ,

2: V2 ,

3: V3}

We use also a dictionary to describe the availability conditions of each alter-
native:

av = {1: TRAIN_AV_SP ,

2: SM_AV ,

3: CAR_AV_SP}

Train 1
Swissmetro 2

Car 3

Table 1: Numbering of the alternatives

We now define the choice model. The function bioLogLogit provides the
logarithm of the choice probability of the logit model. It takes three argu-
ments:

1. the dictionary describing the utility functions,

2. the dictionary describing the availability conditions,

3. the alternative for which the probability must be calculated.

In this example, we obtain

logprob = bioLogLogit(V,av ,CHOICE)

We next defined an iterator on the data using the statement

rowIterator(’obsIter ’)

and define the ESTIMATE variable of the BIOGEME_OBJECT with the formula of the
log likelihood function:

BIOGEME_OBJECT .ESTIMATE = Sum(logprob ,’obsIter ’)

Other variables can be defined in the BIOGEME_OBJECT. In particular, the
EXCLUDE variable allows to ignore some observations in the data file. It con-
tains a boolean expression that is evaluated for each observation in the data
file. Each observation such that this expression is “true” is discarded from
the sample. In our example, the modeler has developed the model only for
work trips, so that every observation such that the trip purpose is not 1 or
3 is removed. Observations such that the dependent variable CHOICE is 0 are

6

also removed. Remember the convention that “false” is represented by 0,
and “true” by 1, so that the ‘*’ can be interpreted as a “and”, and the ‘+’
as a “or”. Note also that the result of the ‘+’ can be 2, so that we test is the
result is equal to 0 or not. The exclude condition in our example is therefore
interpreted as: either (PURPOSE different from 1 and PURPOSE different from 3),
or CHOICE equal to 0.

exclude = ((PURPOSE != 1) * (PURPOSE != 3) + \

(CHOICE == 0)) > 0

BIOGEME_OBJECT .EXCLUDE = exclude

Note that we have conveniently used an intermediary Python variable
exclude in this example. It is not necessary. The above statement is com-
pletely equivalent to

BIOGEME_OBJECT .EXCLUDE = \

((PURPOSE != 1) * (PURPOSE != 3) + \

(CHOICE == 0)) > 0

The variable PARAMETERS allows to define various parameters controlling
the configuration of PythonBiogeme. In this example, we have selected to
use the optimization algorithm BIO using the following syntax.

BIOGEME_OBJECT .PARAMETERS[’optimizationAlgorithm ’] = "BIO"

The variable FORMULAS is used to select the parts of the model specifica-
tion that are reported in the report file. In general, the formula of the log
likelihood function is too complicated to be readable, and it is preferred to
report only the specification of the utility functions, as in this example.

BIOGEME_OBJECT .FORMULAS[’Train utility ’] = V1

BIOGEME_OBJECT .FORMULAS[’Swissmetro utility ’] = V2

BIOGEME_OBJECT .FORMULAS[’Car utility ’] = V3

Finally, we request PythonBiogeme to calculate some statistics about the
null log likelihood, the log likelihood of a model with constants only, and
statistics about the availability of the alternatives.

nullLoglikelihood(av,’obsIter ’)

choiceSet = [1,2,3]

cteLoglikelihood (choiceSet ,CHOICE ,’obsIter ’)

availabilityStatistics (av,’obsIter ’)

The function nullLoglikelihood computes the null loglikelihood from the
sample and ask PythonBiogeme to include it in the output file. The first
argument is a dictionary mapping each alternative ID with its availability
condition. The second is an iterator on the data file. The result is the log
likelihood of a model where the choice probability for observation n is given

7

by is 1/Jn, where Jn is the number of available alternatives, i.e.

L = −
∑

n

ln(Jn). (3)

The function cteLoglikelihood computes the constant loglikelihood from
the sample and ask PythonBiogeme to include it in the output file. It assumes
that the full choice set is available for each observation. The first argument
is a list containing the alternatives in the choice set. The second argument is
the choice expression producing the id of the chosen alternative. The third
argument is an iterator on the data file. The result is the log likelihood of a
logit model where the only parameters are the alternative specific constants.
If ni is the number of times alternative i is chosen, then it is given by

L =
∑

i

ni ln(ni) − n ln(n) (4)

where n =
∑

i ni is the total number of observations.
The function availabilityStatistics computes the number of times each

alternative is declared available in the data set and ask PythonBiogeme to
include it in the output file. The first argument is a dictionary containing for
each alternative the expression for its availability. The second is an iterator
on the data file. The result is a dictionary D with an entry D[i] for each
alternative i containing the number of times it is available.

4 Running PythonBiogeme

The estimation of the model is performed using the following command

pythonbiogeme 01 logit swissmetro.dat

The following information is displayed during the execution.

• Some information about the version of Biogeme.

This is biogeme (pythonbiogeme) 2.5

• The name of the sample file that is read.

Read sample file: swissmetro.dat

• PythonBiogeme is able to use several processors if they are available.
By default, it uses half of the number fo available processors on the
computer.

8

Nbr of cores reported by the system: 4

Nbr of cores used by biogeme: 2

• The details about the iterations of the estimation procedure are re-
ported.
Init. log -likelihood: -6964.66 [00:00]

gmax Iter radius f(x) Status rhok nFree

+1.44e-01 1 1.00e+00 +6.9646630e+03 **** Converg +1.07e+00 4 ++ P

+5.29e-02 2 2.00e+00 +5.4217993e+03 **** Converg +1.08e+00 4 ++ P

+9.43e-03 3 4.00e+00 +5.3328087e+03 **** Converg +1.02e+00 4 ++ P

+2.34e-04 4 8.00e+00 +5.3312529e+03 **** Converg +1.00e+00 4 ++ P

Convergence reached ...

--> time interval [16:28:46 ,16:28:46]

• The value of the parameters at the end of the iterarions.

Estimated parameters:

ASC_CAR = -0.154633

B_TIME = -1.27786

B_COST = -1.08379

ASC_SM = 0

ASC_TRAIN = -0.701187

The following files are generated by PythonBiogeme:

• 01logit.html: the results of the estimation in Html format. Its content
is described in Section 5.

• 01logit_param.py: the estimated value of the parameters, together with
the variance-covariance matrix of the estimates, in a syntax that can
be directly reused in a model specification file.

• 01logit.log: a file containing messages produced by PythonBiogeme
during the run.

• 01logit.tex: a file containing the main results in LATEX format. See
Table 2.

• hess.lis: contains the final BHHH and the second derivative, or Hes-
sian, matrix. The format is such that it can be copied and pasted in a
matrix language such as Matlab or Octave.

• hessian.lis: contains the (opposite of the) Hessian matrix of the log
likelihood function at each iteration, in a Matlab compatible format.

• __parametersUsed.py: provides an exhaustive list of the parameters used
by the run of PythonBiogeme, together with the value that has been
used.

9

In order to avoid erasing previously generated results, the name of the
files may vary from one run to the next. Therefore, PythonBiogeme explicitly
mentions the name of the main files that have been generated.

File 01 logit_param.py created

File 01 logit.html has been generated

File 01 logit.tex has been generated

Robust
Parameter Coeff. Asympt.

number Description estimate std. error t-stat p-value
1 Car cte. -0.155 0.0582 -2.66 0.01
2 Train cte. -0.701 0.0826 -8.49 0.00
3 Travel cost -1.08 0.0682 -15.89 0.00
4 Travel time -1.28 0.104 -12.26 0.00

Summary statistics

Number of observations = 6768

Number of excluded observations = 3960

Number of estimated parameters = 4

L(β0) = −6964.663

L(β̂) = −5331.252

−2[L(β0) − L(β̂)] = 3266.822

ρ2 = 0.235

ρ̄2 = 0.234

Table 2: Results of the estimation in LATEX

10

5 PythonBiogeme: the report file

The report file generated by PythonBiogeme gathers various information
about the result of the estimation. First, some information about the version
of Biogeme, and some links to relevant URLs is provided. Next, the name of
the report file and the sample file are reported.

If some formulas have been requested to be reported, it is done in the
next section. After is a list of statistics requested in the model specification
file. The estimation report follows, including

• The number of parameters that have been estimated.

• The number of observations, that is, the number of rows in the data
file that have not been excluded.

• The number of excluded observations.

• Init log likelihood is the log likelihood Li of the sample for the model
defined with the default values of the parameters.

• Final log likelihood is the log likelihood L∗ of the sample for the esti-
mated model.

• Likelihood ratio test for the init. model is

−2(Li − L∗) (5)

where Li is the null log likelihood of the init model as defined above,
and L∗ is the log likelihood of the sample for the estimated model.

• Rho-square is

ρ2 = 1−
L∗

Li
. (6)

• Rho-square-bar is

ρ2 = 1−
L∗ − K

Li
. (7)

where K is the number of estimated parameters. Note that this statistic
is meaningless in the presence of constraints, where the number of
degrees of freedom is less than the number of parameters.

• Final gradient norm is the gradient of the log likelihood function com-
puted for the estimated parameters. If no constraint is active at the
solution, it should be close to 0. If there are equality constraints, or
if some bound constraints or inequality constraints are active at the

11

solution (that is, they are verified with equality), the gradient may not
be close to zero.

• Diagnostic is the diagnostic reported by the optimization algorithm. If
the algorithm has not converged, the estimation results presented in
the file cannot be used as such.

• Iterations is the number of iterations used by the algorithm before it
stopped.

• Run time is the actual time used by the algorithm before it stopped, in
minutes and seconds (format mm:ss).

• Nbr of thread: number of threads that is of processors, used during the
estimation.

The following section reports the estimates of the parameters of the utility
function, together with some statistics. For each parameter βk, the following
is reported:

• The name of the parameter.

• The estimated value βk.

• The standard error σk of the estimate, calculated as the square root of
the kthdiagonal entry of the Rao-Cramer bound (see Appendix B).

• The t statistics, calculated as tk = βk/σk.

• The p value, calculated as 2(1 −Φ(tk)), where Φ(·) is the cumulative
density function of the univariate standard normal distribution.

• A sign * is appended if the absolute value value of tk is less than 1.96,
emphasizing a potential lack of statistical significance. In this example,
no such sign appears.

• The robust standard error σR
k of the estimate, calculated as the square

root of the kthdiagonal entry of the robust estimate of the variance
covariance matrix. (see Appendix B).

• The robust t statistics, calculated as tRk = βk/σ
R
k.

• The robust p value, calculated as 2(1 −Φ(tRk)), where Φ(·) is the cu-
mulative density function of the univariate normal distribution.

12

• A sign * is appended if the absolute value value of tRk is less than 1.96,
emphasizing a potential lack of statistical significance. In this example,
no such sign appears.

The last section reports, for each pair of parameters k and ℓ,

• the name of βk,

• the name of βℓ,

• the entry Σk,ℓ of the Rao-Cramer bound (see Appendix B),

• the correlation between βk and βℓ, calculated as

Σk,ℓ√
Σk,kΣℓ,ℓ

, (8)

• the t statistics, calculated as

tk,ℓ =
βk − βℓ√

Σk,k + Σℓ,ℓ − 2Σk,ℓ

, (9)

• a sign * is appended if the absolute value value of tk,ℓ is less than
1.96, emphasizing that the hypothesis that the two parameters are
equal cannot be rejected at the 5% level (in this example, no such sign
appears),

• the entry ΣR
k,ℓ of ΣR, the robust estimate of the variance covariance

matrix (see Appendix B),

• the robust correlation between βk and βℓ, calculated as

ΣR
k,ℓ√

ΣR
k,kΣ

R
ℓ,ℓ

, (10)

• the robust t statistics, calculated as

tRk,ℓ =
βk − βℓ√

ΣR
k,k + ΣR

ℓ,ℓ − 2ΣR
k,ℓ

, (11)

• a sign * is appended if the absolute value value of tRk,ℓ is less than 1.96,
emphasizing that the hypothesis that the two parameters are equal
cannot be rejected at the 5% level (in this example, one such sign
appears, for parameters B_COST and B_TIME).

The final line reports the value of the smallest singular value of the second
derivatives matrix. A value close to zero is a sign of singularity, that may be
due to a lack of variation in the data or an unidentified model.

13

A Complete specification file

A.1 01logit.py

1 ##
2 #
3 # @f i l e 01 l o g i t . py
4 # @author : Michel B i e r l a i r e , EPFL
5 # @date : Wed Dec 21 13 :23 :27 2011
6 #
7 # Log i t model
8 # Three a l t e r n a t i v e s : Train , Car and Swissmetro
9 # SP data

10 #
11 #######################################
12

13 from biogeme import ∗
14 from headers import ∗
15 from s t a t i s t i c s import ∗
16

17 #Parameters to be es t imated
18 # Arguments :
19 # − 1 Name fo r r epor t ; Typ ica l l y , the same as the v a r i a b l e .
20 # − 2 S t a r t i n g va lue .
21 # − 3 Lower bound .
22 # − 4 Upper bound .
23 # − 5 0 : e s t imate the parameter , 1 : keep i t f i x e d .
24 #
25 ASC CAR = Beta (’ASC_CAR’ ,0 ,−1000 ,1000 ,0 , ’Car cte.’)
26 ASC TRAIN = Beta (’ASC_TRAIN’ ,0 ,−1000 ,1000 ,0 , ’Train cte.’)
27 ASC SM = Beta (’ASC_SM’ ,0 ,−1000 ,1000 ,1 , ’Swissmetro cte.’)
28 B TIME = Beta (’B_TIME’ ,0 ,−1000 ,1000 ,0 , ’Travel time’)
29 B COST = Beta (’B_COST’ ,0 ,−1000 ,1000 ,0 , ’Travel cost’)
30

31 # U t i l i t y f unc t i on s
32

33 #I f the person has a GA (season t i c k e t) her incrementa l co s t
34 #i s a c t u a l l y 0 ra the r than the co s t va lue ga thered from the
35 # network data .
36

37 SM COST = SM CO ∗ (GA == 0)
38 TRAIN COST = TRAIN CO ∗ (GA == 0)
39

40 # For numerical reasons , i t i s good p r a c t i c e to s c a l e the data to
41 # tha t the va l u e s o f the parameters are around 1 . 0 .
42 # A prev ious e s t ima t ion wi th the unsca led data has genera ted
43 # parameters around −0.01 f o r both co s t and time . Therefore , time
44 # and cos t are d i v i d ed by 100.

14

45

46 # The f o l l ow i n g s ta tements are des i gned to preproces s the data .
47 # I t i s l i k e c r ea t i n g a new columns in the data f i l e . This shou ld
48 # be p r e f e r r ed to the s ta tement l i k e
49 # TRAIN TT SCALED = TRAIN TT / 100.0
50 # which causes the d i v i s i o n to be r e e va l ua t ed again and again ,
51 # throuh the i t e r a t i o n s . For models t a k ing a long time to
52 # est imate , i t may make a s i g n i f i c a n t d i f f e r e n c e .
53

54 TRAIN TT SCALED = Def ineVar iab l e (’TRAIN_TT_SCALED’ ,\
55 TRAIN TT / 100 .0)
56 TRAIN COST SCALED = Def ineVar iab l e (’TRAIN_COST_SCALED’ ,\
57 TRAIN COST / 100)
58 SM TT SCALED = Def ineVar iab l e (’SM_TT_SCALED’ , SM TT / 100 .0)
59 SM COST SCALED = Def ineVar iab l e (’SM_COST_SCALED’ , SM COST / 100)
60 CAR TT SCALED = Def ineVar iab l e (’CAR_TT_SCALED’ , CAR TT / 100)
61 CAR CO SCALED = Def ineVar iab l e (’CAR_CO_SCALED’ , CAR CO / 100)
62

63 V1 = ASC TRAIN + \
64 B TIME ∗ TRAIN TT SCALED + \
65 B COST ∗ TRAIN COST SCALED
66 V2 = ASC SM + \
67 B TIME ∗ SM TT SCALED + \
68 B COST ∗ SM COST SCALED
69 V3 = ASC CAR + \
70 B TIME ∗ CAR TT SCALED + \
71 B COST ∗ CAR CO SCALED
72

73 # Assoc ia te u t i l i t y f unc t i on s wi th the numbering o f a l t e r n a t i v e s
74 V = {1 : V1 ,
75 2 : V2 ,
76 3 : V3}
77

78 # Assoc ia te the a v a i l a b i l i t y cond i t i on s wi th the a l t e r n a t i v e s
79 CAR AV SP = Def ineVar iab l e (’CAR_AV_SP’ ,CAR AV ∗ (SP != 0

))
80 TRAIN AV SP = Def ineVar iab l e (’TRAIN_AV_SP’ ,TRAIN AV ∗ (SP !=

0))
81

82 av = {1 : TRAIN AV SP,
83 2 : SM AV,
84 3 : CAR AV SP}
85

86 # The cho ice model i s a l o g i t , wi th a v a i l a b i l i t y cond i t i on s
87 logprob = bioLogLogit (V, av ,CHOICE)
88

89 # Def ines an i t e r t o r on the data
90 r owI t e ra to r (’obsIter’)
91

15

92 # DEfine the l i k e l i h o o d func t i on f o r the e s t ima t ion
93 BIOGEMEOBJECT.ESTIMATE = Sum(logprob , ’obsIter’)
94

95 # Al l o b s e r va t i on s v e r i f y i n g the f o l l ow i n g expre s s i on w i l l not be
96 # cons idered f o r e s t ima t ion
97 # The modeler here has deve loped the model on ly f o r work t r i p s .
98 # Observat ions such t ha t the dependent v a r i a b l e CHOICE i s 0
99 # are a l s o removed .

100 exc lude = ((PURPOSE != 1) ∗ (PURPOSE != 3) + \
101 (CHOICE == 0)) > 0
102

103 BIOGEMEOBJECT.EXCLUDE = exc lude
104

105

106 BIOGEMEOBJECT.PARAMETERS[’optimizationAlgorithm’] = "IPOPT"

107 BIOGEMEOBJECT.PARAMETERS[’biogemeDisplay’] = "3"

108

109 BIOGEMEOBJECT.FORMULAS[’Train utility’] = V1
110 BIOGEMEOBJECT.FORMULAS[’Swissmetro utility’] = V2
111 BIOGEMEOBJECT.FORMULAS[’Car utility’] = V3
112

113 # S t a t i s t i c s
114

115 nu l l L o g l i k e l i h o od (av , ’obsIter’)
116 cho i c eSe t = [1 , 2 , 3]
117 c t eLog l i k e l i h o od (cho iceSet ,CHOICE, ’obsIter’)
118 a v a i l a b i l i t y S t a t i s t i c s (av , ’obsIter’)
119

120 #BIOGEME OBJECT.PARAMETERS[’ pr in tGrad ien t ’] = ”1”
121 #BIOGEME OBJECT.PARAMETERS[’ f o r c e S c i e n t i f i cNo t a t i o n ’] = ”0”
122

123 #BIOGEME OBJECT.PARAMETERS[’ prec i s ionParameters ’] = ”3”
124 #BIOGEME OBJECT.PARAMETERS[’ p r e c i s i o n S t a t i s t i c s ’] = ”3”
125 #BIOGEME OBJECT.PARAMETERS[’ p r e c i s i onTSta t s ’] = ”14”
126

127 #BIOGEME OBJECT.PARAMETERS[’ boo t s t rapS tdErr ’] = ”100”

16

B Estimation of the variance-covariance ma-

trix

Under relatively general conditions, the asymptotic variance-covariance ma-
trix of the maximum likelihood estimates of the vector of parameters θ ∈ R

K

is given by the Cramer-Rao bound

−E
[
∇2L(θ)

]−1
=

{

−E

[
∂2L(θ)
∂θ∂θT

]}−1

. (12)

The term in square brackets is the matrix of the second derivatives of the
log likelihood function with respect to the parameters evaluated at the true
parameters. Thus the entry in the kth row and the ℓth column is

∂2L(θ)
∂θk∂θℓ

. (13)

Since we do not know the actual values of the parameters at which to
evaluate the second derivatives, or the distribution of xin and xjn over which
to take their expected value, we estimate the variance-covariance matrix by
evaluating the second derivatives at the estimated parameters θ̂ and the
sample distribution of xin and xjn instead of their true distribution. Thus we
use

E

[
∂2L(θ)
∂θk∂θℓ

]
≈

N
∑

n=1

[
∂2 (yin lnPn(i) + yjn lnPn(j))

∂θk∂θℓ

]

θ=θ̂

, (14)

as a consistent estimator of the matrix of second derivatives.
Denote this matrix as Â. Note that, from the second order optimality

conditions of the optimization problem, this matrix is negative semi-definite,
which is the algebraic equivalent of the local concavity of the log likelihood
function. If the maximum is unique, the matrix is negative definite, and the
function is locally strictly concave.

An estimate of the Cramer-Rao bound (12) is given by

Σ̂CR

θ = −Â−1. (15)

If the matrix Â is negative definite then −Â is invertible and the Cramer-Rao
bound is positive definite.

Another consistent estimator of the (negative of the) second derivatives
matrix can be obtained by the matrix of the cross-products of first derivatives
as follows:

−E

[
∂2L(θ)
∂θ∂θT

]
≈

n
∑

n=1

(
∂ℓn(θ̂)

∂θ

)(
∂ℓn(θ̂)

∂θ

)T

= B̂, (16)

17

where (
∂ℓn(θ̂)

∂θ

)
=

∂

∂θ
(log P(in|Cn; θ̂)) (17)

is the gradient vector of the likelihood of observation n. This approximation
is employed by the BHHH algorithm, from the work by Berndt et al. (1974).
Therefore, an estimate of the variance-covariance matrix is given by

Σ̂BHHH

θ = B̂−1, (18)

although it is rarely used. Instead, B̂ is used to derive a third consistent
estimator of the variance-covariance matrix of the parameters, defined as

Σ̂R

θ = (−Â)−1 B̂ (−Â)−1 = Σ̂CR

θ (Σ̂BHHH

θ)−1 Σ̂CR

θ . (19)

It is called the robust estimator, or sometimes the sandwich estimator,
due to the form of equation (19). Biogeme reports statistics based on both
the Cramer-Rao estimate (15) and the robust estimate (19).

When the true likelihood function is maximized, these estimators are
asymptotically equivalent, and the Cramer-Rao bound should be preferred
(Kauermann and Carroll, 2001). When other consistent estimators are used,
the robust estimator must be used (White, 1982). Consistent non-maximum
likelihood estimators, known as pseudo maximum likelihood estimators, are
often used when the true likelihood function is unknown or difficult to com-
pute. In such cases, it is often possible to obtain consistent estimators by
maximizing an objective function based on a simplified probability distribu-
tion.

References

Berndt, E. K., Hall, B. H., Hall, R. E. and Hausman, J. A. (1974). Estimation
and inference in nonlinear structural models, Annals of Economic and

Social Measurement 3/4: 653–665.

Kauermann, G. and Carroll, R. (2001). A note on the efficiency of sand-
wich covariance matrix estimation, Journal of the American Statistical

Association 96(456).

White, H. (1982). Maximum likelihood estimation of misspecified models,
Econometrica 50: 1–25.

18

