Monte-Carlo integration with PythonBiogeme

Michel Bierlaire
August 6, 2015

Report TRANSP-OR 150806
Transport and Mobility Laboratory
School of Architecture, Civil and Environmental Engineering
Ecole Polytechnique Fédérale de Lausanne
transp-or.epfl.ch

SERIES ON BIOGEME

The package PythonBiogeme (biogeme.epfl.ch) is designed to estimate
the parameters of various models using maximum likelihood estimation. It is
particularly designed for discrete choice models. In this document, we inves-
tigate some aspects related to Monte-Carlo integration, which is particularly
useful when estimating mixtures choice models, as well as choice models with
latent variables. We assume that the reader is already familiar with discrete
choice models, with PythonBiogeme, and with simulation methods, although
a short summary is provided. This document has been written using Python-
Biogeme 2.4, but should remain valid for future versions.

1 Monte-Carlo integration

Monte-Carlo integration consists in approximating an integral with the sum
of a large number of terms. It comes from the definition of the expectation
of a continuous random variable. Consider the random variable X with prob-
ability density function (pdf) fx(x). Assuming that X can take any value in
the interval [a,b], where a € R U{—oo} and b € R U {400}, the expected

value of X is given by)
E[X] :J xTx(x)dx. (1)

a

Also, if g : R — R is a function, then

b
Elg(X)] :J g(x)fx(x)dx. (2)

The expectation of a random variable can be approximated using simulation.
The idea is simple: generate a sample of realizations of X, that is generate R
draws x,, r =1,...,R from X, and calculate the sample mean:

R

Blg00) ~ 3 3 ())

r=1

Putting (2) and (3) together, we obtain an approximation to the integral:

b R
L g(x)fx(x)dx ~ %; g(x). (4)
Also, we have
b 1R
L g0x)fx(x)dx = lim + > gx) (5)

Therefore, the procedure to calculate the following integral

b
[= J g(x)dx (6)

a

is the following

1. Select a random variable X such that you can generate realizations of
X, and such that the pdf fx is known;

2. Generate R draws x,, r=1,...,R from X;

3. Calculate

[~y 90 -
R —1 fX(Xr)'

In order to obtain an estimate of the approximation error, we must calcu-
late the variance the random variable. The sample variance is an unbiased
estimate of the true variance:

Ve — 1 i(g(xr) . I)Z (8)
TR &)
Alternatively as
Var[g(X)] = Elg(X)*] — Elg(x)}?, (9)

the variance can be approximated by simulation as well:

1 g2
Ve &~ — — I
TR & (k)

(10)

Note that, for the values of R that we are using in this document, dividing by
R or by R—1 does not make much difference in practice. The approximation

error is then estimated as
v,
er = ﬁ (1].)
We refer the reader to Ross (2012) for a comprehensive introduction to sim-

ulation methods.

2 Uniform draws

There are many algorithms to draw from various distributions. All of them
require at some point draws from the uniform distribution. There are several
techniques that generate such uniform draws. In PythonBiogeme, one of
them must be selected by setting the parameter RandomDistribution.

Each programming language provides a routine to draw a random num-
ber between 0 and 1. Such routines are deterministic, but the sequences of
numbers that they generate share many properties with sequences of random
numbers. Therefore, they are often called “pseudo random numbers”.

BIOGEME_OBJECT .PARAMETERS [’ RandomDistribution’] = "PSEUDQO"

Researchers have proposed to use other types of sequences to perform
Monte-Carlo integration, called “quasi-random sequences” or “low-discrepancy
sequences”. PythonBiogeme implements the Halton draws, from Halton
(1960). They have been reported to perform well for discrete choice models
(Train, 2000, Bhat, 2001, Bhat, 2003, Sandor and Train, 2004).

BIOGEME_OBJECT .PARAMETERS| ’ RandomDistribution’| = "HALTON"

The third method to generate uniform random numbers implemented in
PythonBiogeme is called “Modified Latin Hypercube Sampling”, and has
been proposed by Hess et al. (2006).

BIOGEME_OBJECT .PARAMETERS [’ RandomDistribution’] = "MHLS"

In the following, we are using these three options, and compare the accu-
racy of the corresponding Monte-Carlo integration.

3 Illustration with PythonBiogeme

We first illustrate the method on a simple integral. Consider
1
[= J e*dx. (12)
0

In this case, it can be solved analytically:
[=e—1=1.7183. (13)

In order to use Monte-Carlo integration, we consider the random variable X
that is uniformly distributed on [0, 1], so that

{ 1 ifxe[0,1],

fx(x) = 0 otherwise.

(14)

Therefore, we can approximate I by generating R draws from X and

T e 18
[=E[e ~ = == xr 1
< Rfo(XT) R;e (5)

Moreover, as
Var[eX] = E[e?] — E[eX]?

1
= | eXdx—(e—1)?

Jo (16)
=(e?—1)/2—(e—1)?
= 0.2420356075,

the standard error is 0.0034787613 for R = 20000, and 0.0011000809 for
R = 200000. These theoretical values are estimated also below using Python-
Biogeme.

We use PythonBiogeme to calculate (15). Note that PythonBiogeme
requires a data file, which is not necessary in this simplistic case. We use
the simulation mode of PythonBiogeme. It generates output for each row of
the data file. In our case, we just need one output, so that we take any data
file, and exclude all rows of the file except the first one, using the following
syntax:

_-rowld__ = Variable(’__rowId__’)
BIOGEME_OBJECT .EXCLUDE = __rowld__ >= 1

For this specific example, the data included in the file are irrelevant. The
generation of draws in PythonBiogeme is performed using the command
bioDraws(’U’), where the argument *U’ provides the name of the random vari-
able associated with the draws. The distribution of the random variable is
specified using the following syntax:

BIOGEME_OBJECT.DRAWS = { °U’: ’UNIFORM’}
Note that the valid keywords are

UNIFORM, for a uniform distribution on the interval [0, 1],

UNIFORMSYM, for a uniform distribution on the interval [—1,1],

NORMAL, for a standard normal distribution, and

TRUNCNORMAL, for a truncated standard normal distribution. The
truncation is defined by the parameter NormalTruncation:

BIOGEME_OBJECT .PARAMETERS| ’ NormalTruncation’] = "1.96"

The integrand is defined by the following statement:
integrand = exp(bioDraws(’U?))

and the Monte-Carlo integration is obtained as follows:
simulated] = MonteCarlo (integrand)

The number of draws is defined by the parameter NbrOfDraws:
BIOGEME_OBJECT .PARAMETERS| ’ NbrOfDraws’] = "20000"

We calculate as well the simulated variance, using (10):

sampleVariance = \
MonteCarlo (integrand«integrand) — simulatedl * simulatedl

and the standard error (11):
stderr = (sampleVariance / 20000.0)*%0.5

Also, as we know the true value of the integral
truel = exp(1.0) — 1.0
we can calculate the error:

error = simulatedl — truel

The calculation is obtained using the following statements:

simulate = {’01 Simulated Integral’: simulatedI,
02 Analytical Integral’: truel,
’03 Sample variance’: sampleVariance,
’04 Std Error’: stderr,
’05 Error’: error}

rowlterator (’obsIter’)

BIOGEME_OBJECT.SIMULATE = Enumerate (simulate ,’obsIter’)

We obtain the following results:

Simulated Integral 1.72007
Analytical Integral 1.71828
Sample variance 0.240135
Std Error 0.00346508
Error 0.00178739

Remember that the true variance is 0.2420356075, and the true standard
error is 0.0034787613. If we use ten times more draws, that is 200,000 draws,
we obtain a more precise value:

Simulated Integral 1.71902
Analytical Integral 1.71828
Sample variance 0.24175
Std Error 0.00109943
Error 0.000739329

Remember that the true variance is 0.2420356075, and the true standard
error is 0.0011000809. The complete specification file for PythonBiogeme is
available in Appendix A.1.

4 Variance reduction

There are several techniques to reduce the variance of the draws used for the
Monte-Carlo integration. Reducing the variance improves the precision of
the approximation for the same number of draws. Equivalently, they allow
to use less draws to achieve the same precision. We introduce two of them in
this document: antithetic draws, and control variates. As the focus of this
document is on PythonBiogeme, we urge the reader to read an introduction
to variance reduction methods in simulation, for instance in Ross (2012).

4.1 Antithetic draws

Instead of drawing from X, consider two random variables X; and X;, identi-
cally distributed with pdf fx = fx, = fx,, and define a new random variable

X;+X
y— 2 +t% (17)
2
Then, as E[Y] = E[X;] = E[X;] = E[X], we can rewrite (1) as follows:
1 1 b
E[Y] = 7 EX] +] EXz] = EX] = | xfx(x)dx. (18)
The variance of this quantity is
1
Var[Y] = Z(Var(Xﬂ + Var(X;) + 2 Cov(Xy, X3)). (19)
If X; and X, are independent, this variance is equal to
1
Var[Y] = 7 Var[X]. (20)

Therefore, using Y for Monte-Carlo integration is associated with a variance
divided by two, but requires twice more draws (R draws for X; and R draws

6

for X;). It has no advantage on drawing directly R draws from X. Formally,
we can compare the standard errors of the two methods for the same number
of draws. Drawing 2R draws from X, we obtain the following standard error:

Var[X]
2R

(21)

Drawing R draws from X; and R draws from X, to generate R draws from Y,
we obtain the same standard error

Var[Y] _\/VT[X]
= = R (22)

However, if the variables X; and X; happen to be negatively correlated,
that is if Cov(X3,X3) < 0, then Var[Y] < Var[X]/2, and drawing from Y
reduces the standard error. For instance, if X; is uniformly distributed on
[0, 1], then X; =1 — X; is also uniformly distributed on [0, 1], and

1

Cov(X1, X2) = EXi (1= X)) —EXJ]E[1 = X4] = 37 < 0. (23)
If X; has a standard normal distribution, that is such that E[X;] = 0 and
Var[X;] = 1, then X; = —Xj has also a standard normal distribution, and is

negatively correlated with Xj, as
Cov(X1,Xz) = E[-X}] — EX;]E[-X;] = —1 < 0. (24)

The other advantage of this method is that we can recycle the draws. Once
we have generated the draws x, from X;, the draws from X, are obtained
using 1 —x, and —x,, respectively.

Now, we have to be careful when this technique is used for the general
case (2). Indeed, it must be verified first that g(X;) and g(X;) are indeed
negatively correlated. And it is not guaranteed by the fact that X; and X;
are negatively correlated. Consider two examples.

First, consider g(X) = (x — %)2 Applying the antithetic method with

1\° 1\

does not work, as

1
COV(X],XZ) == @ > 0. (26)

Actually, applying the antithetic method would increase the variance here,
which is not desirable.

Second, consider g(X) = eX, as in the example presented in Section 3.
We apply the antithetic method using

y=52"¢_ (27)

Here, the two transformed random variables are negatively correlated:

Cov(ex, el %) = EleXe'] — E[eX] E[e'X]
—e—(e—1)° (28)
= —0.2342106136.

Therefore, the variance of Y given by (19) is 0.0039124969, as opposed to
0.2420356075/2 = 0.1210178037 if the two sets of draws were independent.
It means that for 10000 draws from Y, the standard error decreases from
0.0034787613 down to 0.0006254996. Moreover, as we use recycled draws,
we need only 10000 draws instead of 20000.

To apply this technique in PythonBiogeme, the integrand is defined as
follows:

integrand = 0.5 x (exp(bioDraws(’U’)) + exp(l.0—bioDraws(’U’)))
and the number of draws reduced to 10000:

stderr = (sampleVariance / 10000.0)*%0.5
BIOGEME OBJECT .PARAMETERS| ’ Nbr0fDraws ’>| = "10000"

We obtain the following results:

Simulated Integral 1.71708
Analytical Integral — 1.71828
Sample variance 0.00380337
Std Error 0.000616715
Error -0.00120542

The reader can compare these values with the theoretical derivation presented
above. The complete specification file for PythonBiogeme is available in
Appendix A.2.

4.2 Control variate

The control variate method reduces the variance by exploiting information
from another random variable, correlated with g(X), with a known mean.
Consider the random variable Y such that E[Y] = n. We define a new random
variable Z as follows:

Z=g(X)+c(Y—p) (29)

8

where ¢ € R is a parameter. By construction, E[Z] = E[g(X)] for any c, so
that draws from Z can be used instead of draws from g(X) for Monte-Carlo
integration. Note that we do not need any assumption on g here. The idea
is to identify the value of ¢ that minimizes the variance of Z. We have

Var[Z] = Var[g(X) + cY] = Var[g(X)] 4 c¢* Var[Y] + 2c Cov(g(X),Y), (30)

which is minimized for

_ Cov(g(X),Y)

t = 31
Var[Y] (31)

Therefore, we use for Monte-Carlo integration the random variable

Cov(g(X),Y)
* — I iy 9
yA Q(X) Var Y (Y H), (3)
with variance
C X), Y)?

Varlz*] = Varlg(x)] — SIS g rxn. (33)

VarY

Note that, as for antithetic draws, this technique exploits the correlation
between two random variables. If Y is independent from g(X), no variance
reduction is achieved.
In our example, g(X) = eX. If we select Y = X, we know that
E[Y] =

and VarlY] = (34)

N —
—
N.|_‘

Moreover,
Cov(g(X),Y) = Cov(eX, X) = (3 —e)/2 = 0.1408590858. (35)
Therefore, we obtain
o Covlg),Y)
VarY

and the variance of Z* is 0.0039402229, which is much lower than the variance
of x, that is 0.2420356075. It means that, for 20000 draws, the standard
error is 0.0004438594, as opposed to 0.0034787613. With this method, only
326 draws are sufficient to achieve the same precision as the Monte-Carlo
integration without control variate. Indeed,

—6(3 —e) = —1.6903090292, (36)

0.0039402229
326

This is a tremendous saving. The control variate method is invoked in
PythonBiogeme using the following statement:

— 0.003476575. (37)

9

simulated] = MonteCarloControlVariate (integrand ,bioDraws(’U?),0.5),

where the second argument bioDraws(’U’) is Y, and the third, 0.5, is u. Note
that, in addition to the output requested by the user, PythonBiogeme also
generates a report containing statistics on g(X), Y and Z*. In particular, it
reports both the simulated value of Y and p to detect any implementation
error.

The results of the Monte-Carlo integration are:

Simulated Integral (E[Z*]) 1.71759
Simulated Integral (E[X]) 1.72007
Analytical Integral — 1.71828
Sample variance (Var[X]) 0.239849
Std Error (y/Var[Z*]/20000) 0.000440564
Error -0.00069233

The complete specification file for PythonBiogeme is available in Appendix A.3.

Finally, we present in Table 1 the results of the three methods, using
different types of uniform draws as described in Section 2. For each technique,
the standard errors for the three types of draws are comparable, with the
antithetic draws achieving the best value, followed by the control variate.
However, the precision actually achieved is much better for Halton, and even
more for MLHS.

Pseudo Halton MHLS
Monte-Carlo 1.71902 1.71814 1.71829
Standard error | 0.00109943 0.00109999 0.00110009
Actual error 0.000739329 -0.000145885 9.38555e-06
Antithetic 1.71708 1.71828 1.71828
Standard error | 0.000616715 0.000625455 0.0006255
Actual error -0.00120542 -2.27865e-06 -6.13416e-10
Control variate | 1.71759 1.71828 1.71828
Standard error | 0.000440564 0.000443827 0.000443872
Actual error -0.00069233 -2.84647e-06 1.52591e-07

Table 1: Comparison of variants of Monte-Carlo integration on the simple example

We encourage the reader to perform similar tests for other simple inte-

grals. For instance,
1 1 2
0 2

10

1

2 (38)

or
4+e¢

2
- 1 2 2
X - _ _ 1
J_2<e +2 . X)dx—e e+ log - (39)

where ¢ > 0. Note that the domain of integration is not [0, 1].

5 Mixtures of logit

Consider an individual n, a choice set C,, and an alternative i € C,. The
probability to choose 1 is given by the choice model:

Pr(ilx, 8, Cn), (40)

where x is a vector of explanatory variables and 0 is a vector of parameters to
be estimated from data. In the random utility framework, a utility function
is defined for each individual n and each alternative i € Cp:

uin(x) 9) - vin(xa e) + £m(6), (41)

where Vin(x,0) is deterministic and ¢, is a random variable independent
from x. The model is then written:

P.(ilx, 0,Cn) = Pr(Uin(x,0) > Ujn(x,0),V) € Cq). (42)

Specific models are obtained from assumptions about the distribution of &;,.
Namely, if €, are i.i.d. (across both i and n) extreme value distributed, we
obtain the logit model:

evin (x,8)

Vin(x,0) °
ZjeCn enn

Mixtures of logit are obtained when some of the parameters 0 are distributed
instead of being fixed. Denote 0 = (0¢,04), where 0; is the vector of fixed
parameters, while 04 is the vector of distributed parameters, so that the
choice model, conditional on 04, is

Pn(ux) 9) Cn) = (43)

Pn(ﬂX) ef) ed) Cn) (44)

A distribution is to be assumed for 684. We denote the pdf of this distribution
by fe,(&;v), where y contains the parameters of the distribution. Parameters
v are sometimes called the deep parameters of the model. Therefore, the
choice model becomes:

Pn(i|X, ef>Y) Cn) - J Pn(uxa ef) ‘(-» Cn)fﬂd (Ev) dEﬂ (45)
&

11

where 0; and y must be estimated from data. The above integral has no
analytical solution, even when the kernel P (ilx, 0¢, &,C,) is a logit model.
Therefore, it must be calculated with numerical integration or Monte-Carlo
integration. We do both here to investigate the precision of the variants of
Monte-Carlo integration.

5.1 Comparison of integration methods on one integral

We consider the Swissmetro example (Bierlaire et al., 2001). The data file is
available from biogeme.epfl.ch. Consider the following specification:

e Variables x: see variables in the data file and new variables defined in
Section A.4.

e Fixed parameters 0

ASC.CAR = 0.137
ASCTRAIN = —0.402
ASCSM = 0

B.COST = —1.29

e Deep parameters y:

B.TIME = —2.26
B_.TIMES = 1.66

e We define the coefficient of travel time to be distributed, using the
random variable omega, that is assumed to be normally distributed:

B.TIMERND = B_.TIME + B_TIME_S * omega

The parameter B.TIME is the mean of B.TIME_.RND, and B_.TIME_S? is
its variance. Note that B.TIME-S is not the standard deviation, and
can be positive of negative.

e Utility functions Vin:

V1 = ASC.TRAIN + \
B.TIMERND * TRAIN.TTSCALED + \
B.COST % TRAIN.COST SCALED

V2 = ASCSM + \
B.TIMERND % SM.TTSCALED + \
B.COST * SM.COST_SCALED

V3 = ASC.CAR + \
B.TIMERND % CARTT.SCALED + \
B.COST * CAR.COSCALED

V= {1: V1, 2: V2, 3: V3}

12

e Choice set C,, characterized by the availability conditions:

CARAVSP = \

DefineVariable (?’CAR_AV_SP’ ,CARAV x (SP I= 0))
TRAIN_AV.SP = \
DefineVariable (?TRAIN_AV_SP’ ,TRAINAV x (SP I= 0))
av = {1: TRAIN_AV.SP,
2: SMAV,

3: CAR.AV.SP}

As there is only one random parameter, the model (45) can be calculated
using numerical integration. It is done in PythonBiogeme using the following
procedure:

1. Mention that omega is a random variable:

omega = RandomVariable(’omega’)

2. Define its pdf:

density = normalpdf(omega).

Make sure that the library distributions is loaded in order to use the
function normalpdf, using the following statement:

from distributions import x

3. Define the integrand from the logit model, where the probability of the
alternative observed to be chosen is calculated (which is typical when
calculating a likelihood function):

integrand = bioLogit (V,av,CHOICE)

4. Calculate the integral:

analyticall = Integrate (integrand+density ,’omega’)

The complete specification file for PythonBiogeme is available in Ap-
pendix A.4. The value of the choice model for first observation in the data

file is
I= J Pn(ilx, 8¢, &, Cn)fo, (&)dE = 0.637849835578. (46)
&

Note that, in order ot obtain so many significant digits, we have used the
following statement:

BIOGEME_OBJECT .PARAMETERS| ’ decimalPrecisionForSimulation’] = "12"

13

To calculate the same integral with Monte-Carlo integration, we use the same
syntax as described earlier in this document:

omega = bioDraws(’B_TIME_RND’)

BIOGEME_OBJECT .PARAMETERS| ’ Nbr0fDraws’| = "20000"

BIOGEME OBJECT.DRAWS = { ’B_TIME_RND’: ’NORMAL’ }

B.TIMERND = B.TIME + B_.TIME_S * omega

integrand = bioLogit (V,av,CHOICE)

simulatedl = MonteCarlo(integrand)

The complete specification file for PythonBiogeme is available in Appendix A.5.

Using the result of the numerical integration as the “true” value of the inte-
gral, We obtain the following results:

Simulated integral 0.637263
Numerical integration 0.63785
Sample variance 0.0299885
Std Error 0.000387224
Error -0.000586483

We now apply the variance reduction methods. The antithetic draws
described in Section 4.1 are generated as follows:

1. As we are dealing with draws from the normal distribution, the anti-
thetic draw of x, is —x,. We create two versions of the parameter, one
with the draw, and one with its antithetic:

B.TIMERND = B_.TIME + B_TIME.S % bioDraws(’B_TIME_RND’)
B_.TIME_RND_MINUS = B.TIME — B_.TIME_S * bioDraws(’B_TIME_RND’)

2. Consistently, we then generate two versions of the model:

VIMINUS = ASC.TRAIN + \
B_TIME_RND_MINUS % TRAIN.TT_SCALED + \
B.COST * TRAIN.COST SCALED

V2.MINUS = ASCSM + \
B_TIME_RND_MINUS % SM.TT.SCALED + \
B_.COST % SM_.COST_SCALED

V3 MINUS = ASC.CAR + \
B_TIME_RND_MINUS % CAR.TT.SCALED + \
B_.COST % CAR.CO.SCALED

V.IMINUS = {1: VIMINUS,
2: V2.MINUS,
3: V3.MINUS}

3. The integrand is the average of the integrands generated by the two
versions of the model:

14

integrand_plus = bioLogit (V,av ,CHOICE)
integrand_minus = bioLogit (V.MINUS, av ,CHOICE)
integrand = 0.5 x (integrand_plus + integrand_minus)

The complete specification file for PythonBiogeme is available in Appendix A.6.

The control variate method, described in Section 4.2, requires an output
of the simulation such that the analytical integral is known. We propose here
to consider

Vin (x,04,&) _

0 ¢ da avin(x) ef) E)/aE ’

if 0Vin(x, 04, &)/0¢ does not depend on &. This integral is calculated by

Monte-Carlo after recycling the uniform draws used to generate the normal
draws for the original integration. We follow the following procedure:

1 Vin(xyef»” — vin(xyefao)
e e
| ()

1. We recycle the draws:
UNIFDRAW = bioRecycleDraws (’B_TIME_RND’)

2. We calculate the control variate integrand:

VCV = ASC.TRAIN + \
(B.TIME + B.TIME.S # UNIFDRAW) # TRAIN.TTSCALED + \
B.COST % TRAIN.COST SCALED

Note that the derivative with respect to UNIFDRAW is
B_.TIME_S x TRAIN.TT_SCALEDS$.

3. We provide the analytical value of the control variate integral:

VCV_ZERO = ASC.TRAIN + \
B.TIME * TRAIN.TT_SCALED + \
B.COST % TRAIN.COST_SCALED
VOV.ONE = ASC.TRAIN + \
(B.TIME + B_.TIME.S) * TRAIN.TT.SCALED + \
B.COST % TRAIN.COST_SCALED
VCVINTEGRAL = (exp (VCV.ONE) — exp (VCVZERO)) / \
(B_.TIME_S * TRAIN.TT_SCALED)

4. We perform the Monte-Carlo integration:

simulated] = MonteCarloControlVariate (integrand ,\
exp (VCV) ,\
VCVINTEGRAL)

15

The complete specification file for PythonBiogeme is available in Appendix A.7.
Table 2 provides the results of the Monte-Carlo integration using different

variance reduction methods (none, antithetic and control variates), different

uniform draws (pseudo, Halton and MLHS), and different number of draws.
We can observe the following:

e In terms of standard errors of the draws, the Monte-Carlo integration
without variance reduction has a standard error about 7.5 times as large
as the anthitetic version, and 2 times as large as the control variate.

e In terms of absolute error, when compared to the value provided by the
numerical integration, the error of the Monte-Carlo integration without
variance reduction is about the same for the pseudo draws, 12 times
larger for the Halton draws, and 25 times larger for the MHLS draws,
when compared to the antithetic draws. If it between 3 and 4 times
larger, when compared to the control variates.

e There is no significant difference in terms of standard errors across the
types of draws, irrespectively of the variance reduction method used.

e In terms of actual error, though, the Halton draws improves the preci-
sion of the output, and the MHLS even more.

e Using the antithetic draws with 1000 draws achieves a similar precision
as no variance reduction with 20000 draws.

e Using the control variates with 2000 draws achieves a similar precision
as no variance reduction with 20000 draws.

e Reducing the number of draws to 500 does not deteriorate much the
precision for the antithetic draws.

It would be useful to perform the same experiment for some other obser-
vations in the data file. Such experiments can give useful insights to for the
choice of the most appropriate integration technique. In the following, we
compare some of these techniques for the maximum likelihood estimation of
the parameters of the model.

5.2 Comparison of integration methods for maximum
likelihood estimation

We now estimate the parameters of the model using all observations in the
data set associated with work trips. Observations such that the dependent
variable CHOICE is O are also removed.

16

exclude = ((PURPOSE != 1) » (PURPOSE != 3) +\
(CHOICE =— 0)) > 0
BIOGEME_OBJECT .EXCLUDE = exclude

The estimation using numerical integration is performed using the following

statements:

integrand = bioLogit (V,av,CHOICE)

prob = Integrate (integrands*density ,’omega’)

1 = log(prob)

rowlterator (’obsIter’)

BIOGEME_OBJECT .ESTIMATE = Sum(1,’obsIter’)

The complete specification file for PythonBiogeme is available in Appendix A.8.
For Monte-Carlo integration, we use the following statements:

prob = bioLogit (V,av,CHOICE)

1 = mixedloglikelihood (prob)

rowlterator (’obsIter’)
BIOGEME_OBJECT .ESTIMATE = Sum(1,’obsIter’)

where the statement 1 = mixedloglikelihood(prob) is equivalent to

integral = MonteCarlo(prob)
1 = log(integral)

The complete specification file for PythonBiogeme is available in Appendix A.9.
The following estimation results are presented:

e Table 4: numerical integration;

e Table 5: Monte-Carlo integration, no variance reduction, 2000 MHLS
draws;

e Table 6: antithetic draws, 1000 MHLS draws;

e Table 7: control variates, 2000 MHLS draws;

e Table 8 Monte-Carlo integration, 500 MHLS draws;
e Table 9: antithetic draws, 250 MHLS draws;

e Table 10: control variates, 500 MHLS draws.

The final log likelihood in each case, as well as the estimation time are
summarized in Table 3. In this experiment, when looking at the estimates,
it seems that the MLHS draws provide relatively good precision, even for a
lower number of draws, and with no variance reduction. Clearly, this result
cannot be generalized, and should be investigated on a case by case basis.
Note however that the default type of draws in PythonBiogeme is MLHS,
because it is performing particularly well in this example.

17

6 Conclusion

This document describes the variants of Monte-Carlo integration, and sug-
gests how to perform some analysis using the SIMULATE operator of Python-
Biogeme, that helps investigating the performance of each of them before
starting a maximum likelihod estimation, that may take a while to converge.
In the example provided in this document, the antithetic draws method,
combined with MLHS appeared to be the most precise. This result is not
universal. The analysis must be performed on a case by case basis.

18

Draws ‘ Pseudo Halton MHLS
20000 draws
Monte-Carlo 20000 | 0.637263 0.637923 0.637845
Standard error 0.000387224 0.000390176 0.000390301
Actual error -0.000586483 7.35443e-05 -5.08236e-06
Antithetic 10000 | 0.638383 0.637856 0.63785
Standard error 5.13243e-05 5.24484e-05 5.24949e-05
Actual error 0.000533174 6.1286e-06 1.96217e-07
Control variate 20000 | 0.6377 0.637871 0.637848
Standard error 0.000176759 0.000179054 0.00017928
Actual error -0.000149889 2.127e-05 -1.72413e-06
2000 draws
Antithetic 1000 | 0.638783 0.637965 0.637853
Standard error 5.05914e-05 5.17454e-05 5.24619e-05
Actual error 0.000933592 0.000114998 3.32666e-06
Control variate 2000 | 0.637876 0.637975 0.637835
Standard error 0.000551831 0.00056032 0.000567009
Actual error 2.66122e¢-05 0.000125218 -1.50796e-05
500 draws

Antithetic 250 | 0.639205 0.638459 0.637869
Standard error 5.17638e-05 4.97379e-05 5.23141e-05
Actual error 0.00135483 0.000609069 1.87082e-05
Control variate 500 | 0.637587 0.638158 0.637798
Standard error 0.00111188 0.00109022 0.00113287
Actual error -0.000262395 0.000308626 -5.2274e-05

Table 2: Comparison of variants of Monte-Carlo integration on the mixture of logit

example

Method Draws Log likelihood Run time
Numerical — -5214.879 02:37
Monte-Carlo 2000 -5214.835 31:11
Antithetic 1000 -5214.899 39:26
Control variate 2000 -5214.835 42:11
Monte-Carlo 500 -5214.940 09:26
Antithetic 250 -5214.897 09:21
Control variate 500 -5214.940 08:59

Table 3: Final log likelihood and run time for each integration method

19

Robust

Parameter Coeft. Asympt.
number Description estimate std. error t-stat p-value
1 ASC.CAR 0.137 0.0517 2.65 0.01
2 ASC.TRAIN -0.401 0.0656 -6.12 0.00
3 B.COST -1.29 0.0863 -14.90 0.00
4 B.TIME -2.26 0.117 -19.38 0.00
5 B.TIME_S -1.65 0.125 -13.26 0.00

Summary statistics
Number of observations = 6768
Number of excluded observations = 3960
Number of estimated parameters = 5
Number of iterations = 13
Estimation time: 00:02: 37

/\) o
L) =
; _

P
PP =

—7157.671

—5214.879

3885.585
0.271
0.271

Table 4: Estimation results with numerical integration

20

Robust

Parameter Coeft. Asympt.
number Description estimate std. error t-stat p-value
1 ASC.CAR 0.137 0.0517 2.65 0.01
2 ASC_TRAIN -0.402 0.0658 -6.10 0.00
3 B.COST -1.29 0.0864 -14.89 0.00
4 B.TIME -2.26 0.117 -19.31 0.00
5 B.TIME.-S 1.66 0.132 12.59 0.00

Summary statistics
Number of observations = 6768

Number of excluded observations = 3960
Number of estimated parameters = 5
Number of iterations = 9

Estimation time: 00:31:11

L(Bo) —6964.663
L(B) = —5214.835
—2[L(Bo) — L(B)] = 3499.656
p2 = 0.251
p2 = 0.251

Table 5: Estimation results with Monte-Carlo, no variance reduction, 2000 MHLS
draws

21

Robust

Parameter Coeft. Asympt.
number Description estimate std. error t-stat p-value
1 ASC.CAR 0.137 0.0517 2.65 0.01
2 ASC.TRAIN -0.402 0.0658 -6.10 0.00
3 B.COST -1.29 0.0863 -14.89 0.00
4 B.TIME -2.26 0.117 -19.31 0.00
5 B.TIME_S 1.66 0.132 12.59 0.00

Summary statistics

Number of observations = 6768

Number of excluded observations = 3960
Number of estimated parameters = 5
Number of iterations = 12

Estimation time: 00 : 39 : 26

L(Bo) = —7155.875
L(B) = —5214.899
—2[L(Bo) — L(B)] = 3881.952
p2 = 0.271
p2 = 0.271

Table 6: Estimation results with antithetic draws, 1000 MHLS draws

22

Robust

Parameter Coeft. Asympt.
number Description estimate std. error t-stat p-value
1 ASC.CAR 0.137 0.0517 2.65 0.01
2 ASC.TRAIN -0.402 0.0658 -6.10 0.00
3 B.COST -1.29 0.0864 -14.89 0.00
4 B.TIME -2.26 0.117 -19.31 0.00
5 B.TIME_S 1.66 0.132 12.59 0.00

Summary statistics

Number of observations = 6768

Number of excluded observations = 3960
Number of estimated parameters = 5
Number of iterations = 12

Estimation time: 00:42: 11

L(Bo) = —7155.867
L(B) = —5214.835
—2[L(Bo) — L(B)] = 3882.063
p2 = 0.271
p2 = 0.271

Table 7: Estimation results with control variates, 2000 MHLS draws

23

Robust

Parameter Coeft. Asympt.
number Description estimate std. error t-stat p-value
1 ASC.CAR 0.137 0.0517 2.65 0.01
2 ASC_TRAIN -0.402 0.0658 -6.10 0.00
3 B.COST -1.29 0.0864 -14.88 0.00
4 B.TIME -2.26 0.117 -19.33 0.00
5 B.TIME.-S 1.66 0.131 12.63 0.00

Summary statistics

Number of observations = 6768

Number of excluded observations = 3960
Number of estimated parameters = 5
Number of iterations = 12

Estimation time: 00 : 09 : 26

L(By) = —7155.962
L(B) = —5214.940
—2[L(Bo) — L(B)] = 3882.044
P = 0271
pr = 0271

Table 8: Estimation results with Monte-Carlo integration, no variance reduction, 500
MHLS draws

24

Robust

Parameter Coeft. Asympt.
number Description estimate std. error t-stat p-value
1 ASC.CAR 0.137 0.0517 2.65 0.01
2 ASC.TRAIN -0.402 0.0658 -6.11 0.00
3 B.COST -1.29 0.0864 -14.88 0.00
4 B.TIME -2.26 0.117 -19.33 0.00
5 B.TIME_S 1.66 0.131 12.61 0.00

Summary statistics

Number of observations = 6768

Number of excluded observations = 3960
Number of estimated parameters = 5
Number of iterations = 12

Estimation time: 00 : 09 : 21

L(Bo) = —7155.877
L(B) = —5214.897
—2[L(Bo) — L(B)] = 3881.960
p2 = 0.271
p2 = 0.271

Table 9: Estimation results with antithetic draws, 250 MHLS draws

25

Robust

Parameter Coeft. Asympt.
number Description estimate std. error t-stat p-value
1 ASC.CAR 0.137 0.0517 2.65 0.01
2 ASC.TRAIN -0.402 0.0658 -6.10 0.00
3 B.COST -1.29 0.0864 -14.88 0.00
4 B.TIME -2.26 0.117 -19.33 0.00
5 B.TIME_S 1.66 0.131 12.63 0.00

Summary statistics

Number of observations = 6768

Number of excluded observations = 3960
Number of estimated parameters = 5
Number of iterations = 12

Estimation time: 00 : 08 : 59

L(Bo) —7155.962
L(B) = —5214.940
—2[L(Bo) — L(B)] = 3882.044
p2 = 0.271
p2 = 0.271

Table 10: Estimation results with control variates, 500 MHLS draws

26

© oo ~ o v = W » —

WoWw oW W W W NN NN NN NN NN R R R e e e
gk W N H O © 0N U R W N O O N O WwW NN = O

o A VN

A Complete specification files

A.l Olsimplelntegral.py

#

File: O0lsimple
Author: Michel
Date: Sat Jul

#

Integral.py
Bierlaire , EPFL
25 11:41:18 2015

from biogeme import *
from headers import x

integrand = exp(

bioDraws (’U’))

simulatedl = MonteCarlo(integrand)

truel = exp(1.0) — 1.0
sampleVariance = \
MonteCarlo (integrand«integrand) — simulatedl * simulatedl
stderr = (sampleVariance / 200000.0)*%0.5
error = simulatedl — truel
simulate = {’01 Simulated Integral’: simulatedI,
’02 Analytical Integral’: truel,
’03 Sample variance’: sampleVariance,
’04 Std Error’: stderr,
’05 Error’: error}

rowlterator (’obs

Iter’)

BIOGEME_OBJECT .SIMULATE = Enumerate(simulate ,’obsIter’)

BIOGEME _OBJECT .PARAMETERS| ’ NbrOfDraws’] = "5"
BIOGEME_OBJECT .PARAMETERS| ’ RandomDistribution’] = "PSEUDO"
_-rowld__ = Variable(’__rowId__’)

BIOGEME_OBJECT .EXCLUDE = __rowld__ >=1
BIOGEME_OBJECT .DRAWS = { ’U’: ’UNIFORM’}

A.2 02 antitheti

C .py

#
File: 02antith

Author: Michel
Date: Sat Jul

#

etic.py
Bierlaire , EPFL
25 12:21:10 2015

27

from biogeme import x
from headers import x

integrand = 0.5 % (exp(bioDraws(’U’)) + exp(l.0—bioDraws(’U’)))
simulatedl = MonteCarlo(integrand)

truel = exp(1.0) — 1.0

20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

sampleVariance = \
MonteCarlo (integrand«integrand) — simulatedl * simulatedl
stderr = (sampleVariance / 10000.0)*%0.5
= simulatedl — truel

simulate = {’01_Simulated Integral’: simulatedI,
’02_Analytical Integral’:
’03_Sample variance’:
’04_Std Error’:
’05_Error’:

sampleVariance ,

rowlterator (’obsIter’)
BIOGEME_OBJECT .SIMULATE = Enumerate (simulate ,’obsIter’)

BIOGEME OBJECT .PARAMETERS| ’ NbrOfDraws’] = "5"
__rowld__ = Variable(’__rowId__’)
BIOGEME_OBJECT .EXCLUDE = __rowlId__ >= 1

BIOGEME_OBJECT .DRAWS = { ’U’: ’UNIFORM’}

A.3 o03controlVariate. Py

#
File: 03controlVariate.py

Author: Michel Bierlaire , EPFL
Date: Sat Jul 25 12:24:25 2015

#
#

© 0 N O oA W N

[e S~ S S S
N o s W N = O

from biogeme import =*
from headers

integrand = exp(bioDraws(’U’))
simulatedl = MonteCarloControlVariate (integrand , bioDraws(°U’),0.5)

exp(1.0) — 1.0

18
19
20
21
22
23
24
25
26
27
28
29
30
31

© 0w N O s W N =

Wow oW NN NN NN NN NN R R e e e e e
D = O © 0 9 O O A WK = O © 0 N O O A W N = O

error = simulatedl — truel

simulate = {’01_Simulated Integral’: simulatedI,
’02_Analytical Integral’: truel,
’05_Error’: error}

rowlterator (’obsIter’)

BIOGEME_OBJECT.SIMULATE = Enumerate(simulate ,’obsIter’)

BIOGEME _OBJECT .PARAMETERS[> Nbr0fDraws’| = "5"
_-rowld__ = Variable(’__rowId__’)
BIOGEME_OBJECT .EXCLUDE = __rowld_-_. >= 1

BIOGEME_OBJECT .DRAWS = { ’U’: ’UNIFORM’}

A4 O5normalMixtureTrueAnalytical.py

A A 4 A
#
File: 05normalMiztureTrueAnalytical. py
Author: Michel Bierlaire , EPFL
Date: Sat Jul 25 18:50:11 2015

#

from biogeme import x
from headers import x
from distributions import x
from loglikelihood import x

#Parameters
ASCCAR = 0.137
ASC_TRAIN = —0.402

ASCSM = 0

B.-TIME = —2.26
B.-TIMESS = 1.66
B.COST = —1.29

Define a random parameter, normally distributed ,
designed to be used for integration

omega = RandomVariable(’omega’)

density = normalpdf(omega)

B TIMERND = B.TIME + B_TIME_S x* omega

Utility functions
#If the person has a GA (season ticket) her

#incremental cost is actually 0
#rather than the cost wvalue gathered from the

29

34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70

71

72
73
74
75
76
s
78
79

network data.
SM_COST = SM._CO x (GA = 0)
TRAIN_COST = TRAIN_CO *x (GA = 0)

For numerical reasons, it is good practice to scale the data to
that the wvalues of the parameters are around 1.0.

A previous estimation with the unscaled data has generated

parameters around —0.01 for both cost and time.

Therefore, time and cost are multipled my 0.01.

TRAIN_TT SCALED = \

DefineVariable (? TRAIN_TT_SCALED’ , TRAIN.TT / 100.0)
TRAIN_.COST_SCALED = \

DefineVariable (? TRAIN_COST_SCALED’, TRAIN.COST / 100)
SM_.TT SCALED = DefineVariable (?SM_TT_SCALED’, SM.TT / 100.0)
SM_COST_SCALED = DefineVariable (?SM_COST_SCALED’, SM.COST / 100)
CAR.TT SCALED = DefineVariable(?CAR_TT_SCALED’, CAR.TT / 100)
CAR.COSCALED = DefineVariable(?CAR_CO_SCALED’, CAR.CO / 100)

V1 = ASC.TRAIN + \
B.TIMERND # TRAIN.TT_SCALED + \
B.COST * TRAIN_.COST_SCALED

V2 = ASCSM + \
B.TIMERND * SM.TT.SCALED + \
B.COST * SM.COST_SCALED

V3 = ASC.CAR + \
B.TIMERND # CARTTSCALED + \
B.COST * CAR.COSCALED

Associate utility functions with the numbering of alternatives
V= {1: Vi1,

2: V2,

3: V3}

Associate the availability conditions with the alternatives

CAR_AVSP = DefineVariable (’CAR_AV_SP’ .CARAV =« (SP I= 0

)
TRAIN_.AV.SP = DefineVariable(?TRAIN_AV_SP’ ,TRAINAV « (SP 1=

0 1))
av = {1: TRAIN.AVSP,

2: SM AV,
3: CAR_AV_SP}

The choice model is a logit, with availability conditions
integrand = bioLogit (V,av,CHOICE)

30

80

s1 analyticall = Integrate(integrand*density ,’omega’)
s2 simulate = {’Analytical’: analyticall}

83

s rowlterator (’obsIter’)

85

ss BIOGEME_OBJECT.PARAMETERS|’decimalPrecisionForSimulation’] = "12"
s7 BIOGEME_OBJECT.SIMULATE = Enumerate(simulate ,’obsIter’)

88

so __rowld__ = Variable(’__rowId__’)

90 BIOGEME.OBJECT.EXCLUDE = __rowld__ >=1

A.5 O6normalMixture.py

#
File: 06normalMizture. py

Author: Michel Bierlaire , EPFL
Date: Sat Jul 25 18:37:37 2015

#

© 00 9N O U s W N =

from biogeme import *

from headers import x

from loglikelihood import =
from statistics import =

e
w N = O

#Parameters

15 ASC.CAR = 0.137

16 ASCTRAIN = —0.402
17 ASCSM = 0

—
IS

18 B.TIME = —2.26
19 B.TIMES = 1.66
20 B_.COST = —1.29

21

22 # Define a random parameter, mnormally distributed ,
23 # designed to be wused for integration

24 omega = bioDraws(’B_TIME_RND’)

25 B.TIMERND = B.TIME + B_.TIME_S % omega

26

o7 # Utility functions

28

20 #If the person has a GA (season ticket) her
30 #incremental cost is actually 0

31 #rather than the cost value gathered from the
32 # network data.

33 SM_.COST = SM_CO x (GA = 0)

3¢ TRAIN.COST = TRAIN_CO *x (GA = 0)

35

31

36 # For mumerical reasons, it is good practice to scale the data to

37 # that the wvalues of the parameters are around 1.0.

38 # A previous estimation with the unscaled data has generated

39 # parameters around —0.01 for both cost and time. Therefore, time and
w0 # cost are multipled my 0.01.

42 TRAIN.-TT_SCALED = \

43 DefineVariable (?’TRAIN_TT_SCALED’, TRAIN.TT / 100.0)

42 TRAIN_.COST_SCALED = \

45 DefineVariable (? TRAIN_COST_SCALED’, TRAIN.COST / 100)

46 SM.TT SCALED = DefineVariable (?SM_TT_SCALED’, SM.TT / 100.0)

a7 SM_.COSTSCALED = DefineVariable (>SM_COST_SCALED’, SM.COST / 100)
18 CARTTSCALED = DefineVariable (?CAR_TT_SCALED’, CAR.TT / 100)

19 CAR_.COSCALED = DefineVariable (?CAR_CO_SCALED’, CAR.CO / 100)

51 V1 = ASC_TRAIN + \

52 B.TIMERND x TRAIN.TT_SCALED + \
53 B_COST * TRAIN_.COST_SCALED

54 V2 = ASCSM + \

55 B.TIMERND % SM.TT_SCALED + \

56 B_COST * SM_COST_SCALED

57 V3 = ASC.CAR + \

58 B.TIMERND s CAR.TT_SCALED + \
59 B_COST * CAR_.COSCALED

60

61 # Associate utility functions with the numbering of alternatives
e2 V= {1: VI,

63 2: V2,

64 3: V3}

65

66 # Associate the awvailability conditions with the alternatives

67

6s CAR_AVSP = DefineVariable(’>CAR_AV_SP’ ,CARAV =« (SP = 0

)
69 TRAIN_.AV.SP = DefineVariable (’?TRAIN_AV_SP’ , TRAINAV x (SP =

0)

71 av = {1: TRAIN. AV SP,

72 2: SMAV,

73 3: CARAV SP}

74

75 # The choice model is a logit, with availability conditions
76 integrand = bioLogit (V,av,CHOICE)

77 simulated] = MonteCarlo(integrand)

78

79 truel = 0.637849835578

80

s1 sampleVariance = \

82 MonteCarlo(integrandxintegrand) — simulatedl * simulatedl

32

83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100

© 0w N9 o s W N =

NN NN NN NN R R R e e
® N o Kk W N R O ©® 0 N O oA W N = O

stderr = (sampleVariance / 200000.0)*%0.5

error = simulatedl — truel

simulate = {’01 Simulated Integral’: simulatedI,

’02 Analytical Integral’:

truel ,

ample variance’: m rian
’03 S 1 ’: sampleVariance ,

’04 Std Error’: stderr,
’05 Error’: error}

rowlterator (’obsIter’)

BIOGEME_OBJECT .SIMULATE = Enumerate (simulate ,’obsIter’)

__rowld__ = Variable(’__rowId__’)
BIOGEME OBJECT .EXCLUDE = __rowld__ >=

BIOGEME _OBJECT .PARAMETERS| ’ Nbr0fDraws’

BIOGEME_OBJECT.DRAWS = { ’B_TIME_RND’:

A.6 07normalMixtureAntit hetic.py

1

] = ngn
’NORMAL’ }

#

File: 07normalMiztureAntithetic.py
Author: Michel Bierlaire , EPFL

Date: Sat Jul 25 19:14:42 2015

#

from biogeme import x

from headers import x

from loglikelihood import =

from statistics import =
#Parameters

ASCCAR = 0.137
ASC_TRAIN = —0.402
ASCSM = 0

B.TIME = —2.26
B.TIME.S = 1.66
B_COST = —1.29

Define a random parameter, normally

designed to be used for integration

and its antithetic.

B.TIMERND = B_.TIME + B_TIME.S % bioDraws(’B_TIME_RND’)
B_.TIME RND_MINUS = B.TIME — B_.TIME_S % bioDraws(’B_TIME_RND’)

Utility functions

33

distributed ,

29

30 #If the person has a GA (season ticket) her

31 #incremental cost is actually 0

32 #rather than the cost value gathered from the

33 # network data.

3¢ SM_.COST = SM_CO * (GA = 0)

35 TRAIN.COST = TRAIN_CO *x (GA = 0)

36

37 # For numerical reasons, it is good practice to scale the data to
38 # that the wvalues of the parameters are around 1.0.

39 # A previous estimation with the unscaled data has generated
10 # parameters around —0.01 for both cost and time.

11 # Therefore, time and cost are multipled my 0.01.

42

a3 TRAIN.TT_SCALED = \

44 DefineVariable (? TRAIN_TT_SCALED’ , TRAIN.TT / 100.0)

45 TRAIN_.COST SCALED = \

46 DefineVariable (?’ TRAIN_COST_SCALED’, TRAIN.COST / 100)

a7 SM.TT SCALED = DefineVariable (?SM_TT_SCALED’, SM.TT / 100.0)
48 SM_.COST_SCALED = DefineVariable (?SM_COST_SCALED’, SM.COST / 100)
49 CAR.TTSCALED = DefineVariable (?CAR_TT_SCALED’ , CARTT / 100)
50 CAR.COSCALED = DefineVariable(?CAR_CO_SCALED’, CARCO / 100)

52 VI = ASC_.TRAIN + \

53 B.TIMERND x TRAIN.TT_SCALED + \

54 B_.COST * TRAIN_.COST_SCALED

55 V2 = ASCSM + \

56 B.TIMERND x SM.TT_SCALED + \

57 B_.COST * SM_COST_SCALED

55 V3 = ASCCAR + \

59 B.TIMERND % CAR.TTSCALED + \

60 B_.COST x CAR_CO_SCALED

61

62 VIMINUS = ASC.TRAIN + \

63 B_.TIME RND_MINUS * TRAIN.TT_SCALED + \
64 B_.COST * TRAIN_.COST_SCALED

65 V2.MINUS = ASCSM + \

66 B_TIME RND_MINUS * SM.TT SCALED + \
67 B_COST * SM_COST_SCALED

6s V3.MINUS = ASC.CAR + \

69 B_.TIME RND_MINUS * CAR.TTSCALED + \
70 B_.COST x CAR.COSCALED

72 # Associate utility functions with the numbering of alternatives
3 V= {1: VI,
74 2: V2,
75 3: V3}

77 VMINUS = {1: VIMINUS,

34

78
79
80
81
82
83

84

85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105

107
108
109
110
111
112
113
114
115
116
117

2: V2.MINUS,
3: V3MINUS}

Associate the availability conditions with the alternatives

CARAVSP = DefineVariable (’CAR_AV_SP’ ,CARAV =« (SP I=

)
TRAIN_AV.SP = DefineVariable(’TRAIN_AV_SP’ TRAIN.AV =« (SP

0)

av = {1: TRAIN_ AV SP,
2: SM_AV,
3: CAR_AV_SP}

The choice model is a logit, with availability conditions
integrand _plus = bioLogit (V,av,CHOICE)

integrand _minus = bioLogit (V. MINUS, av ,CHOICE)

integrand = 0.5 x (integrand_plus + integrand_minus)
simulatedl = MonteCarlo(integrand)

truel = 0.637849835578

sampleVariance = \

MonteCarlo(integrand«integrand) — simulatedl * simulatedl
stderr = (sampleVariance / 200000.0)%%0.5
error = simulatedl — truel

simulate = {’01 Simulated Integral’: simulatedI,
’02 Analytical Integral’: truel,
’03 Sample variance’: sampleVariance,
’04 Std Error’: stderr,
’05 Error’: error}

rowlterator (’obsIter’)

BIOGEME_OBJECT.SIMULATE = Enumerate (simulate ,’obsIter’)

__rowld__ = Variable(’__rowId__’)
BIOGEME_OBJECT .EXCLUDE = __rowld__ >=1
BIOGEME_OBJECT .PARAMETERS|[’ NbrOfDraws’] = "5"

BIOGEME OBJECT .DRAWS = { ’B_TIME_RND’: ’NORMAL’ }

A.7T O8normalMixtureControlVariate.py

#
File: 08normalMiztureControlVariate . py

Author: Michel Bierlaire , EPFL

35

Date: Sat Jul 25 18:50:11 2015
#

© 0w 9 o w

from biogeme import =*

10 from headers import x

11 from loglikelihood import *
12 from statistics import =

13

14 #Parameters

15 ASC.CAR = 0.137

16 ASC.TRAIN = —0.402

17 ASCSSM = 0

18 B.TIME = —2.26
19 B.TIMES = 1.66
20 B_COST = —1.29

21

22 # Define a random parameter, normally distributed ,

23 # designed to be used for Monte—Carlo simulation

24 B.TIMERND = B_.TIME + B_TIME.S % bioDraws(’B_TIME_RND’)

25

26 # Utility functions

27

25 #If the person has a GA (season ticket) her

20 #incremental cost is actually 0

30 #rather than the cost value gathered from the

31 # network data.

32 SM.COST = SM_CO * (GA = 0)

33 TRAIN.COST = TRAIN_CO *x (GA = 0)

34

35 # For numerical reasons, it is good practice to scale the data to
36 # that the wvalues of the parameters are around 1.0.

37 # A previous estimation with the unscaled data has generated
38 # parameters around —0.01 for both cost and time.

39 # Therefore, time and cost are multipled my 0.01.

40

a1 TRAIN.TT SCALED = \

42 DefineVariable (? TRAIN_TT_SCALED’, TRAIN.TT / 100.0)

43 TRAIN.COST-SCALED = \

44 DefineVariable (? TRAIN_COST_SCALED’ , TRAIN.COST / 100)

45 SM.TT SCALED = DefineVariable (?SM_TT_SCALED’, SM.TT / 100.0)
46 SM_COSTSCALED = DefineVariable (?SM_COST_SCALED’, SM.COST / 100)
a7 CAR.TTSCALED = DefineVariable (?CAR_TT_SCALED’ , CARTT / 100)
a8 CAR.COSCALED = DefineVariable (?CAR_CO_SCALED’, CAR.CO / 100)
49

50 VI = ASC.TRAIN + \

51 B.TIMERND x TRAIN.TT SCALED + \

52 B_COST x TRAIN_COST_SCALED

53 V2 = ASCSM + \

36

54

56
57
58
59
60
61
62
63
64
65
66
67

68

69
70
71
72
73
74
75
76
7
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100

B.TIMELRND * SM.TT.SCALED + \
B.COST * SM.COST_SCALED

V3 = ASC.CAR + \
B.TIMERND * CARTTSCALED + \
B.COST * CAR.COSCALED

Associate wutility functions with the numbering of alternatives
V= {1: Vi1,

2: V2,

3: V3}

Associate the availability conditions with the alternatives

CAR.AVSP = DefineVariable(?CAR_AV_SP’ ,CARAV x (SP I= 0

)
TRAIN_AV.SP = DefineVariable(’TRAIN_AV_SP’ ,TRAINAV =« (SP =

0))

av = {1: TRAIN.AV_SP,
2: SMLAV,
3: CAR_AV.SP}

The choice model is a logit, with availability conditions
integrand = bioLogit (V,av,CHOICE)

Control wvariate

Recycle the wuniform draws used to generate the
#normal draws of B-TIME_RND
UNIFDRAW = bioRecycleDraws(’B_TIME_RND’)

Utility function with the wuniform draws instead of the normal.
VCV = ASC_TRAIN + \
(B.TIME + B.TIME_S % UNIFDRAW) s TRAIN.TT_SCALED + \
B_COST * TRAIN_.COST_SCALED
The analytical integral of exp(VCV) between 0 and 1
1s now calculated
VCV_ZERO = ASC_TRAIN + \
B.TIME % TRAIN.TT_SCALED + \
B_COST x TRAIN_.COST_SCALED
VCV.ONE = ASC_TRAIN + \
(B.TIME + B_.TIME.S) *x TRAIN.TT_SCALED + \
B_COST *x TRAIN_COST_SCALED
VCVINTEGRAL = (exp(VCV.ONE) — exp(VCVZERO)) / \
(B.TIME_S % TRAIN.TT_SCALED)

simulated] = MonteCarloControlVariate (integrand , \
exp (VCV) , '\

37

101 VCVINTEGRAL)
102
103 truel
104

0.637849835578

105 error = simulatedl — truel

106

107 simulate = {’01 Simulated Integral’: simulatedI,
108 02 Analytical Integral’: truel,

109 ’05 Error’: error}

110
111 rowlterator (’obsIter’)
112

113 BIOGEME_OBJECT.SIMULATE = Enumerate (simulate ,’obsIter’)

114

15 __rowld__ = Variable(’__rowId__")

116 BIOGEME_OBJECT.EXCLUDE = __rowld__ >=1

117

115 BIOGEME_OBJECT .PARAMETERS| ’ Nbr0fDraws’] = "5"

119 BIOGEME_OBJECT.DRAWS = { ’*B_TIME_RND’: ’NORMAL’ }

A.8 1lestimationNumerical.py

#
File: 11estimationNumerical.py

Author: Michel Bierlaire , EPFL
Date: Thu Jul 80 10:40:49 2015

#

4 /. 4 /. 4 /. 4 /. 4
£ , 7 7/ £ 7/ £ 7/ £
7) 7 7) 7 7) 7 7) 7 7)

© N O s W N =

from biogeme import x

from headers import x

from distributions import x
from loglikelihood import =
from statistics import x

e e e e
g oA W N = O

#Parameters to be estimated

Arguments:

Name for report. Typically, the same as the wvariable
Starting value

Lower bound

Upper bound

0: estimate the parameter, 1: keep it fized

=
e

iR NN N

NN N -
o o= S)
Gr A Lo ® ~

ASC.CAR = Beta(’ASC_CAR’ ,0,—10,10,0)
ASC_TRAIN = Beta(’ASC_TRAIN’,0,—10,10,0)
ASCSM = Beta(’ASC_SM’> ,0,—10,10,1)
B_.TIME = Beta(’B_TIME’,0,—10,10,0)
B_.TIME S = Beta(’B_TIME_S’,9,—10,10,0)

NN NN N
N o o ke W

38

B.COST = Beta(’B_COST’,0,—10,10,0)

Define a random parameter, normally distributed ,
designed to be used for simulation

omega = RandomVariable(’omega’)

density = normalpdf(omega)

B.TIMERND = B.TIME + B_TIME_S % omega

Utility functions

#If the person has a GA (season ticket) her
#incremental cost is actually 0

#rather than the cost wvalue gathered from the
network data.

SM_COST = SM_CO x (GA = 0)
TRAIN_.COST = TRAIN_.CO *x (GA = 0)

For numerical reasons, it is good practice to scale the data to
that the wvalues of the parameters are around 1.0.

A previous estimation with the unscaled data has generated

parameters around —0.01 for both cost and time.

Therefore, time and cost are multipled my 0.01.

TRAIN_.TT_SCALED = \

DefineVariable (? TRAIN_TT_SCALED’ , TRAIN.TT / 100.0)
TRAIN_COST_SCALED = \

DefineVariable (? TRAIN_COST_SCALED’ , TRAIN.COST / 100)
SM.TT_SCALED = DefineVariable (’>SM_TT_SCALED’, SM.TT / 100.0)
SM_COST_SCALED = DefineVariable (?SM_COST_SCALED’, SM.COST / 100)
CAR_TTSCALED = DefineVariable (?CAR_TT_SCALED’, CAR.TT / 100)
CAR.COSCALED = DefineVariable(?CAR_CO_SCALED’, CARCO / 100)

V1 = ASC.TRAIN + \
B.TIMERND * TRAIN.TT.SCALED + \
B_COST x TRAIN_COST_SCALED

V2 = ASCSM + \
B.TIMERND x SM.TT SCALED + \
B.COST * SM.COST_.SCALED

V3 = ASC.CAR + \
B.TIMERND % CAR.TT-SCALED + \
B.COST * CAR.CO_SCALED

Associate wutility functions with the numbering of alternatives
V= {1: Vi,

2: V2,

3: V3}

Associate the availability conditions with the alternatives

39

77
78

79

80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

101
102
103
104

106
107
108
109
110
111
112
113
114
115
116
117
118

CAR_AVSP = DefineVariable (’>CAR_AV_SP’ ,CARAV

)

TRAIN_AV_SP =

0))

av = {1: TRAIN_AV.SP,
2: SMAV,
3: CAR_AV SP}

The choice model is a logit,
integrand = bioLogit (V,av,CHOICE)

prob = Integrate (integrands*density ,’omega’)

1 = log

(prob)

* (SP

DefineVariable (?TRAIN_AV_SP’ ,TRAINAV x (

SP

with availability conditions

Defines an itertor on the data
rowlterator (’obsIter?)

Define the

All observations

considered for estimation
The modeler here has developed the model only for work trips.
Observations such that the dependent wvariable CHOICE is 0
are also removed.

exclude = ((PURPOSE != 1) * (PURPOSE !=) +\
(CHOICE =— 0)) > 0
BIOGEME_OBJECT .EXCLUDE = exclude
Statistics
nullLoglikelihood (av, ’obsIter’)
choiceSet = [1,2,3]
cteLoglikelihood (choiceSet ,CHOICE, *obsIter’)
availabilityStatistics (av,’obsIter’)
BIOGEME_OBJECT .PARAMETERS [’ RandomDistribution’] = "MLHS"
BIOGEME_OBJECT .PARAMETERS| ’ optimizationAlgorithm’]| = "BIO"

BIOGEME _OBJECT .FORMULAS|[’ Train utility’] = V1

likelihood function for the estimation
BIOGEME_OBJECT .ESTIMATE = Sum (1, ’obsIter’)

BIOGEME_OBJECT .FORMULAS|[> Swissmetro utility’] = V2

BIOGEME_OBJECT .FORMULAS|[’ Car utility’] = V3

A.9

12estimationMonteCarlo.py

40

0

verifying the following expression will not be

File: 12estimationMonteCarlo.py
Author: Michel Bierlaire , EPFL
Date: Thu Jul 30 18:33:34 2015

#

© 0w N O s W

from biogeme import x

10 from headers import x

11 from loglikelihood import =x

12 from statistics import x

13

14 #Parameters to be estimated

15 # Arguments:

1 Name for report. Typically, the same as the wvariable
2 Starting value

3 Lower bound

4 Upper bound

5 0: estimate the parameter, 1: keep it fixed

16
17
18
19

iR NN N

20
21
22 ASC_.CAR = Beta(’ASC_CAR’,0,—10,10,0)

23 ASC_TRAIN = Beta(’ASC_TRAIN’ ,0,—10,10,0)

22 ASCSM = Beta(’ASC_SM’,0,—10,10,1)

25 B_.TIME = Beta(’B_TIME’,0,—10,10,0)

26 B_TIME_.S = Beta(’B_TIME_S’ ,9,—10710,0)

27 B.COST = Beta(’B_C0ST’,0,—10,10,0)

28

20 # Define a random parameter, mnormally distirbuted , designed to be used

30 # for Monte—Carlo simulation

31 B.TIMERND = B.TIME + B_.TIME_S % bioDraws(’B_TIME_RND’)

32

33 # Utility functions

34

35 #If the person has a GA (season ticket) her incremental cost is actually 0
36 #rather than the cost value gathered from the

37 # network data.

38 SM_.COST = SM_CO x (GA = 0)

30 TRAIN.COST = TRAIN_CO * (GA = 0)

40

21 # For numerical reasons, it is good practice to scale the data to

12 # that the wvalues of the parameters are around 1.0.

3 # A previous estimation with the unscaled data has generated

44 # parameters around —0.01 for both cost and time. Therefore, time and

45 # cost are multipled my 0.01.

46

a7 TRAIN.TT_SCALED = DefineVariable (’TRAIN_TT_SCALED’, TRAIN.TT / 100.0)

18 TRAIN.COST_SCALED = DefineVariable (’>TRAIN_COST_SCALED’, TRAIN.COST / 100)
49 SM.TT SCALED = DefineVariable (?SM_TT_SCALED’, SM.TT / 100.0)

50 SM_.COST_SCALED = DefineVariable (>SM_COST_SCALED’, SM.COST / 100)

51 CAR.TTSCALED = DefineVariable (?>CAR_TT_SCALED’, CARTT / 100)

41

52 CAR.COSCALED = DefineVariable(?CAR_CO_SCALED’, CARCO / 100)

53

5. V1 = ASC.TRAIN + B TIMERND x TRAIN.TT_SCALED + B_COST % TRAIN_.COST_SCALED
55 V2 = ASCSSM + B.TIMERND x SM.TT_SCALED + B_COST x SM_COST_SCALED
56 V3 = ASC.CAR + B.TIMERND x CARTTSCALED + B_.COST % CAR.CO_SCALED
57

58 # Associate utility functions with the numbering of alternatives
5o V= {1: V1,

60 2: V2,

61 3: V3}

62

63 # Associate the awvailability conditions with the alternatives

64

65 CAR_AVSP = DefineVariable(’?CAR_AV_SP’ CARAV x (SP I= 0

)
66 TRAIN_.AV.SP = DefineVariable(’TRAIN_AV_SP’ , TRAINAV =« (SP I=

0))

es av = {1: TRAIN_AV.SP,

69 2: SMAV,

70 3: CAR_AV. SP}

71

72 # The choice model is a logit, with availability conditions

73 prob = bioLogit (V,av,CHOICE)

72 1 = mixedloglikelihood (prob)

75

76 # Defines an itertor on the data

77 rowlterator (’obsIter’)

78

79 # Define the likelihood function for the estimation

so BIOGEME_.OBJECT.ESTIMATE = Sum(1, ’obsIter’)

81

s2 # All observations wverifying the following expression will not be
83 # considered for estimation

sa # The modeler here has developed the model only for work trips.
85 # Observations such that the dependent variable CHOICE is 0 are also removed.
s6 exclude = ((PURPOSE = 1) = (PURPOSE != 3) + (CHOICE =10)) > 0
87

ss BIOGEME_OBJECT .EXCLUDE = exclude

89

90 # Statistics

91

92 nullLoglikelihood (av,’obsIter’)

93 choiceSet = [1,2,3]

94 cteLoglikelihood (choiceSet ,CHOICE, *obsIter’)

o5 availabilityStatistics (av,’obsIter’)

96

97 BIOGEME_OBJECT .PARAMETERS| ’ Nbr0fDraws’| = "2000"

9s BIOGEME_OBJECT .PARAMETERS| ’RandomDistribution’] = "MLHS"

42

99
100
101
102
103
104

BIOGEME_OBJECT .PARAMETERS| > optimizationAlgorithm’| = "BIO"

BIOGEME_OBJECT.DRAWS = { ’B_TIME_RND’: ’NORMAL’ }
BIOGEME _OBJECT .FORMULAS|[’ Train utility’] = V1
BIOGEME_OBJECT .FORMULAS|[’ Swissmetro utility’] = V2
BIOGEME OBJECT .FORMULAS[’ Car utility’] = V3

43

References

Bhat, C. (2001). Quasi-random maximum simulated likelihood estimation
of the mixed multinomial logit model, Transportation Research Part B
35: 677-693.

Bhat, C. R. (2003). Simulation estimation of mixed discrete choice models
using randomized and scrambled halton sequences, Transportation
Research Part B: Methodological 37(9): 837 — 855.

URL: http: //www.sciencedirect.com/science/article/pii/S0191261502000905

Bierlaire, M., Axhausen, K. and Abay, G. (2001). The acceptance of modal
innovation: The case of swissmetro, Proceedings of the Swiss Transport
Research Conference, Ascona, Switzerland.

Halton, J. H. (1960). On the efficiency of certain quasi-random sequences
of points in evaluating multi-dimensional integrals, Numerische Mathe-
matik 2(1): 84-90.

URL: http://dz.doi.org/10.1007/BF01386213

Hess, S., Train, K. and Polak, J. (2006). On the use of modified latin hyper-
cube sampling (MLHS) method in the estimation of mixed logit model
for vehicle choice, Transportation Research Part B 40(2): 147-163.

Ross, S. (2012). Simulation, fifth edition edn, Academic Press.
URL: http://books.qgoogle.ch/books?id=sZiDT6MQGF,C

Séndor, Z. and Train, K. (2004). Quasi-random simulation of discrete choice
models, Transportation Research Part B: Methodological 38(4): 313 —
327.

Train, K. (2000). Halton sequences for mixed logit, Technical Report E00-
278, Department of Economics, University of California, Berkeley.

44

