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Chapter 1

Introduction

Bierlaire Optimization toolbox for GEv Model Estimation (BIOGEME) is a

freeware package designed for the development of research in the context of

discrete choice models. Originally developed specifically for Multivariate Ex-

treme Value models (called Generalized Extreme Valur, or GEV models, by

McFadden, 1978), it can now handle a wide variety of models. The distribu-

tion of BIOGEME, as well as related material, is maintained at

biogeme.epfl.ch.

The archives of the users group can be found at

groups.yahoo.com/group/biogeme

The following pieces of software are available:

Biogeme performs maximum likelihood estimation of the parameters of a list

of predetermined models: logit, nested logit, cross nested logit, network

MEV, binary probit, ordered logit, and continuous and discrete mixtures of

these models. The model description is performed using a simple syntax

in a text file. The syntax has been developed using the Bison parser gen-

erator. Therefore, we refer sometimes to it as BisonBiogeme, as opposed

to PythonBiogeme presented below.

Biosim performs a sample enumeration of an estimated model on a data set. It

applies the model to each observation, and compute the utilities as well as

the choice probability of each alternative.
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6 CHAPTER 1. INTRODUCTION

Biomerge is a simple facility designed to merge files with the same number of

rows, so that each row is merged with the corresponding rows of the other

files. It is typically used to merge a sample file with a file generated by

biosim.

PythonBiogeme performs maximum likihood estimation of the parameters of

any model such that it is possible to write the likelihood function. It comes

with a list of models already implemented, including the logit, the nested

logit, the cross nested logit, the MEV models, as well as examples about

the specification of other models. The model description is based on an

extension of the Python programming language. PythonBiogeme can ex-

ploit multi-threading to speed-up the estimation time in the presence of

multiple processors.

as well as the following utilities

histograms an utility written in Python that takes a list of raw numbers and

organizes them into bins in order to plot histograms.

mod2py a script that runs Biogeme to transform a model written for BisonBio-

geme (a .mod file) into a model written for PythonBiogeme (a .py file).

Likelihood ratio test an excel worksheet that performs a likelihood ratio test.

CNL correlation a Matlab code to compute the correlation matrix of a cross-

nested logit model given the value of its parameters.

Variance computation Excel sheet to compute the variance of the difference

and the ratio of two random variables.

Prepare data Biogeme requires that the data file contains only numerical data.

If your data file happens to contain text data (such as names of cities, for

example), this script written in Python will assign a value to each of the

strings, generate a data file compliant with Biogeme’s requirements as well

as a glossary explaning which number corresponds to which string.

In addition to this document, several examples are posted online. Make sure

to visit the webpage. If the document, the examples and and your “trial-and-

errors” do not help solving problems in using the software, make sure you visit

the archives of the users group. Several questions have been asked by other

users, and the responses are often available in the archives. If you don’t find a

solution to your problem, post a message to
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groups.yahoo.com/group/biogeme/post

Also, your contribution is very appreciated. If you have suggestions to improve

Biogeme, post them to the users group as well.

Biogeme is developed under the GNU environment (www.gnu.org). There-

fore, it is easy to install from sources on a Linux platform, as well as on a Apple

Mac OS X platform with Xcode (developer.apple.com/xcode/). Ex-

ecutables for Windows are available too. Note that PythonBiogeme running on

Windows is based on Cygwin (www.cygwin.com), which significantly slows

down the execution. In principle, BisonBiogeme should not suffer from the same

limitation and seems to run fine on Windows. In any case, except if you need

to run simple examples for teaching purposes, we strongly recommend to use

Biogeme on Linux or Mac OS X.

Also, a stand alone version of BisonBiogeme with a graphical user interface

is made available for teaching purposes. It is however advised to run the software

from a terminal.

Biogeme is distributed free of charge. We ask each user

1. to register to the Biogeme’s users group

groups.yahoo.com/group/biogeme,

and

2. to mention explicitly the use of the package when publishing results, using

a reference to this document as well as the following:

• Bierlaire, M. (2003). BIOGEME: A free package for the estimation

of discrete choice models , Proceedings of the 3rd Swiss Transporta-

tion Research Conference, Ascona, Switzerland.

• Bierlaire, M., and Fetiarison, M. (2009). Estimation of discrete choice

models: extending BIOGEME. Proceedings of the 9th Swiss Trans-

port Research Conference, Ascone, Switzerland.

If you have any question about Biogeme 2.4, post them on the users’ group.
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1.1 Discrete choice models

This section is not an introduction to discrete choice models. Instead, it describes

the models that are implemented in Biogeme 2.4. We refer the reader to the

abundant literature on the topic, including Ben-Akiva and Lerman (1985) and

Train (2009).

Random utility models are based on the following ingredients:

• a finite population with individuals denoted by n, each of them character-

ized by a vector of socio-economic characteristics sn;

• for each individual n, a finite choice set Cn containing Jn alternatives, each

of them characterized by a vector of attributes zin;

• for each individual n and each alternative i ∈ Cn, a utility function repre-

sented by the random variable

Uin = Vin + εin, (1.1)

where Vin = Vin(sn, zin; θ) is the deterministic part, that depends on vari-

ables sn and zin, and unknown parameters θ to be estimated from data,

and εin is the error term, assumed to follow a given distribution, possibly

depending on unknown parameters to be estimated too.

The probability that individual n chooses alternative i within choice set Cn
is given by

P(i|Cn) = Pr(Uin ≥ Ujn∀j ∈ Cn). (1.2)

If F is the CDF of the random variable εin, the choice probability is

P(i|Cn) =
∫+∞

ξ=−∞

∂F

∂εi
(. . . , Vin−V(i−1)n+ξ, ξ, Vin−V(i+1)n+ξ, . . .)dξ. (1.3)

In the following, we drop the index n for notational simplicity.

Multivariate Extreme Value models

Biogeme has been designed for Multivariate Extreme Value (MEV) models (in-

troduced as Generalized Extreme Value models by McFadden, 1978). Given a

choice probability generating function G : RJ
+ → R verifying the following

properties
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1. G is homogeneous of degree µ > 0, that is G(αy) = αµG(y) for each

α 6= 0,

2. limyi→+∞G(y1, . . . , yi, . . . , yJ) = +∞, for each i = 1, . . . , J,

3. the kth partial derivative with respect to k distinct yi is non-negative if

k is odd and non-positive if k is even that is, for any distinct indices

i1, . . . , ik ∈ {1, . . . , J}, we have

(−1)k
∂kG

∂xi1 . . . ∂xik
(x) ≤ 0, ∀x ∈ R

J
+. (1.4)

The choice probability is then given by

P(i|C) =
eVi+lnGi(e

V1 ,...,eVJ )

∑J
j=1 e

Vj+lnGj(e
V1 ,...,eVJ )

, (1.5)

where Gi = ∂G/∂yi.

Biogeme 2.4 implements four instances of that family of discrete choice

models and through the use of random coefficients, to normal or uniform mixture

of each version.

1. the logit model. If you are using Biogeme, we safely assume that you are

familiar with this model. If not, read Ben-Akiva and Lerman (1985). The

G function is

G(y) =

J∑

i=1

yµ
i ,

where µ is a scale parameter. As it is unidentified, it is usually normalized

to 1. The choice probability is

P(i|C) = eµVi

∑
j∈C e

µVj
, (1.6)

2. the nested logit model (Ben-Akiva, 1973, Daly, 1987), where the choice

set is partitioned into M nests, so that each alternative belongs to exactly

one nest1. The G function is

G(y) =

M∑

m=1

(
∑

ℓ∈C

(αℓmyℓ)
µm

)µ/µm

. (1.7)

1In Biogeme, a nested logit model contains only one level of nests. However, it is possible

to handle multiple levels thanks to the Network MEV model (see below).
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where αℓm is 1 if alternative i belongs to nest m and 0 otherwise, µ is a

scale parameter usually normalized to 1, and µm are nested specific pa-

rameters verifying µ ≤ µm for all m. The choice probability is given

by

P(i|C) = eµmVi

∑
j∈C αjmeµmVjn

(∑
ℓ∈C αℓme

µmVℓn
) µ

µm

∑M
p=1

(∑
ℓ∈C αℓpeµpVℓn

) µ
µp

.

3. The cross-nested logit model generalized the nested logit formulation in

allowing the α parameters to take values between 0 and 1 in the nested

logit formultion, so that an alternative can belong to more than one nest,

so that complex correlation structures can be investigated. We refer the

reader to the literature for the description of the cross-nested logit model

(Small, 1987, Vovsha, 1997, Ben-Akiva and Bierlaire, 2003, Papola, 2004,

Bierlaire, 2006, Wen and Koppelman, 2001, Abbe et al., 2007).

G(y1, . . . , yJ) =

M∑

m=1

(
∑

j∈C

(αjm
1/µyj)

µm

) µ
µm

, (1.8)

with µ ≤ µm for all m, and αjm ≥ 0 for all j and m. For identification

purposes, the constraint

M∑

m=1

αjm = 1 ∀j ∈ C

must be imposed (see Wen and Koppelman, 2001 and Abbe et al., 2007).

4. the network MEV model. This family of models is equivalent to the Re-

cursive Nested Extreme Value Model proposed by Daly (2001), but based

purely on a network structure, as proposed by Bierlaire (2002). We re-

fer the reader to Daly and Bierlaire (2006) for details about this model

(called “network GEV” in the paper, following the original naming of

McFadden, 1978). It allows to define a wide class of MEV models by

designing a network structure, with specific properties, easy to verify. The

Logit model, the nested logit model and the cross-nested logit model are

special instances of the network MEV model. In the network, there is a

parameter associated with each node and with each arc.

If i is a node corresponding to an alternative,

Gi(yi) = yµi

i i = 1, . . . , J,
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and if not,

Gi(y) =
∑

j∈succ(i)

αijG
j(y)

µi
µj ,

where succ(i) denotes the set of successors of i, µi > 0, µj > 0, µi ≤ µj,

αij ≥ 0,

Mixtures

Biogeme 2.4 allows to include random parameters in the specification of a MEV

model. Suppose that the choice model is based on a vector of fixed parameters θ,

and a vector of random parameters η with pdf fη(ξ;γ), where γ are the parameter

of the distribution, usually referred to as deep parameters. The choice probability

is then given by

P(i|C; θ, γ) =
∫

ξ

P(i|C; θ, ξ)fη(ξ;γ)dξ, (1.9)

where P(i|C; θ, ξ) is a MEV model. The model (1.9) is called a mixture of MEV

models. The integral has no closed form and must be estimated by Monte-Carlo

simulation.

Utility function

In BisonBiogeme, the population is assumed to be divided into groups, charac-

terized by the membership function s(n). The specification of the utility func-

tion is

Un = λs(n)f(Xn;βf, βN, βU) + νn, (1.10)

where

• Xn ∈ R
Jn×L is a matrix such that each row j = 1, . . . , Jn contains both

the attributes zjn of each alternative j perceived by individual n, and the

socio-economic characteristics sn of individual n,

• βf is a vector of fixed, real, parameters,

• βN ∼ N(β0, ΓΓ
T) is a random vector of dimension K, normally distributed

with mean β0 ∈ R
K and variance-covariance matrix Σβ = ΓΓ T ∈ R

K×K,
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• βU is a vector of independent uniformly distributed parameters, such that

(βU)i ∼ U(βai − βbi, βai + βbi).

• f : RJn×L × R
K → R

J
n is a continuously differentiable nonlinear function,

• λs(n) is a scale factor associated with the market segment s(n),

• νn is a generalized extreme value distributed random vector with joint

cumulative distribution function

F(νn) = e−Gγ(e
−(νn)1 ,...,e−(νn)J ) (1.11)

induced by a generating function Gγ : RJ
+ → R verifying conditions 1–3.

We expand the random vector βN as follows:

βN = β0 + Γξ, (1.12)

where ξ ∼ N(0, I). Similarly, each uniformly distributed parameter is expanded

as follows:

(βU)i = (βa)i + (βb)i ∗ωi (1.13)

where ωi ∼ U(−1, 1).

We rewrite (1.10) as:

Un = λs(n)f(Xn;βf, β0, Γ, βa, βb, ξ,ω) + νn. (1.14)

In the following, we will denote

Vn = λs(n)f(Xn;βf, β0, Γ, βa, βb, ξ,ω) (1.15)

and

Vin = λs(n)f(Xn;βf, β0, Γ, βa, βb, ξ,ω)i (1.16)

where f(·)i is the ith component of f.

The final form of the probability model can be written by first deriving the

probability model conditional on ξ and ω (see McFadden, 1978) using the MEV

theory.

P(i|Cn, Xn;βf, β0, Γ, βa, βb, λ, γ; ξ,ω) =
eVin+logGi(...)

∑
j∈Cn

eVjn+logGj(...)
, (1.17)
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where λ ∈ R
S is the vector of scale factors associated with market segments, and

Gj(. . .) =
∂Gγ

∂yj

(eV1n, . . . , eVJn). (1.18)

We now obtain the probability model by integrating with respect to ξ and ω,

that is P(i|Cn, Xn;βf, β0, Γ, βa, βb, λ, γ) =

∫ 1

ω=0

∫+∞

ξ=−∞

P(i|Cn, Xn;βf, β0, Γ, βa, βb, λ, γ; ξ,ω)φ(ξ; 0, I)dξdω (1.19)

where φ(ξ; 0, I) denotes the pdf of the multivariate normal density centered at

zero with covariance matrix I, evaluated at ξ. If we gather all unknown parame-

ters in a vector θ, the choice model (1.19) can be written

P(i|Cn, Xn; θ) (1.20)

The generality of this model provides a great deal of modeling flexibility.

Not only many models are special cases of this formulation, as described below,

but new models can be derived in the same context. However, if more complex

models are required, PythonBiogeme has to be used, whih does not assume any

model structure. The model to be estimated has to be explicitly coded in Python

language.

Internal note: The following mut be moved to the syntax section

We now link this formulation with the entries of the model file (Section 2.4).

A normally distributed random parameter is mentioned in the definition of the

utility function using the syntax

BETA [ GAMMA ]

For each such random parameter, there must be two entries in the Section [Beta],

one corresponding to the entry in β0 (BETA in the example above), and the

other corresponding to the associated diagonal element of Γ (GAMMA). If Γ is

diagonal, this is sufficient. If Γ is not diagonal, each non-zero off-diagonal entry

must be listed in the Section [ParameterCovariances]. Each off-diagonal entry is
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designed to capture the covariance between two random parameters. The name

of a random parameter BETA [ GAMMA ] is by convention BETA_GAMMA.

Note that Biogeme 2.4 estimates the entries of β0 and of Γ . But for most

practical applications, the value of Γ is irrelevant, and the values within ΓΓ T are

needed. The section Variance of random coefficients in the report

files reports the entries of the ΓΓ T matrix. Note that if Γ is diagonal, those are sim-

ply the square of the estimated values reported in the Utility parameters

section.

A uniformly distributed random parameter is mentioned in the definition of

the utility function using the syntax

BETAA { BETAB }

For each such random parameter, there must be two entries in the Section [Beta],

one corresponding to the entry in βa (BETA in the example above), and the other

corresponding to the entry in βb(BETB in the example above).

1.2 Maximum likelihood estimation

We assume that we have access to a sample of N individuals, such that for each

individual n, we have access to the choice set Cn, the set of variables Xn (con-

taining the socio-economic characteristics sn and the attributes of each alterna-

tive zin, i ∈ Cn) as well as one observed choice in. Such a sample is usually

referred to as cross-sectional data. Given a choice model (1.20), the likelihood

of the sample is defined as the probability that the model correctly predicts all

observed choices, that is

L ′(θ) =

N∏

n=1

P(in|Cn, Xn; θ). (1.21)

It is actually more convenient to refer to the log likelihood, that is

L(θ) = logL ′(θ) =

N∑

n=1

logP(in|Cn, Xn; θ). (1.22)

The maximum likelihood estimation of the parameters consists in finding the

value of θ that maximizes (1.22). The main functionality of Biogeme 2.4 is to
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solve the optimization problem

max
θ

L(θ), (1.23)

for a given choice model and a given sample file.

Estimation of the variance-covariance matrix

Under relatively general conditions, the asymptotic variance-covariance matrix

of the maximum likelihood estimates is given by the Cramer-Rao bound

−E
[
∇2L(θ)

]−1
=

{

−E

[
∂2L(θ)
∂θ∂θT

]}−1

. (1.24)

The term in square brackets is the matrix of the second derivatives of the log like-

lihood function with respect to the parameters evaluated at the true parameters.

Thus the entry in the kth row and the ℓth column is

∂2L(θ)
∂θk∂θℓ

. (1.25)

From the second order optimality conditions of the optimization problem,

this matrix is negative definite if the maximum is unique, which is the algebraic

equivalent of the local strict concavity of the log likelihood function.

Since we do not know the actual values of the parameters at which to evaluate

the second derivatives, or the distribution of xin and xjn over which to take their

expected value, we estimate the variance-covariance matrix by evaluating the

second derivatives at the estimated parameters θ̂ and the sample distribution of

xin and xjn instead of their true distribution. Thus we use

E

[
∂2L(θ)
∂θk∂θℓ

]
≈

N∑

n=1

[
∂2 (yin lnPn(i) + yjn lnPn(j))

∂θk∂θℓ

]

θ=θ̂

, (1.26)

as a consistent estimator of the matrix of second derivatives. Denote this matrix

as Â. Therefore, an estimate of the Cramer-Rao bound (1.24) is given by

Σ̂CR
θ = −Â−1. (1.27)

If the matrix Â is negative definite then −Â is invertible and the Cramer-Rao

bound is positive definite. However, this is not guaranteed.
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Another consistent estimator of the (negative of the) second derivatives ma-

trix can be obtained by the matrix of the cross-products of first derivatives as

follows:

−E

[
∂2L(θ)
∂θ∂θT

]
≈

n∑

n=1

(
∂ℓn(θ̂)

∂θ

)(
∂ℓn(θ̂)

∂θ

)T

= B̂, (1.28)

where (
∂ℓn(θ̂)

∂θ

)
=

∂

∂θ
(logP(in|Cn, Xn; θ̂)) (1.29)

is the gradient vector of the likelihood of observation n. This approximation

is employed by the BHHH algorithm, from the work by Berndt et al. (1974).

Therefore, an estimate of the variance-covariance matrix is given by

Σ̂BHHH
θ = B̂−1, (1.30)

although it is rarely used. Instead, B̂ is used to derive a third consistent estimator

of the variance-covariance matrix of the parameters, defined as

Σ̂R
θ = (−Â)−1 B̂ (−Â)−1 = Σ̂CR

θ (Σ̂BHHH
θ )−1 Σ̂CR

θ . (1.31)

It is called the robust estimator, or sometimes the sandwich estimator, due

to the form of equation (1.31). Biogeme 2.4 reports statistics based on both the

Cramer-Rao estimate (1.27) and the robust estimate (1.31).

When the true likelihood function is maximized, these estimators are asymp-

totically equivalent, and the Cramer-Rao bound should be preferred (Kauermann

and Carroll, 2001). When other consistent estimators are used, the robust estima-

tor must be used (White, 1982). Consistent non-maximum likelihood estimators,

known as pseudo maximum likelihood estimators, are often used when the true

likelihood function is unknown or difficult to compute. In such cases, it is of-

ten possible to obtain consistent estimators by maximizing an objective function

based on a simplified probability distribution.

Panel data

Sometimes, it is possible to observe individuals over time. We assume that we

have access to a sample of N individuals, such that for each individual n and

for each time period t = 1, . . . , T , we have access to the choice set Cnt, the

set of variables Xnt (containing the socio-economic characteristics sn and the
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attributes of each alternative zint, i ∈ Cnt) as well as one observed choice int.

Such a sample is usually referred to as panel data. In the presence of random

parameters in the model, the likelihood function is slightly different if some of

these parameters are distributed across individuals and not across observations.

For the sake of simplicity here, we assume that all random parameters are dis-

tributed over individuals. In this case, the choice model for an individual n at

time t, conditional to the value of ξ and ω, is given by (1.17)

P(i|Cnt, Xnt;βf, β0, Γ, βa, βb, λ, γ; ξ,ω).

Now, for individual n, we observe the sequence of choices in1, in2, . . . , inT . The

likelihood of this sequence, again conditional to the value of ξ and ω, is given

by
T∏

t=1

P(int|Cnt, Xnt;βf, β0, Γ, βa, βb, λ, γ; ξ,ω). (1.32)

We now need to integrate out the random parameters to obtain the contribution

of individual n to the likelihood function:

∫ 1

ω=0

∫+∞

ξ=−∞

T∏

t=1

P(int|Cnt, Xnt;βf, β0, Γ, βa, βb, λ, γ; ξ,ω)φ(ξ; 0, I)dξdω.

(1.33)

The log likelihood of the full sample in therefore

L =

N∑

n=1

log

∫ 1

ω=0

∫+∞

ξ=−∞

T∏

t=1

P(int|Cnt, Xnt;βf, β0, Γ, βa, βb, λ, γ; ξ,ω)φ(ξ; 0, I)dξdω.

(1.34)

Choice based sampling

The estimation procedure described above is designed when the sample has be

generated using an exogenous procedure, meaning that the probability for an

individual in the population to be selected in the sample may depend on the in-

dependent (or exogenous) variables Xn, but not on the dependent variable (the

choice). For this reason, it is usually called Exogenous Sample Maximum Like-

lihood (ESML). If the sample is choice-based, that is if the probability to be

selected in the sample depends on the choice made, that estimator is not consis-

tent anymore.
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Bierlaire et al. (2008) have proposed an estimator for choice-based sample

and MEV models. It consists in estimating new parameters, playing a role simi-

lar to alternative specific constants, but designed to absorb the bias due to choice-

based samples. Ideally, the value of these parameters should be derived from the

sampling strategy. However, it is possible to estimate them from data, although

it is not necessarily recommended.



Chapter 2

BisonBiogeme

BisonBiogeme is the first version of Biogeme. It was first released in 2000,

and has been improved permanently ever since. The idea is that the software

provides a large family of choice models that are pre-implemented. The user

has to specify the utility function, and various additional aspects of the model

specification using a simple modeling language specifically designed for that

purpose.

2.1 Walkthrough

In order to introduce the syntax of BisonBiogeme, we are explaining in details an

example where a logit model with 3 alternatives is estimated. We use the Swiss-

metro example (see Bierlaire et al., 2001). The following files are necessary to

run the example. They are available from biogeme.epfl.ch.

• The model specification file: 01logit.mod

• The data file: swissmetro.dat

The model

The model is a logit model with 3 alternatives. The utility functions are defined
as:

V_1 = V_TRAIN = ASC_TRAIN + B_TIME * TRAIN_TT_SCALED

+ B_COST * TRAIN_COST_SCALED

V_2 = V_SM = ASC_SM + B_TIME * SM_TT_SCALED

19
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+ B_COST * SM_COST_SCALED

V_3 = V_CAR = ASC_CAR + B_TIME * CAR_TT_SCALED

+ B_COST * CAR_CO_SCALED

where TRAIN_TT_SCALED, TRAIN_COST_SCALED, SM_TT_SCALED,

SM_COST_SCALED, CAR_TT_SCALED, CAR_CO_SCALED are variables, and

ASC_TRAIN, ASC_SM, ASC_CAR, B_TIME, B_COST are parameters to be es-

timated. Note that it is not possible to identify all alternative specific constants

ASC_TRAIN, ASC_SM, ASC_CAR from data. Consequently, ASC_SM is nor-

malized to 0.

The availability of an alternative i is determined by the variable avi, i=1,...3,

which is equal to 1 if the alternative is available, 0 otherwise. The probability of

choosing an available alternative i is given by the logit model:

P(i|C) = eVi

av1eV1 + av2eV2 + av3eV3
(2.1)

Given a data set of N observations, the loglikelihood of the sample is

L =
∑

n

logP(in|C) (2.2)

where in is the alternative actually chosen by individual n.

The data file

Biogeme assumes that the data file contains in its first line a list of labels corre-

sponding to the available data, and that each subsequent line contains the exact

same number of numerical data, each row corresponding to an observation. De-

limiters can be tabs or spaces.

The data file used for this example is swissmetro.dat.

The model specification file

We explain here line by line the model specification file 01logit.mod. It is

organized into sections. In principle, the order in which the sections appear is

irrelevant.
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[ModelDescription]

This section allows to mention a description of the model that will be copied in

the report file. Each line of the description must be delimited by double quotes.

[ModelDescription]

"Example of a logit model for a transportation mode choice with 3 alternatives:"

"- Train"

"- Car"

"- Swissmetro, an hypothetical high-speed train"

[Choice]

It simply describes to Biogeme where the dependent variable (that is, the chosen
alternative) can be found in the file.

[Choice]

CHOICE

Note that the syntax is case sensitive, and that CHOICE is different from

choice, and from Choice.

Beta]

Each parameter to be estimated must be declared in this section. For each pa-

rameter, the following must be mentioned:

1. the name of the parameter

2. the default value

3. a lower bound

4. an upper bound

5. a flag that indicates if the parameter must be estimated (0) or if it keeps its

default value (1).

[Beta]

// Name Value LowerBound UpperBound status (0=variable, 1=fixed)

ASC_CAR 0 -10 10 0

ASC_TRAIN 0 -10 10 0

ASC_SM 0 -10 10 1

B_TIME 0 -10 10 0

B_COST 0 -10 10 0
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Note that the fifth entry for ASC_SM is 1, as we want to keep it to its default

value, that is 0.0.

[LaTeX]

Among other output files, Biogeme generates a file in LATEX format. In this

section, the name of the parameters can be specified in LATEX syntax, to appear

properly in the output file.

[LaTeX]

ASC_CAR "Cte. car"

ASC_SBB "Cte. train"

ASC_SM "Cte. Swissmetro"

B_TIME "$\beta_\text{time}$"

B_COST "$\beta_\text{cost}$"

[Utilities]

The specification of the utility functions is described in this section. The specifi-

cation for one alternative must start at a new row, and may actually span several

rows. For each of them, four entries are specified:

1. The identifier of the alternative, with a numbering convention consistent

with the section [Choice].

2. The name of the alternative.

3. The availability condition. In this case, it is a direct reference to one of

the entries in the data file. The convention is that zero is treated as ”false”,

and one is treated as ”true”. Actually, any value different from zero is

considered as ”true”.

4. The linear-in-parameter utility function is composed of a list of terms,

separated by a +. Each term is composed of the name of a parameter and

the name of an attribute, separated by a *. Note that a space is required

after each parameter name.

[Utilities]

// Id Name Avail linear-in-parameter expression

1 A1_TRAIN TRAIN_AV_SP ASC_TRAIN * one

+ B_TIME * TRAIN_TT_SCALED

+ B_COST * TRAIN_COST_SCALED
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2 A2_SM SM_AV ASC_SM * one

+ B_TIME * SM_TT_SCALED

+ B_COST * SM_COST_SCALED

3 A3_Car CAR_AV_SP ASC_CAR * one

+ B_TIME * CAR_TT_SCALED

+ B_COST * CAR_CO_SCALED

[Expressions]

It describes to Biogeme how to compute attributes not directly available from

the data file.

• When boolean variables are involved, the value TRUE is represented by
1, and the value FALSE is represented by 0. Therefore, a multiplication
involving a boolean variable is equivalent to a ”AND” operator.

CAR_AV_SP = CAR_AV * ( SP != 0 )

TRAIN_AV_SP = TRAIN_AV * ( SP != 0 )

SM_COST = SM_CO * ( GA == 0 )

TRAIN_COST = TRAIN_CO * ( GA == 0 )

• Variables can be rescaled

TRAIN_TT_SCALED = TRAIN_TT / 100.0

TRAIN_COST_SCALED = TRAIN_COST / 100

SM_TT_SCALED = SM_TT / 100.0

SM_COST_SCALED = SM_COST / 100

CAR_TT_SCALED = CAR_TT / 100

CAR_CO_SCALED = CAR_CO / 100

[Exclude]

It contains a boolean expression that is evaluated for each observation of the
data file. Each observation such that this expression is “true” is discarded from
the sample. Here, the modeler has developed the model only for work trips.
Observations such that the dependent variable CHOICE is 0 are also removed.

(( PURPOSE != 1 ) * ( PURPOSE != 3 ) + ( CHOICE == 0 ))

[Model]

It tells Biogeme which assumptions must be used regarding the error term, that

is which type of model must be estimated. In this example, it is the logit model

(or MNL, for multinomial logit, as it is sometimes called).
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[Model]

// $MNL stands for MultiNomial Logit

$MNL

Running biogeme

If Biogeme has been installed properly, the estimation is started with the follow-
ing statement:

biogeme 01logit swissmetro.dat

The following appears on the screen:

• Information about the version of Biogeme. The date is when the software

was compiled.

˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜

biogeme 2.4 [Mer 9 jul 2014 15:27:09 CEST]

Michel Bierlaire, EPFL

-- Compiled by michelbierlaire on Darwin

See http://biogeme.epfl.ch

!! CFSQP is available !!

˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜

"In every non-trivial program there is at least one bug."

• Biogeme checks if a file called mymodel.par, containing various pa-
rameters, exists. If not, it checks if the file called default.par ex-
ists. If not, it creates it and set default values to the parameters. That’s
what most users need in the beginning. Note that the information like
[15:48:50]patFileNames.cc:49 can be safely ignored.

[14:57:01]patFileNames.cc:49 01logit.par does not exist

[14:57:01]patFileNames.cc:53 Trying default.par instead

[14:57:01]patBiogeme.cc:178 File default.par does not exist. Default values

[14:57:01]patBiogeme.cc:180 A file default.par has been created

• Biogeme then reads the model and data files and reports various informa-
tion.

Opening file swissmetro.dat

Data file... line 500 Memory: 97 Kb

Data file... line 1000 Memory: 184 Kb

Data file... line 1500 Memory: 184 Kb

Data file... line 2000 Memory: 191 Kb
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Data file... line 2500 Memory: 289 Kb

Data file... line 3000 Memory: 386 Kb

Data file... line 3500 Memory: 484 Kb

Data file... line 4000 Memory: 503 Kb

Data file... line 4500 Memory: 600 Kb

Data file... line 5000 Memory: 647 Kb

Data file... line 5500 Memory: 745 Kb

Data file... line 6000 Memory: 842 Kb

Data file... line 6500 Memory: 940 Kb

Data file... line 7000 Memory: 1 Mb

Data file... line 7500 Memory: 1 Mb

Data file... line 8000 Memory: 1 Mb

Data file... line 8500 Memory: 1 Mb

Data file... line 9000 Memory: 1 Mb

Data file... line 9500 Memory: 1 Mb

Data file... line 10000 Memory: 1 Mb

Data file... line 10500 Memory: 1 Mb

Total obs.: 10727

Total memory: 1321.88 Kb

Run time for data processing: 00:01

• Biogeme then starts the estimation. It displays miscellaneous information
at each iteration of the estimation algorithm.

Init loglike=-6964.66

gmax Iter radius f(x) Status rhok nFree

+1.44e-03 1 1.00e+00 +6.9646630e+03 ****Converg +1.05e+00 4 ++

+1.82e-03 2 2.00e+00 +5.5911931e+03 ****Converg +9.74e-01 4 ++

+1.93e-03 3 4.00e+00 +5.3677413e+03 ****Converg +1.12e+00 4 ++

+2.04e-03 4 8.00e+00 +5.3424604e+03 ****Converg +1.52e+00 4 ++

+1.92e-03 5 1.60e+01 +5.3362826e+03 ****Converg +1.66e+00 4 ++

+1.92e-03 6 3.20e+01 +5.3336219e+03 ****Converg +1.69e+00 4 ++

+1.97e-03 7 6.40e+01 +5.3324003e+03 ****Converg +1.69e+00 4 ++

+2.01e-03 8 1.28e+02 +5.3318102e+03 ****Converg +1.70e+00 4 ++

+2.03e-03 9 2.56e+02 +5.3315246e+03 ****Converg +1.70e+00 4 ++

+2.03e-03 10 5.12e+02 +5.3313855e+03 ****Converg +1.70e+00 4 ++

+1.43e-03 11 1.02e+03 +5.3313175e+03 ****Converg +1.70e+00 4 ++

+1.01e-03 12 2.05e+03 +5.3312842e+03 ****Converg +1.70e+00 4 ++

+7.11e-04 13 4.10e+03 +5.3312679e+03 ****Converg +1.70e+00 4 ++

+5.00e-04 14 8.19e+03 +5.3312598e+03 ****Converg +1.70e+00 4 ++

+3.52e-04 15 1.64e+04 +5.3312559e+03 ****Converg +1.70e+00 4 ++

+2.47e-04 16 3.28e+04 +5.3312539e+03 ****Converg +1.70e+00 4 ++

+1.74e-04 17 6.55e+04 +5.3312529e+03 ****Converg +1.70e+00 4 ++

+1.22e-04 18 1.31e+05 +5.3312525e+03 ****Converg +1.70e+00 4 ++

+8.58e-05 19 2.62e+05 +5.3312522e+03 ****Converg +1.70e+00 4 ++



26 CHAPTER 2. BISONBIOGEME

+6.03e-05 20 5.24e+05 +5.3312521e+03 ****Converg +1.70e+00 4 ++

+4.23e-05 21 1.05e+06 +5.3312521e+03 ****Converg +1.70e+00 4 ++

+2.97e-05 22 2.10e+06 +5.3312520e+03 ****Converg +1.70e+00 4 ++

+2.09e-05 23 4.19e+06 +5.3312520e+03 ****Converg +1.70e+00 4 ++

+1.47e-05 24 8.39e+06 +5.3312520e+03 ****Converg +1.70e+00 4 ++

+1.03e-05 25 1.68e+07 +5.3312520e+03 ****Converg +1.70e+00 4 ++

+7.24e-06 26 3.36e+07 +5.3312520e+03 ****Converg +1.70e+00 4 ++

Convergence reached...

--> time interval [14:57:02,14:57:03]

• Biogeme reports the running time and prepares the output files.

Run time: 00:01

Final log-likelihood=-5331.25

Be patient... BIOGEME is preparing the output files

--> time interval [14:57:03,14:57:03]

Run time for var/covar computation: 00:00

• For the record, Biogeme reports the list of files that were actually used as
input.

BIOGEME Input files

===================

Parameters: default.par

Model specification: 01logit.mod

Sample 1 : swissmetro.dat

• Biogeme reports the list of files that have been created, containing the

results of the estimation, as well as many other pieces of information.

BIOGEME Output files

====================

Estimation results: 01logit.rep

Estimation results (HTML): 01logit.html

Estimation results (Latex): 01logit.tex

Estimation results (ALogit): 01logit.F12

Result model spec. file: 01logit.res

Sample statistics: 01logit.sta

• Biogeme reports also the name of files that may be helpful in understand-
ing problems with the model.
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BIOGEME Debug files

===================

Log file: 01logit.log

Parameters debug: parameters.out

Model debug: model.debug

Model spec. file debug: __specFile.debug

• Biogeme reports some information specific to the model. For logit, it re-
ports the minimum argument of all exponentials computed during the pro-
cess, in order to signal a possible underflow. Most users do not worry
about this information.

Model informations: Multinomial Logit Model

==================

The minimum argument of exp was -18.352

Run time for estimation: 00:01

Total run time: 00:02

• For the results, most users will consult the HTML file 01logit.html

with their preferred browser. A file written in ASCII format is also avail-

able, with the extension .rep. A file with LATEX code is also created, so

that the results can easily be integrated in a report or an article written with

this word processor.¡/p¿

2.2 Invoking Biogeme 2.4

Biogeme 2.4 is invoked in a shell under Linux, in a DOS command window

or a Cygwin command window under Windows using the following statement

structure

biogeme model_name sample_file_1 sample_file2 sample_file3 ...

By default, the sample_file_1 is assumed to be sample.dat, and the

model_name to be default. Therefore, typing

biogeme model_name

is equivalent to typing
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biogeme model_name sample.dat

and typing

biogeme

is equivalent to typing

biogeme default sample.dat

Finally, typing

biogeme -h

generates an output looking like

˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜

BIOGEME Version n.x [date]

Michel Bierlaire, EPFL

-- Compiled by Michel Bierlaire on MINGW32_NT-5.1

See http://biogeme.epfl.ch

!! CFSQP is available !!

˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜

"In every non-trivial program there is at least one bug."

Usage: biogeme model_name sampleFile1 sampleFile2 sampleFile3 ...

If the name of the model is mymodel, say, Biogeme 2.4 reads the following

files:

• a file containing the parameters controlling the behavior of Biogeme 2.4:

mymodel.par (Section 2.3)

• a file containing the model specification: mymodel.mod (Section 2.4)

• a file containing the data: sample.dat (Section 2.5)

• optionally a file containing the random numbers to use if estimation is

based on simulation.

It automatically generates the following output files:

• a file reporting the results of the estimation: mymodel.rep (section 2.8),

• the same file in HTML format,
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• a file containing the main results in LATEX format: mymodel.tex,

• a file containing the main results in ALogit format: mymodel.F12,

• a file containing the specification of the estimated model, in the same for-

mat as the model specification file: mymodel.res

• a file containing the specification of the estimated model at each iteration,

in the same format as the model specification file: mymodel.bck (only

if the parameter gevSaveIntermediateResults is set to one),

• a file containing some descriptive statistics on the data: mymodel.sta

(section 2.7),

and the following files to help understanding possible problems

• a file containing messages produced by Biogeme 2.4 during the run: mymodel.log

• a file containing the values of the parameters which have been actually

used by Biogeme 2.4: parameters.out

• a file containing the data stored in Biogeme 2.4 to represent the model:

model.debug

• a file containing the specification of the model, as it has actually been

understood by Biogeme 2.4: specFile.debug

These file names may be modified, according to the following rules:

1. If an input file mymodel.xxx does not exist, Biogeme 2.4 attempts to

open the file default.xxx. If this file does not exist, Biogeme 2.4

exits with an error. Typically, the parameter file is not model-dependent.

Therefore, it is common to call it default.par to avoid copying it for

each different model to be estimated.

2. If an output file mymodel.xxx already exists, Biogeme 2.4 does not

overwrite it. Instead, it creates the file mymodel˜1.xxx. If the file

mymodel˜1.xxx exists, Biogeme 2.4 creates the file mymodel˜2.xxx,

and so on.

To avoid any ambiguity, Biogeme 2.4 displays the filenames it has actually
used for a specific run, for instance
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BIOGEME Input files

===================

Parameters: default.par

Model specification: mymodel.mod

Sample 1 : sample.dat

Sample 2 : sample2.dat

BIOGEME Output files

====================

Estimation results: mymodel˜3.rep

Estimation results (HTML): mymodel˜3.html

Estimation results (Latex): mymodel˜5.tex

Estimation results (ALogit): mymodel˜1.F12

Result model spec. file: mymodel˜2.res

Sample statistics: mymodel˜1.sta

BIOGEME Debug files

===================

Log file: mymodel.log

Parameters debug: parameters.out

Model debug: model.debug

Model spec. file debug: __specFile.debug

Biogeme 2.4 also generates a file called summary.html where a summary

of all runs performed in the working directory are gathered. The name of this

file can be modified (Section 2.3).

It is highly recommended to regularly clean the working directory and save

the output files in a different place.

Graphical user’s interface

The version of Biogeme with a Graphical user’s interface (GUI) is a very simple

interface (see Figures 2.1 on the facing page and 2.2 on the next page) developed

with the library Fast Light Toolkit.

The user must select the model specification file and the data file, then click

one of the two buttons:

• Estimate for Biogeme.

• Simulate for Biosim.

If the run completes successfully, the name of the report file is displayed at the

bottom of the screen. It can be viewed by clicking on the appropriate button.
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Figure 2.1: Graphical User Interface when winbiogeme.exe is launched

Figure 2.2: Graphical User Interface when the run is finished

2.3 Parameter file

The parameter file provides the parameters controlling the execution of Bio-

geme 2.4. It is not mandatory. If it does not exist, Biogeme 2.4 uses the default

values, and automatically creates a file named default.par. If entries are

missing in the file, Biogeme 2.4 will use the default values.

The file is divided into sections, each section containing a list of parameters

and their corresponding value.

Section [GEV ]

The five first parameters are the only parameters which most users will

ever use. The others are sorted alphabetically.

gevAlgo It selects the optimization algorithm to be used for log-likelihood

estimation. As of now, "BIO", "BIOMC", "CFSQP", "SOLVOPT"

and "DONLP2" are valid entries. The default is "BIO". More de-

tails about these algorithms are available at Section 2.11.

gevScreenPrintLevel This parameter defines the level of display to

be produced on the screen during a run. Valid values are 1 for general

messages only, 2 for detailed messages, and 3 for debug messages.

Default: 1.

gevLogFilePrintLevel This parameter defines the level of display

to be produced in the log file during a run. Valid values are 1 for

general messages only, 2 for detailed messages, and 3 for debug mes-

sages. Default: 2.

gevPrintVarCovarAsList If set to 1, the variance-covariance ma-

trix of the estimated parameters is displayed as a list (one row per

entry). Default: 1.
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gevPrintVarCovarAsMatrix If set to 1, the variance-covariance

matrix of the estimated parameters is displayed as a matrix. We rec-

ommend to use this feature only if the number of parameters is small

(not more than 10). Default: 0.

gevAutomaticScalingOfLinearUtility If 1, linear utility func-

tions are automatically scaled to avoid numerical problems during

the estimation. The scaling is computed in such a way that all at-

tributes have a level of magnitude of about 1.0. Default value: 0.

gevBinaryDataFile This is the name of the binary data file where

the processed data are stored. Default: BiogemeData.bin.

gevBufferSize Biogeme 2.4 reads the first line of the data files, and

stores it in a buffer to analyze it and extract the labels. The size

of the buffer is determined by this parameter. The default value is

100’000. Adapt the value if the first line of your data file contains

more that 99’999 characters. BIOGEME provides a warning if the

default value is exceeded.

gevCheckDerivatives If set to 1, the analytical derivatives of the

log-likelihood functions and the nonlinear constraints are compared

to the finite difference derivatives. This is used basically when a new

model is included and for debugging purposes. Default value: 0.

gevDataFileDisplayStep While pre-processing the data file be-

fore the estimation, Biogeme 2.4 reports progress each time it has

read a given number of rows. This number is specified by the param-

eter getDataFileDisplayStep, and its default value is 500.

gevDebugDataFirstRow Biogeme 2.4 can print what it actually reads

from the data file. This parameter is the number of the first row for

which his information is displayed. It is recommended to use it when

strange results are generated by the package. It helps identifying

garbage in the data file, such as strings, for instance. Default: 0.

gevDebugDataLastRow Biogeme 2.4 can print what it actually reads

from the data file. This parameter is the number of the last row for

which this information is displayed. Default: 0.

gevDecimalDigitsStats Number of digits after the decimal points

to be used for printing general statistics in the output files. Default:

3.
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gevDecimalDigitsTTest Number of digits after the decimal points

to be used for printing t-tests in the output files. Default: 2.

gevDumpDrawsOnFile If set to 1, Biogeme 2.4 dumps the draws used

for simulated likelihood estimation. The name of the file is displayed

at the end of the run. If the model name is model, the filename is

model.draws. Default value: 0.

gevForceScientificNotation If 1, use the scientific notation for

printing results, like in previous versions of Biogeme. Default: 0.

gevGenerateActualSample If set to 1, Biogeme 2.4 generates a

copy of the sample file containing only the observations that have

not been excluded. Default: 0.

gevMinimumMu When the homogeneity parameter µ of GEV models

is estimated, its theoretical lower bound must be zero. However,

numerically, a value of 0 generates problems during the computation

of the model. Therefore, the lower bound is automatically set to the

value defined by this parameter. Default: 1.0e-5.

gevMaxPrimeNumber The generation of Halton sequences is based

on prime numbers. This parameter defines the maximum number

of prime numbers that can be used. Most users will never have to

change the default value. But if it is too low, an error message is

generated:

Warning: Error: 23 Halton series must be

generated, but there are only 10 prime

numbers available. Increase the value of

gevMaxPrimeNumber in the parameters file

Default value: 1000.

gevMissingValue This parameter is used mainly for debugging pur-

poses. It defines the value given to missing values in the data file.

If one of them is used in the computation of the utility functions, an

error message is triggered. Default value: 99999.0

gevOutputActualSample If parameter gevGenerateActualSample

is set to 1, this parameter defines the name of the file where the sam-

ple is saved. Default: __actualSample.dat.
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gevPrintPValue If 1, print the p-value in the results. The p-value is

computed as follows: if t is the t-test of the parameters,

p = 2(1−Φ(t)), (2.3)

where Φ(·) is the cumulative density function of the univariate nor-

mal distribution. Default: 1.

gevRandomDistrib There are three valid entries for this parameter:

PSEUDO, MLHS and HALTON. If PSEUDO is selected, maximum

simulated likelihood is based on pseudo-random draws. If HALTON

is selected, Halton sequences are generated. If MLHS is selected, a

Modified Latin Hypercube Sampling strategy is adopted (see Hess

et al., 2006). Default: PSEUDO

gevSaveIntermediateResults If 1, the current estimates are saved

at each iteration in a file with extension .bck. This is particularly

useful for models that take a while to estimate, so that the estimation

can be restarted from the last iterate. Default: 0.

gevSeed It defines the seed value for the pseudo-random number gen-

erator. Default value: 9021967

gevSignificantDigitsParameters Number of significant dig-

its to be used for printing estimated parameters in the output files.

Default: 3.

gevSingularValueThreshold Identification problems are analyzed

using a Singular Value Decomposition procedure. If a singular value

is small (that is, its absolute value is less than the value defined by

this parameter), the model is considered degenerate and the source

of this degeneracy is displayed. Default: 1.0e-4.

gevStopFileName During the optimization process, Biogeme 2.4 checks

for the existence of a file, whose name is defined by this parameter.

If the file exists, Biogeme 2.4 interrupts the iterations and generate

output files. This is convenient to prematurely stop iterations with-

out loosing the computations performed thus far. The default value

is "STOP".

gevStoreDataOnFile Biogeme 2.4 uses a database gathering the pro-

cessed data from the file provided by the user and, if applicable, the

draws for the simulated maximum likelihood estimation. If the pa-

rameter is 0, the database is stored in memory. If 1, it is stored in the
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binary file defined by the parameter gevBinaryDataFile. It is recom-

mended to use 0, except if the data does not fit in memory. Indeed,

accessing to the file slows down the estimation process. Default: 0.

gevSummaryFile Name of the file summarizing several runs of Bio-

geme 2.4. Default value: summary.html

gevSummaryParameters Name of the file containing the name of the

parameters whose estimated values must be reported in the summary

file. Default value: summary.lis

gevVarCovarFromBHHH The computation of the variance-covariance

matrix of the estimated parameters using finite difference approxi-

mation may take a while for complex models. It is sometimes useful

to use the BHHH approximation, which is much faster to compute.

If so, set this parameter to 1. It is recommended not to use BHHH in

the final model. Default: 0.

gevTtestThreshold Set the threshold for the t-test hypothesis tests.

If the absolute value of a t-test is less than gevTtestThreshold,

a symbol * will be appended to the relevant line in the report file

(Section 2.8). Default value: 1.96.

gevWarningLowDraws Biogeme 2.4 displays a warning if the number

of draws for simulated maximum likelihood estimation is considered

too low. This parameter defines the threshold used in the generation

of this warning message. Note that it has no effect on the estimation

itself. Default: 1000.

gevWarningSign When a t-test is not successful, a warning size is

displayed in the report file and in the HTML file. This parameter

defines the nature of this sign. Default value: *.

The following are new in Biogeme 2.4:

gevNumberOfThreads When Biogeme 2.4 is compiled to work with

parallel processors, this parameter specifies the number of threads

that will be launched. Note that it may exceed the actual number

of available processors. However, this may affect the performance

by creating unnecessary overhead. It is therefore advised to set this

parameter to the exact number of available processors. Default: 4.
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gevOne Name of the expression that is replaced by the value 1.0. It can

be used in the specification of the utility without explicitly defining

it in the Section [Expressions]. Default: one.

gevEigenvalueThreshold An eigenvalue is considered to be zero

(and the matrix considered to be singular) if its absolute value is less

or equal to the value of this parameter. Default: 1.0e-6.

The following are new in Biosim 2.4:

gevNonParamPlotRes This parameter defines the number of equally

distributed values on the x-axis used to generate nonparametric plots.

Default: 100.

gevNonParamPlotMaxY When generating nonparametric plots, val-

ues larger that this parameter are considered equal to the parameter.

Symmetrically, values lower than the negative parameter are consid-

ered equal to the negative value. Default: 1000.0.

gevNonParamPlotXSizeCm Width in centimeters of the nonparamet-

ric plots in the LATEX output. Default: 15.

gevNonParamPlotYSizeCm Height in centimeters of the nonpara-

metric plots in the LATEX output. Default: 10.

gevNonParamPlotMinXSizeCm Units on the x-axis are computed

automatically for nonparametric plots, but will no be lower than the

value of this parameter. Default: 0.00001.

gevNonParamPlotMinYSizeCm Units on the y-axis are computed

automatically for nonparametric plots, but will no be lower than the

value of this parameter. Default: 0.00001.

Section [BasicTrustRegion ]

This section is designed for the BIO and BIOMC optimization algorithms

(see Section 2.11).

BTRMaxIter Maximum number of iterations to be performed. Default:

1000.

BTRTypf Typical value of the log-likelihood function (see Section 2.11).

Default: 1.0.

BTRTolerance Value used for the stopping criterion (see Section 2.11).

Default: 6.05545e-06.
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BTRCheapHessian If 1, BHHH (see Berndt et al., 1974) is used as an

approximation of the second derivatives matrix. Default: 1.

BTRUsePreconditioner If 1, the subproblem is preconditioned us-

ing a modified Cholesky factorization (?). Default: 0

BTRInitRadius Defines the initial radius of the trust region. Default:

1.

BTRIncreaseTRRadius Defines the factor by which the trust region

is updated. Default: 2.

BTRMinTRRadius Defines the minimum radius of the trust region. If

this radius is reached, the iterations are interrupted. Default: 1.0e-7.

BTRMaxTRRadius Defines the maximum radius of the trust region. If

this radius is reached, the trust region is not enlarged anymore. De-

fault: 1.0e10.

BTRStartDraws If BIOMC is used for simulated maximum likelihood

estimation, this parameter defines the number of draws which are

used during the first iterations. Default: 10.

BTRIncreaseDraws If BIOMC is used for simulated maximum like-

lihood estimation, this parameters defines the factor by which the

number of draws is increased. Default: 2.

Section [cfsqp ] This section is designed to define parameters needed by the

CFSQP algorithm (Section 2.11).

cfsqpIprint Set it to 1 for silent mode, and to 2 for information at

each iteration of the optimization algorithm. Default is 1.

cfsqpMaxIter Maximum number of iterations. Default is 500.

cfsqpMode Even if it is a descent algorithm, CFSQP sometimes allows

non-monotone iterates, hoping not to be trapped in local minima. If

the function is convex, a descent algorithm is more appropriate. In

this case, set the value to 100. See CFSQP manual for more details.

Default is 110.

cfsqpEps See CFSQP manual. Default is 6.05545e-06. In general, it

should not be changed.

cfsqpEpsEqn See CFSQP manual. Default is 6.05545e-06. In general,

it should not be changed.
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cfsqpUdelta See CFSQP manual. Default is 0.0. In general, it should

not be changed.

Section [solvopt ] This section is designed to define parameters needed by the

SOLVOPT algorithm (Section 2.11).

solvoptMaxIter Maximum number of iterations. Default is 15000.

solvoptDisplay Controls the display of the algorithm. See SOLVOPT

manual. Default is 1.

solvoptErrorArgument See SOLVOPT manual. Default is 1.0e-4.

In general, it should not be changed.

solvoptErrorFunction See SOLVOPT manual. Default is 1.0e-6.

In general, it should not be changed.

Section [donlp2 ] This section is designed to define parameters needed by the

DONLP2 algorithm (Section 2.11).

donlp2Epsx See DONLP2 manual. Default is 1.0e-5. In general, it

should not be changed.

donlp2Delmin See DONLP2 manual. Default is 1.0e-6. In general, it

should not be changed.

donlp2Smallw See DONLP2 manual. Default is 3.66685e-11. In gen-

eral, it should not be changed.

donlp2Epsdif See DONLP2 manual. Default is 0.0. In general, it

should not be changed.

donlp2NReset See DONLP2 manual. Default is 9 . In general, it

should not be changed.

Internal note: Check the status of the comment below.

It seems that syntax errors in default.par cause Biogeme 2.4 to skip the

rest of the file, ignoring all remaining parameters without complaining. This

“bug” still has to be fixed. Biogeme 2.4 writes in the file parameters.out

the values of the parameters that have been actually used. Make sure you check

this file regularly.
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Name Value

gevAlgo BIO

gevScreenPrintLevel 1

gevLogFilePrintLevel 2

gevPrintVarCovarAsList 1

gevPrintVarCovarAsMatrix 0

gevAutomaticScalingOfLinearUtility 0

gevBinaryDataFile BiogemeData.bin

gevBufferSize 100000

gevCheckDerivatives 0

gevDataFileDisplayStep 500

gevDebugDataFirstRow 0

gevDebugDataLastRow 0

gevDecimalDigitsStats 3

gevDecimalDigitsTTest 2

gevDumpDrawsOnFile 0

gevEigenvalueThreshold 1.0e-6

gevForceScientificNotation 0

gevGenerateActualSample 0

gevMinimumMu 1.0e-5

gevMaxPrimeNumber 1000

gevMissingValue 99999

Table 2.1: Default values of the parameters

2.4 Model specification file

The file mymodel.mod contains the specification of the discrete choice model

to be estimated. The sections of this file have to be specified as described be-

low. Note that comments can be included using //. All characters after this

command, up to the end of the current line, are ignored.

[ModelDescription] Type here any text that describes the model. It may
contain several lines. Each line must be within double-quotes, like this

[ModelDescription]

"This is the first line of the model description"

"This is the second line of the model description"
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Name Value

gevNonParamPlotMaxY 1000.0

gevNonParamPlotMinXSizeCm 0.00001

gevNonParamPlotMinYSizeCm 0.00001

gevNonParamPlotRes 100

gevNonParamPlotXSizeCm 15

gevNonParamPlotYSizeCm 10

gevNumberOfThreads 4

gevOne one

gevOutputActualSample actualSample.dat

gevPrintPValue 1

gevRandomDistrib PSEUDO

gevSaveIntermediateResults 0

gevSeed 9021967

gevSignificantDigitsParameters 3

gevSingularValueThreshold 1.0e-4

gevStopFileName STOP

gevStoreDataOnFile 0

gevSummaryFile summary.log

gevSummaryParameters summary.lis

gevVarCovarFromBHHH 0

gevTtestThreshold 1.96

gevWarningLowDraws 1000

gevWarningSign *

Table 2.2: Default values of the parameters (ctd)
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Note that it will be copied verbatim in the LATEX file. Therefore, if it con-

tains special characters which are interpreted by LATEX, such as $ or &, you

may need to edit the LATEX file before processing it.

[Choice] Provide here the formula to compute the identifier of the chosen al-

ternative from the data file. Typically, a “choice” entry will be available

directly in the file, but any formula can be used to compute it. Assume for

example that you have numbered alternatives 100, 200 and 300. But in the

data file, they are numbered 1,2 and 3. In this case, you must write

[Choice]

100 * choice

Any expression described in Section [Expressions] is valid here.

[Weight] Provide here the formula to compute the weight associated to each

observation. The weight of an observation will be multiplied to the cor-

responding term in the log-likelihood function. Ideally, the sum of the

weights should be equal to the total number of observations, although it is

not required. The file reporting the statistics contains a recommendation

to adjust the weights in order to comply with this convention.

Internal note: Check what happens if biosim is called with weights

Important: do not use the weight section in Biosim 2.4.

[Beta] Each line of this section corresponds to a parameter of the utility func-

tions. Five entries must be provided for each parameter:

1. Name: the first character must be a letter (any case) or an under-

score (_), followed by a sequence of letters, digits, underscore (_) or

dashes (-), and terminated by a white space. Note that case sensitiv-

ity is enforced. Therefore varname and Varname would represent

two different variables.

2. Default value that will be used as a starting point for the estimation,

or used directly for the simulation in BIOSIM.
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3. Lower bound on the valid values1;

4. Upper bound on the valid values;

5. Status, which is 0 if the parameter must be estimated, or 1 if the

parameter has to be maintained at the given default value.

Note that this section is independent of the specific model to be estimated,

as it captures the deterministic part of the utility function.

[Beta]

// Name Value LowerBound UpperBound status

ASC1 0 -10000 10000 1

ASC2 -0.159016 -10000 10000 0

ASC3 -0.0869287 -10000 10000 0

ASC4 -0.51122 -10000 10000 0

ASC5 0.718513 -10000 10000 0

ASC6 -1.39177 -10000 10000 0

BETA1 0.778982 -10000 10000 0

BETA2 0.809772 -10000 10000 0

[Mu] µ is the homogeneity parameter of the MEV model. Usually, it is con-

strained to be one. However, Biogeme 2.4 enables to estimate it if re-

quested (see example 10nl-bottom.mod for a nested logit model nor-

malized from the bottom, so that µ is estimated). Four entries are specified

here:

1. Default value that will be used as a starting point for the estimation

(common value: 1.0);

2. Lower bound on the valid values (common value: 1.0e-5);

3. Upper bound on the valid values (common value: 1.0);

4. Status, which is 0 if the parameter must be estimated, or 1 if the

parameter has to be maintained at the given value.

[Utilities] Each row of this section corresponds to an alternative. Four

entries are specified:

1Bounds specification is mandatory in Biogeme 2.4. If you do not want bounds, just put

large negative values for lower bounds and large positive values for upper bounds. Anyway, if

the bound is not active at the solution, it does not play any role, except for safeguarding the

algorithm.
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1. The identifier of the alternative, with a numbering convention con-

sistent with the choice definition;

2. The name of the alternative: the first character must be a letter (any

case) or an underscore (_), followed by a sequence of letters, digits,

underscore (_) or dashes (-), and terminated by a white space;

3. The availability condition: this must be a direct reference to an entry

in the data file (see Section 2.5), or to an expression defined in the

Section [Expressions];

4. The linear-in-parameter utility function is composed of a list of terms,
separated by a +. Each term is composed of the name of a param-
eter and the name of an attribute, separated by a *. The parameter
must be listed in Section [Beta], if it is a regular parameter. If it is a
random parameter, the syntax is

nameParam [ nameParam ]

in the case of the normal distribution, or :

nameParam { nameParam }

to get a random parameter that comes from a uniform distribution.
For example, in the case of the normal:

BETA [ SIGMA ]

Note that the blank after each name parameter is required. Also, pa-
rameters BETA and SIGMA have to be listed in Section [Beta]. In
the context of an independent random parameter, BETA represents
the mean while SIGMA corresponds to the standard deviation. With
correlated random parameters, SIGMA technically corresponds to the
appropriate term in the Cholesky decomposition matrix that captures
the variance-covariance structure among the random parameters. For
more details, see the technical section on Cholesky factorization An
attribute must be an entry of the data file, or an expression defined in
Section [Expressions]. In order to comply with this syntax, the Al-
ternative Specific Constants must appear in a term like ASC * one,
where one is defined in the Section [Expressions]. Here is an exam-
ple:

[Utilities]

// Id Name Avail linear-in-parameter expression

1 Alt1 av1 ASC1 * one + BETA1 [SIGMA] * x11 + BETA2 * x12

2 Alt2 av2 ASC2 * one + BETA1 [SIGMA] * x21 + BETA2 * x22
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3 Alt3 av3 ASC3 * one + BETA1 [SIGMA] * x31 + BETA2 * x32

4 Alt4 av4 ASC4 * one + BETA1 [SIGMA] * x41 + BETA2 * x42

5 Alt5 av5 ASC5 * one + BETA1 [SIGMA] * x51 + BETA2 * x52

6 Alt6 av6 ASC6 * one + BETA1 [SIGMA] * x61 + BETA2 * x62

If the utility function does not contain any part which is linear-in-
parameters, then the keyword $NONE must be written. For example:

[Utilities]

// Id Name Avail linear-in-parameter expression

1 Alt1 av1 $NONE

[GeneralizedUtilities] This section enables the user to add nonlinear

terms to the utility function. For each alternative, the syntax is simply the

identifier of the alternative, followed by the expression. For example, if

the utility of alternative 1 is

β1x11 + β2

xλ12 − 1

λ
,

the syntax is

[Utilities]

1 Alt1 av1 BETA_1 * X11

[GeneralizedUtilities]

1 BETA_2 * (X21 ˆ LAMBDA - 1) / LAMBDA

Another example where a non-linear part is required is when specifying a

log-normal random coefficient. Consult: Example LogNormal.

[ParameterCovariances] Biogeme 2.4 allows normally distributed ran-

dom parameters to be correlated, and can estimate their covariance. By

default, the variance-covariance matrix of the random parameters is sup-

posed to be diagonal, and no covariance is estimated. If some covariances

must be estimated, each pair of correlated random coefficients must be

identified in this section. Each entry of the section should contain:

1. The name of the first random parameter in the given pair. If it ap-

pears in the utility function as BETA [ SIGMA ], its name must

be typed BETA_SIGMA.
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2. The name of the second random parameter involved in the pair, using

the same naming convention.

3. The default value that will be used as a starting point for the estima-

tion;

4. The lower bound on the valid values;

5. The upper bound on the valid values;

6. The status, which is 0 if the parameter must be estimated, or 1 if the

parameter has to be maintained at the given value.

See Section 2.21 for an example. If no covariance is to be estimated, you
must either entirely remove the section, or specify $NONE as follows:

[ParameterCovariances]

$NONE

[Draws] Number of draws to be used in Maximum Simulated Likelihood es-

timation.

[Expressions] In this section are defined all expressions appearing either

in the availability conditions or in the utility functions of the alternatives

defined in Section [Utilities]. If the expression is readily available from

the data file, it can be omitted in the list. We show their use with the help

of an example in Section 2.6. As we will discover later in the tutorial, it is

good practice to generate new variables from this section especially when

one objective is to compute market shares or to evaluate effects of policies

with the help of Biosim 2.4.

We now summarize the syntax that can be used for generating new vari-

ables. Variables which form an expression might be of type float or of type

integer. You can use numerical values or the name of a numerical variable.

New variables can be created using unary and binary expression operators.

Unary expressions:

1. y = sqrt(x) // y is square root of x.

2. y = log(x) // y is natural log of x.

3. y = exp(x) // y is exponential of x.

4. y = abs(x) // y is absolute value of x.
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binary expression: (Numerical)

1. y = x + z // y is sum of variables x and z

2. y = x - z // y is difference of variables x and z

3. y = x * z // y is product of variables x by z

4. y = x / z // y is division of variable x by z

5. y = x ˆ z // y is x to power of z (square would be y = x ˆ

6. y = x % z // y is x modulo z, i.e. rest of x/z

binary expression: (Logical)

1. y = x == z // y is 1 if x equals z, 0 otherwise

2. y = x != z // y is 1 if x not equal to z, 0 otherwise

3. y = x || z // y is 1 if x != 0 OR z != 0, 0 otherwise

4. y = x && z // y is 1 if x != 0 AND z != 0, 0 otherwise

5. y = x < z // y is 1 if x < z (note: also > )

6. y = x <= z // y is 1 if x <= z (note: also >= )

7. y = max(x,z) // y is max of x and z (note: also min)

Note that an expression is considered to be TRUE if it is non zero, and

FALSE if it is zero. For a full description of these expressions and alterna-

tive syntaxes, please look at the files patSpecParser.y and patSpecScanner.l

in the BIOGEME distribution.

Loops can be defined if several expressions have almost the same syntax.
The idea is to replace all occurrences of a string, say xx, by numbers. The
numbers are generated within a loop, defined by 3 numbers: the start of
the loop (a), the end of the loop (b) and the step (c) with the following
syntax:

$LOOP {xx a b c}

The expression

$LOOP {xx 1 5 2} my_expression_xx = other_expression_xx * term_xx_first

is equivalent to
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my_expression_1 = other_expression_1 * term_1_first

my_expression_3 = other_expression_3 * term_3_first

my_expression_5 = other_expression_5 * term_5_first

Warning: make sure that the string is awkward enough so that it cannot
match any other instance by mistake. For example, the loop

{xp 1 5 2} my_expression_xp = other_expression_xp * term_xp_first

is equivalent to

my_e1ression_1 = other_e1ression_1 * term_1_first

my_e3ression_3 = other_e3ression_3 * term_3_first

my_e5ression_5 = other_e5ression_5 * term_5_first

which is probably not the desired effect.

[Group] Provide here the formula to compute the group ID of the observed

individual. Typically, a “group” entry will be available directly from the

data file, but any formula can be used to compute it. Any expression de-

scribed in Section [Expressions] is valid here. A different scale parameter

will be estimated for the utility of each group.

[Exclude] Define an expression (see Section [Expressions]) which identifies

entries of the data file to be excluded. If the result of the expression is not

zero, the entry will be discarded.

[Model] Specifies which MEV model is to be used. Valid entries are $BP for

Binary Probit, $MNL for Multinomial Logit model, $NL for single level

Nested Logit model, $CNL for Cross-Nested Logit model and $NGEV for

Network GEV model. See Section 1.1 for more details.

[PanelData] Used to specify the name of the variable (ex: userID) in the

dataset identifying the observations belonging to a given individual and to

specify the name of the random parameters that are invariant within the ob-

servation of a given individual userID. See the example at Section 2.20.
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[Scale] A scale parameter is associated with each group. The utility function

of each member of a group is multiplied by the associated scale parameter.

A typical application is the joined estimation of revealed and stated pref-

erences. It is therefore possible to estimate a MNL combining both data

sources, without playing around with dummy nested structures as pro-

posed by ?. Each row of this section corresponds to a group. Five entries

are required per row:

1. Group number: the numbering must be consistent with the group

definition;

2. Default value that will be used as a starting point for the estimation

(1.0 is a good guess);

3. Lower bound on the valid values;

4. Upper bound on the valid values;

5. Status, which is 0 if the parameter must be estimated, or 1 if the

parameter has to be maintained at the given value.

Clearly, one of the groups must have a fixed scale parameter.

[SelectionBias] Identifies the parameters capturing the selection bias, us-
ing the estimator proposed by Bierlaire et al. (2008). Each of them has to
be listed in Section [Beta]. The section must contain a row per alternative
for which a selection bias has to be estimated. Each row contains the num-
ber of the alternative and the name of the associated parameter. Note that
these parameters play a similar role as the alternative specific constants,
and must not be used with MNL.

[SelectionBias]

1 SB_1

4 SB_4

6 SB_6

[NLNests] This section is relevant only if the $NL option has been selected

in Section [Model]. If the model to estimate is not a Nested Logit model,

the section will be simply ignored. Note that multilevel Nested Logit mod-

els must be modeled as Network MEV models. Each row of this section

corresponds to a nest. Six entries are required per row:

1. Nest name: the first character must be a letter (any case) or an under-

score (_), followed by a sequence of letters, digits, underscore (_) or

dashes (-), and terminated by a white space;
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2. Default value of the nest parameter µm that will be used as a starting

point for the estimation (1.0 is a good guess);

3. Lower bound on the valid values. It is usually 1.0, if µ is constrained

to be 1.0. Do not forget that, for each nest i, the condition µi ≥ µ

must be verified to be consistent with discrete choice theory;

4. Upper bound on the valid values;

5. Status, which is 0 if the parameter must be estimated, or 1 if the

parameter has to be maintained at the given value.

6. The list of alternatives belonging to the nest, numbered as specified in

Section [Utilities]. Make sure that each alternative belongs to exactly

one nest, as no automatic verification is implemented in Biogeme 2.4.

[CNLNests] This section is relevant only if the $CNL option has been se-

lected in Section [Model]. If the model to estimate is not a Cross-Nested

Logit model, the section will be simply ignored. Note that multilevel

Cross-Nested Logit models must be modeled as Network MEV models.

Each row of this section corresponds to a nest. Five entries are required

per row:

1. Nest name: the first character must be a letter (any case) or an under-

score (_), followed by a sequence of letters, digits, underscore (_) or

dashes (-), and terminated by a white space;

2. Default value of the nest parameter µm that will be used as a starting

point for the estimation;

3. Lower bound on the valid values. It is usually 1.0, if µ is constrained

to be 1.0. Do not forget that, for each nest i, the condition µi ≥ µ

must be verified to be consistent with discrete choice theory;

4. Upper bound on the valid values;

5. Status, which is 0 if the parameter must be estimated, or 1 if the

parameter has to be maintained at the given value.

[CNLAlpha] This section is relevant only if the $CNL option has been se-

lected in Section [Model]. If the model to estimate is not a Cross-Nested

Logit model, the section will be simply ignored. Each row of this section

corresponds to a combination of a nest and an alternative. Six entries are

required per row:
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1. Alternative name, as defined in Section [Utilities];

2. Nest name: the first character must be a letter (any case) or an under-

score (_), followed by a sequence of letters, digits, underscore (_) or

dashes (-), and terminated by a white space;

3. Default value of the parameter capturing the level at which an alter-

native belongs to a nest that will be used as a starting point for the

estimation;

4. Lower bound on the valid values (usually 0.0);

5. Upper bound on the valid values (usually 1.0);

6. Status, which is 0 if the parameter must be estimated, or 1 if the

parameter has to be maintained at the given value.

[Ratios] It is sometimes useful to read the ratio of two estimated coeffi-

cients. The most typical case is the value-of-time, being the ratio of the

time coefficient and the cost coefficient. This feature is only implemented

for fixed parameters. Computation of ratio of random parameters is not

permitted in this version. Note that it is not straightforward to charac-

terize the distribution of the ratio of two random coefficients. Ben-Akiva

et al. (1993) suggest a simple approach that is directly implementable in

BIOGEME to handle ratio of random parameters. Each row in this sec-

tion enables to specify such ratios to be produced in the output file. Three

entries are required:

1. The parameter (from Section [Beta]) being the numerator of the ratio;

2. The parameter (from Section [Beta]) being the denominator of the

ratio;

3. The name of the ratio, to appear in the output file: the first charac-

ter must be a letter (any case) or an underscore (_), followed by a

sequence of letters, digits, underscore (_) or dashes (-), and termi-

nated by a white space.

[ConstraintNestCoef] Since Version 0.2, it is possible to constrain nests
parameters to be equal. This is achieved by adding to this section expres-
sions like

NEST_A = NEST_B
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where NEST_A and NEST_B are names of nests defined in Section [NLNests],

Section [CNLNests] or Section [NetworkGEVNodes]. This section will

become obsolete in future releases, as there is now a section for linear

constraints on the parameters: (Section [LinearConstraints]).

[NetworkGEVNodes] This section is relevant only if the $NGEV option has

been selected in Section [Model]. If the model to estimate is not a Net-

work GEV model, the section will be simply ignored. Each row of this

section corresponds to a node of the Network GEV model. All nodes of

the Network GEV model except the root and the alternatives must be listed

here, with their associated parameter. Five entries are required per row:

1. Node name: the first character must be a letter (any case) or an un-

derscore (_), followed by a sequence of letters, digits, underscore (_)

or dashes (-), and terminated by a white space;

2. Default value of the node parameter µj that will be used as a starting

point for the estimation;

3. Lower bound on the valid values. It is usually 1.0. Check the condi-

tion on the parameters for the model to be consistent with the theory

in Bierlaire (2002);

4. Upper bound on the valid values;

5. Status, which is 0 if the parameter must be estimated, or 1 if the

parameter has to be maintained at the given value.

[NetworkGEVLinks] This section is relevant only if the $NGEV option has

been selected in Section [Model]. If the model to estimate is not a Net-

work GEV model, the section will be simply ignored. Each row of this

section corresponds to a link of the Network GEV model, starting from

the a-node to the b-node. The root node is denoted by __ROOT. All other

nodes must be either an alternative or a node listed in the section [Net-

workGEVNodes]. Note that an alternative cannot be the a-node of any

link, and the root node cannot be the b-node of any link. Six entries are

required per row:

1. Name of the a-node: it must be either __ROOT or a node listed in

the section [NetworkGEVNodes].

2. Name of the b-node: it must be either a node listed in the section

[NetworkGEVNodes], or the name of an alternative.
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3. Default value of the link parameter that will be used as a starting

point for the estimation;

4. Lower bound on the valid values.

5. Upper bound on the valid values;

6. Status, which is 0 if the parameter must be estimated, or 1 if the

parameter has to be maintained at the given value.

[LinearConstraints] In this section, the user can define a list of linear

constraints, in one of the following syntaxes:

1. Formula = number,

2. Formula ≤ number,

3. Formula ≥ number.

The syntax is formally defined as follows:

oneConstraint : equation <= numberParam |

equation = numberParam |

equation >= numberParam

equation: eqTerm |

- eqTerm |

equation + eqTerm |

equation - eqTerm

eqTerm: parameter | numberParam * parameter

For example, the constraint

∑

i

ASCi = 0.0

is written

ASC1 + ASC2 + ASC3 + ASC4 + ASC5 + ASC6 = 0.0

and the constraint

µ ≤ µj

is written
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MU - MUJ <= 0.0

or

MUJ - MU >= 0.0

[NonLinearEqualityConstraints] In this section, the user can define

a list of nonlinear equality constraints of the form

h(x) = 0.0.

The section must contain a list of functions h(x). For example, the con-

straint

αµa

a1 + αµb

b1 = 1

is written

[NonLinearEqualityConstraints]

ALPHA_A1 ˆ MU_A + ALPHA_B1 ˆ MU_B - 1.0

[NonLinearInequalityConstraints] Biogeme 2.4 is not able to han-

dle nonlinear inequality constraints yet. It should be available in a future

version.

[DiscreteDistributions] Provide here the list of random parameters
with a discrete distribution, or $NONE if there are none in the model. Each
discrete parameter is described using the following syntax:

nameDiscreteParam < listOfDiscreteTerms >

where nameDiscreteParam is the name of the random parameter, and
listOfDiscreteTerms is recursively defined as

oneDiscreteTerm |

listOfDiscreteTerms oneDiscreteTerm

where oneDiscreteTerm is defined as

nameValueParam ( nameProbaParam )
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where nameValueParam is the name of the parameter capturing the
discrete value of the random parameter, and nameProbaParam is the
name of the parameter capturing the associated probability. Both must be
defined in Section [Beta]. As an example,

[DiscreteDistributions]

BETA1 < B1 ( W1 ) B2 ( W2 ) >

defines a random parameter BETA1, which takes the value B1 with prob-

ability (or weight) W1, and the value B2 with probability W2. Note that for

this to make sense, the constraint W1 + W2 = 1.0 should be imposed

(Section [LinearConstraints]). Note also that the parameter BETA1 must

not appear in Section [Beta].

[AggregateLast] Boolean which, for each row in the sample file, identifies

if it is the last observation in an aggregate. Make sure that the value for

the last row is nonzero. As all booleans in Biogeme 2.4, a numerical

value of 0 means “FALSE” and a numerical value different from 0 means

“TRUE”. See section 2.15 for details. Any expression described in Section

[Expressions] is valid here.

[AggregateWeight] Associates a weight to elemental observations of an

aggregate. Corresponds to the term P(Cobs|i) in Eq. (2.12), Section 2.15.

Any expression described in Section [Expressions] is valid here.

These sections are new in Biogeme 2.4:

[LaTeX] This section allows to define a description of each parameter to be
used in the LATEX file. For instance, the following section

[LaTeX]

ASC1 "Constant for alt. 1"

ASC2 "Constant for alt. 2"

ASC3 "Constant for alt. 3"

ASC4 "Constant for alt. 4"

ASC5 "Constant for alt. 5"

ASC6 "Constant for alt. 6"

BETA1 "$\beta_1$"

BETA2 "$\beta_2$"

will produce the following table:
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Robust

Variable Coeff. Asympt.

number Description estimate std. error t-stat p-value

1 Constant for alt. 2 -0.159 0.106 -1.49 0.13

2 Constant for alt. 3 -0.0869 0.111 -0.78 0.43

3 Constant for alt. 4 -0.511 0.172 -2.97 0.00

4 Constant for alt. 5 0.719 0.158 4.54 0.00

5 Constant for alt. 6 -1.39 0.195 -7.12 0.00

6 β1 0.779 0.0301 25.85 0.00

7 β2 0.810 0.0307 26.42 0.00

[Derivatives] This section is for advanced users only. Use it at your

own risk.

When nonlinear utility functions are used, Biogeme 2.4 computes auto-

matically the derivatives needed by the maximum likelihood procedure.

However, this automatic derivation can significantly slow down the esti-

mation process, as no simplification is performed. This section allows the

user to provide Biogeme 2.4 with the analytical derivatives of the utility

function, in order to speed up the estimation process. In some instances,

half the estimation time was spared thanks to this feature.

A row must be provided for each combination of nonlinear utilities (de-

fined in the Section Section [GeneralizedUtilities]) and parameters in-

volved in the formula. Each of these rows contains three items:

• the identifier of the alternative,

• the name of the parameter,

• the formula of the derivative.

For instance, assume that the systematic utility of alternative 1 is

V1 = ASC1 + β1

(x11 + 10)λ11 − 1

λ11

+ β2

(x12 + 10)λ12 − 1

λ12
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so that

∂V1

β1

=
(x11 + 10)λ11 − 1

λ11

∂V1

β2

=
(x12 + 10)λ12 − 1

λ12

∂V1

λ11

= β1

(x11+ 10)λ11λ11 ln(x11 + 10) − (x11 + 10)λ11 + 1

λ2
11

∂V1

λ12

= β2

(x12+ 10)λ12λ12 ln(x12 + 10) − (x12 + 10)λ12 + 1

λ2
12

which is coded in Biogeme 2.4 as follows:

[Utilities]

// Id Name Avail linear-in-parameter expression (beta1*x1 + beta2*x2 + ...

1 Alt1 av1 ASC1 * one

.

.

[GeneralizedUtilities]

1 BETA1 * ((x11 + 10 ) ˆ LAMBDA11 - 1) / LAMBDA11 +

BETA2 * ((x12 + 10 ) ˆ LAMBDA12 - 1) / LAMBDA12

[Derivatives]

1 BETA1 ((x11 + 10 ) ˆ LAMBDA11 - 1) / LAMBDA11

1 BETA2 ((x12 + 10 ) ˆ LAMBDA12 - 1) / LAMBDA12

1 LAMBDA11

BETA1 * ((x11 + 10) ˆ LAMBDA11 * LN(x11 + 10) * LAMBDA11

- (x11 + 10) ˆ LAMBDA11 + 1) / (LAMBDA11 * LAMBDA11 )

1 LAMBDA12

BETA2 * ((x12 + 10) ˆ LAMBDA12 * LN(x12 + 10) * LAMBDA12

- (x12 + 10) ˆ LAMBDA12 + 1) / (LAMBDA12 * LAMBDA12 )

In addition to usual expressions, the formula may contain the following
instruction:

$DERIV( formula , param )

which means that you ask Biogeme 2.4 to perform the derivation of the

formula for you. Although it may be useful to simplify the coding of the

derivatives, it is mandatory to use it for random parameters.
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If BETA [ SIGMA ] is a random parameter, its derivative with respect

to BETA is 1, but its derivative with respect to SIGMA cannot be written

by the user, and must be coded

$DERIV( BETA [ SIGMA ] , SIGMA )

For instance, assume that the nonlinear utilities are defined as

1 exp( BETA1 [ SIGMA1 ] ) * x11

2 exp( BETA1 [ SIGMA1 ] ) * x21

The derivatives are coded as follows:

[Derivatives]

1 BETA1 exp( BETA1 [ SIGMA1 ] ) * x11

1 SIGMA1 exp( BETA1 [ SIGMA1 ] ) * x11

* $DERIV( BETA1 [ SIGMA1 ] , SIGMA1 )

2 BETA1 exp( BETA1 [ SIGMA1 ] ) * x21

2 SIGMA1 exp( BETA1 [ SIGMA1 ] ) * x21

* $DERIV( BETA1 [ SIGMA1 ] , SIGMA1 )

It is very easy to do an error in coding the analytical derivatives. If

there is an error, Biogeme 2.4 will not be able to estimate the parame-

ters, and will not even be able to detect that there is an error. There-

fore, we strongly suggest to set the parameter gevCheckDerivatives

to 1 and make sure that the numerical derivatives match sufficiently

well the analytical derivatives. Also, estimate the model with few ob-

servations and few draws, once with and once without this section.

The results should be exactly the same.

[SNP] This section allows to implement the test proposed by ? (read the paper

first if you are not familiar with the test). The section is composed of two

things:

1. The name of the random parameter to be tested. If this parameter

appears in the utility function as BETA [ SIGMA ], its name in

this section must be typed BETA_SIGMA.

2. A list of positive integers associated with a parameter. The integer

is the degree of the Legendre polynomial, and the parameter the as-

sociated coefficient in the development. Note that the name of the

parameter must appear in Section [Beta].
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For instance, if parameter BETA [ SIGMA ] is tested using a seminon-

parametric development defined by

1+ δ1L1(x) + δ3L3(x) + δ4L4(x),

the syntax in Biogeme 2.4 is

[Beta]

// Name Value LowerBound UpperBound status (0=variable, 1=fixed)

....

BETA 0 -10000 10000 0

SIGMA 1 -10000 10000 0

SMP1 0 -10000 10000 0

SMP3 0 -10000 10000 0

SMP4 0 -10000 10000 0

[SNP]

// Define the coefficients of the series

// generated by the Legendre polynomials

BETA_SIGMA

1 SMP1

3 SMP3

4 SMP4

Note that only one random parameter can be transformed at a time.

[OrdinalLogit] The parameters of ordinal binary logit models (see Sec-

tion 2.14) can be estimated. However, this feature has not been fully

tested, and should be seen as a prototype. Thank you for reporting

any bug. The segments of the utility difference space must be numbered

in a sequential way, increasing from the leftmost to the rightmost. In this

section, each segment must be associated with its lower bound, except the

first (because its lower bound is −∞). For instance, if there are 4 seg-

ments, like in Figure 2.3 on page 74, the following syntax is used:

[Beta]

....

tau1 0.3 -1000 1000 1

tau2 0.4 -1000 1000 0

tau3 0.5 -1000 1000 0

[OrdinalLogit]
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1 $NONE // -infty --> tau1

2 tau1 // tau1 --> tau2

3 tau2 // tau2 --> tau3

4 tau3 // tau3 --> +infty

[LinearConstraints]

tau1 - tau2 <= 0

tau2 - tau3 <= 0

Note that the constraints impose that the segments are well-defined. Recall
also that the characters // represent a comment in the file and they are not
interpreted by Biogeme 2.4, as well as all remaining characters on the
same line. Therefore, the following syntax for that section is completely
equivalent:

[OrdinalLogit]

1 $NONE

2 tau1

3 tau2

4 tau3

However, we strongly advise to use comments in order to clearly identify

the segments.

[SampleEnum] This section is ignored by BIOGEME. It is used by Biosim 2.4

and contains the number of simulations to perform in the sample enumer-

ation step (see Section 2.13).

[ZhengFosgerau] This section is ignored by BIOGEME. It is used by Biosim 2.4

and contains instructions to perform the Zheng-Fosgerau specification test

and residual analysis. Make sure to read the paper by ? before using this

section.

There is a line for each test, containing four items:

1. The first item defines the function t introduced by ? to reduce the
dimensionality of the test. It is typically either the probability of an
alternative, or an expression involving coefficients and attributes of
the models, as soon as the expression is continuous and not discrete.
If it is a probability, the syntax is

$P { AltName }

where AltName is the name of the alternative as defined in Section
[Utilities]. If it is a general expression, the syntax is
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$E { expr }

where expr is an expression complying with the syntax of Section

[Expressions]. However, it may also contain estimated parameters.

2. The second item is a parameter c used to define the bandwidth for the

nonparametric regression performed by the test (see end of Section

2.1 in ?). The bandwidth used by Biosim 2.4 is defined as c/
√
n,

where n is the sample size. Most users will use the value c = 1.

3. The third and the fourth item are lower and upper bounds (resp.)

Values of t outside of the bounds will not be used in the produced

pictures. It is good practice to use wide bounds first, and to adjust

them in order to obtain decent pictures. Note that if t is a probability,

it does not make sense to have bounds wider and [0 : 1].

4. The last item is the name of the function t, used in the report. Make

sure to put the name between double-quotes.

Here is an example of the syntax:

[ZhengFosgerau]

$P { Alt1 } 1 0 1 "P1"

$E { x31 } 1 -1000 1000 "x31"

More details are available in Section 2.16.

[IIATest] This section is ignored by BIOGEME. It is used to compute the

variables necessary to perform the McFadden omitted variables test on a

subset of alternatives (see Eq. (2.13)).

The syntax is illustrated by the following example.

[IIATest]

// Description of the choice subsets to compute the new

// variable for McFadden’s IIA test

// Name list_of_alt

C123 1 2 3

C345 3 4 5

Each row corresponds to a new variable. It consists in the name of the

variable (it will appear as the column header in the output of Biosim 2.4),

followed by the list of alternatives to be included in the associated subset.
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2.5 Data file

Biogeme 2.4 assumes that each data file contains in its first line a list of labels

corresponding to the available data, and that each subsequent line contains the

exact same number of numerical data, each row corresponding to an observation.

Delimiters can be tabs or spaces. Note that missing values must not be repre-

sented by dots. Instead, replace them by obviously meaningless values, defined

by gevMissingValue. For those who have used it, the convention was the

same in the HieLoW package (see ?, ?).

WARNING: if you have created a data file on DOS or Windows, it may

cause problems. If you work in a Windows environment and want to avoid using

Emacs, we recommend using TextPad which is very intuitive to Windows

users. Then just make sure you save the file in a UNIX format by selecting the

UNIX format in the Save As window. The users working under Linux must

convert the file with a utility like dos2unix, available from

www.megaloman.com/˜hany/software/hd2u,

or using Emacs. With GNU Emacs 20.7.1, a (DOS) tag appears at the left of

the Emacs info bar when the file is edited, indicating that the file needs to be

converted. Use the menu Mule|Set Coding System|Buffer File or

type2 C-x RET f. Emacs asks you to choose a

"Coding system for visited file (default, nil)".

Choose the default by hitting the return key and save the file.

2.6 Data transformation

In this section, we use a basic example where the variables x11 to x61 and

x12 to x62 are available on the dataset. Let us use the syntax available in the

Expression section of the input file to create new variables to be used in the

model. The following sections of an input file provide an examples of some new

variables that can be created using the Expression section. If one wishes to

use Biosim 2.4 to produce the predicted probabilities in order to perform post

estimation analysis, it is a good idea to create new variables in the [Expressions]

section. Assume that the idea is to see how choice probabilities would vary as

2In Emacs terminology, C-xmeans that you must press the Ctrl key and the x key together.
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the value of x21 is increased, for instance. To get the right calculation, because

x21 is involved in the new variables, the change would correctly disseminate.

[Beta]

// Name Value LowerBound UpperBound status (0=variable, 1=fixed)

ASC1 0 -10000 10000 1

ASC2 0 -10000 10000 0

ASC3 0 -10000 10000 0

ASC4 0 -10000 10000 0

ASC5 0 -10000 10000 0

ASC6 0 -10000 10000 0

BETA1 0 -10000 10000 0

BETA2 0 -10000 10000 0

GAMMA1 0 -10000 10000 0

GAMMA2 0 -10000 10000 0

[Utilities]

// Id Name Avail linear-in-parameter expression (beta1*x1 + beta2*x2 + ...

1 Alt1 av1 ASC1 * one + BETA1 * x11 + BETA2 * x12

+ GAMMA1 * x11sq + GAMMA2 * dum12

2 Alt2 av2 ASC2 * one + BETA1 * x21 + BETA2 * x22

+ GAMMA1 * x21sq + GAMMA2 * dum12

3 Alt3 av3 ASC3 * one + BETA1 * x31 + BETA2 * x32

+ GAMMA1 * x31sq

4 Alt4 av4 ASC4 * one + BETA1 * x41 + BETA2 * x42

+ GAMMA1 * x41sq

5 Alt5 av5 ASC5 * one + BETA1 * x51 + BETA2 * x52

+ GAMMA1 * x51sq

6 Alt6 av6 ASC6 * one + BETA1 * x61 + BETA2 * x62

+ GAMMA1 * x61sq

[Expressions]

// Define here arithmetic expressions for name that are not directly

// available from the data

one = 1

// Loop over alternatives 1 to 6 to create the square of xi1

{zzz 1 6 1} xzzz1sq = xzzz1 ˆ 2

// Create dum12 = 1 if x11 >= 1 or x21 >= 1, 0 otherwise.

dum12 = ( x11 >= 1 ) || ( x21 >= 1 )
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2.7 Statistics

The file containing the statistics of the sample is mymodel.sta It contains the

following information.

1. The sample size and the sum of all weights are reported. If they don’t
match, Biogeme 2.4 suggests a factor to modify the weights:

--> It is recommended to multiply all weights by 1.45678

In that case, you may want to modify the weight definition in the model
specification file:

[Weight]

weight * 1.45678

2. The number of excluded observations, due to the condition defined in Sec-

tion [Exclude] of the model specification file, is reported.

3. The total number of observations in the file

4. The number of cases, which is the number of alternatives available to each

observation minus the number of observations (see Ben-Akiva and Ler-

man, 1985, p. 90).

5. For each attribute, the mean, the minimum and the maximum value across

the sample are reported.

6. The number of chosen alternatives, both not taking and taking the weight

into account.

7. The group membership, both not taking and taking the weight into ac-

count.
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2.8 Report file

The report file (mymodel.rep) contains the results of the maximum likelihood

estimation of the model. First, general information is reported:

• Type of model which has been estimated.

• Sample size.

• Null log-likelihood is the log-likelihood of the sample for a Multi-

nomial Logit model where all β parameters are 0. It is computed as

L0 =
∑

n∈sample

ωn ln
1

#Cn
(2.4)

where #Cn is the number of alternatives available to individual n and ωn

is the associated weight.

• Cte log-likelihood is the log-likelihood of the sample for a Multi-

nomial Logit model where the only coefficients are the alternative specific

constants. If all alternatives are always available, it is computed as
∑

j∈C

nj lnnj − n lnn, (2.5)

where nj is the number of times alternative j has been chosen, and n =∑
j∈C nj is the number of observations in the sample. Note that if some

alternatives are not available for some observations, the formula is not

valid, and the value is not reported.

• Init log-likelihood is the log-likelihood of the sample for the

model defined in the .mod file.

• Final log-likelihood is the log-likelihood of the sample for the

estimated model.

• Likelihood ratio test is

−2(L0 − L∗) (2.6)

where L0 is the log-likelihood of the sample for a Multinomial Logit

model where all β parameters are 0, defined by (2.4), and L∗ is the log-

likelihood of the sample for the estimated model.
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• Rho-square is

ρ2 = 1−
L∗

L0
. (2.7)

• Adjusted rho-square is

ρ2 = 1−
L∗ − K

L0
. (2.8)

where K is the number of estimated parameters. Note that this statistic is

meaningless in the presence of constraints, where the number of degrees

of freedom is less than the number of parameters.

• Final gradient norm is the gradient of the log-likelihood function

computed for the estimated parameters. If no constraint is active at the

solution, it should be close to 0. If there are equality constraints, or if

some bound constraints or inequality constraints are active at the solution

(that is, they are verified with equality), the gradient may not be close to

zero.

• Diagnostic is the diagnostic reported by the optimization algorithm.

If the algorithm has not converged, the estimation results presented in the

file cannot be used as such.

• Iterations is the number of iterations used by the algorithm before it

stopped.

• Run time is the actual time used by the algorithm before it stopped.

• Variance-covariance specifies how the second-derivative matrix

(inverted to obtain the variance-covariance matrix) has been calculated.

If can be either from a finite difference approximation (which is accurate,

but may take time to compute), or from the BHHH matrix (which is less

accurate, but faster to compute, see Berndt et al., 1974). The user selects

this option with parameter gevVarCovarFromBHHH.

Then follow results about the parameters.

• The estimated value of the β parameters, with the associated standard er-

ror, the t-test and the corresponding p-value. A sign (defined by gevWarningSign)

is appended if the t-test fails, according to the threshold specified by the

parameter gevTtestThreshold in the parameter file. Similar values
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obtained from the robust estimation of the variance-covariance matrix are

also provided (see Section 1.2).

• The estimated value of the µ parameter, with the associated standard er-

ror and the t-test. A sign (defined by gevWarningSign) is appended

if the t-test fails, according to the threshold specified by the parameter

gevTtestThreshold in the parameter file. Similar values obtained

from the robust estimation of the variance-covariance matrix are also pro-

vided (see Section 1.2).

• The estimated value of the GEV model parameters, with the associated

standard error and the t-test. A sign (defined by gevWarningSign)

is appended if the t-test fails, according to the threshold specified by the

parameter gevTtestThreshold in the parameter file. Similar values

obtained from the robust estimation of the variance-covariance matrix are

also provided (see Section 1.2). Note that the t-test is computed to com-

pare the estimated value both to 0 and 1.

• The estimated value of the scale parameters, with the associated standard

error and the t-test. A sign (defined by gevWarningSign) is appended

if the t-test fails, according to the threshold specified by the parameter

gevTtestThreshold the parameter file. Similar values obtained from

the robust estimation of the variance-covariance matrix are also provided

(see Section 1.2). Note that the t-test is computed to compare the esti-

mated value to 1.

• The ratios requested in Section [Ratios] of the model specification file.

• A covariance/correlation analysis of pairs of estimated β parameters, sorted

according to the t-test value. A sign (defined by gevWarningSign) is

appended if the t-test fails, according to the threshold specified by the

parameter gevTtestThreshold in the parameter file.

• When applicable, a report about the singularity of the second derivatives

matrix.
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2.9 Summary file

This file is designed to be imported into a spreadsheet, for further analysis, re-

sults comparisons and presentations. Each line corresponds to one run of Bio-

geme 2.4 in the directory. They contain

1. The date and time when the run has terminated;

2. The name of the model;

3. The name of the report file;

4. The final log-likelihood;

5. The sample size;

6. The estimated value and t-test of the parameters listed in the file defined

by gevSummaryParameters;

7. The exclusion condition.

2.10 Other output files

Biogeme 2.4 also generates files for debugging purposes.

1. parameters.out This file contains the list of parameters that Bio-

geme 2.4 has actually used during the run, and the associated values.

Syntax errors in the file default.par are usually not detected by Bio-

geme 2.4. Instead, in the presence of a syntax error, the rest of the file

is skipped without warning and default values of the parameters are then

used. This has to be improved in the future. At this point, the file parameters.out

helps to check if the values actually used by Biogeme 2.4 are the values

that were set by the user.

2. model.debug This file contains debugging information about the model

specification. A regular user should not need it.

3. mymodel.res [res] This file has exactly the same structure as the file

mymodel.mod, where the default values of the parameters have been

replaced by the estimated values. This file is a valid model specification
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file for a future Biogeme 2.4 run. It just needs to be renamed with a .mod

extension.

When requested (see parameter gevDumpDrawsOnFile), the draws are

dumped into a file. They are organized as follows: for each observation, for

each random parameter, there are n draws generated, where n is defined in the

Section [Draws]. Those draws are either pseudo-random numbers or Halton

sequences, depending on the value of gevRandomDistrib).

2.11 Optimization algorithms

Biogeme 2.4 can use five different optimization algorithms: CFSQP, DONLP2,

SOLVOPT, BIO and BIOMC. Note that it is possible that each of them produce

different solutions. Usually, the discrepancies are small, and due to numerical

differences and various stopping criteria. Also, none of them identifies a global

maximum of the likelihood function. Therefore, it may happen that one of them

is caught in a local maxima, different from local maxima found by other algo-

rithms.

Which one to choose is difficult to say. They all have advantages and disad-

vantages. BIO (which stands for BIerlaire’s Optimization, like in BIOGEME)

has been specifically adapted for this software package, but it cannot accom-

modate nontrivial constraints yet. A version for simulated maximum likelihood

estimation, called BIOMC, is also available. CFSQP is not free and, therefore,

not included in the general distribution of Biogeme 2.4. DONLP2 is slower

than CFSQP, but faster than SOLVOPT. SOLVOPT can sometimes be very slow.

The algorithm is not to blame. It has not been originally designed for the kind

of optimization problem involved in BIOGEME. However, it seems robust on

ill-specified models. When other algorithms fail to converge, SOLVOPT may

succeed in finding a solution. Therefore, our recommendation would be:

• If there are no non-trivial constraint on the parameters, use BIO.

• If there are, or if BIO is very slow, use CFSQP if you have it.

• If not, use DONLP2.

• If all fail, try SOLVOPT.

• If it fails again, redefine your model.
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It is always a good idea to solve the same problem with several algorithms.

BIO BIO is a trust-region algorithm (see Conn et al., 2000) designed for prob-

lems with simple bounds constraints, using a truncated conjugate-gradient

method to solve the trust-region subproblem. By default, it uses the BHHH

(Berndt et al., 1974) matrix as an approximation of the second derivatives

matrix. At each iteration, it displays

1. The value used in the stopping criterion at iterate x, that is the infinite

norm of the relative gradient, computed as

γ = max
i

∣∣∣∣
|gi(xi)|max(1, |xi|)

max(f(x), tf)

∣∣∣∣ (2.9)

where g is the projection of the gradient of f onto the feasible set, tf
is defined by BTRTypf (see Dennis and Schnabel, 1996).

2. The iteration number;

3. The radius of the trust region;

4. The current value of the objective function3;

5. The exit status of the subproblem solver;

6. The value used to check if the radius of the trust region is appropriate,

that is
f(x+) − f(xc)

m(x+) −m(xc)

where xc is the current iterate, x+ the new candidate, and m the

quadratic model approximating f at xc (see Conn et al., 2000 for

details).

7. The number of variables not constrained to one of their bounds:

8. The status of the iteration, that is very successful (++), successful (+)

or unsuccessful (-).

9. If the subproblem is preconditioned, a P is also displayed.

3As it is a minimization algorithm, the objective function is the opposite of the log-likelihood

and, therefore, is a positive value.
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BIOMC is a version of BIO designed for simulated maximum likelihood. The

idea is to use BIO with few draws in the beginning, in order to obtain a

rough value of the parameters, and then to increase the number of draws

until reaching the number required by the user (du). Let dk be the number

of draws considered by BIOMC (where d0 is defined by BTRStartDraws).

Then, algorithm BIO runs until the following condition is verified

lnγ

ln ε
≥ dk

du

,

where γ is defined by (2.9) and ε is defined by BTRTolerance, so that

the convergence requirements are not as strong when the number of draws

is low. Then, the number of draws is increased

dk+1 = min(λdk, du),

where the factor λ is defined by BTRIncreaseDraws, and the process

starts again. The algorithm stops when dk = du.

In general, BIOMC is not faster than BIO. But it allows to obtain good

approximations of the parameters pretty quickly.

CFSQP CFSQP is a C implementation of the FSQP optimization algorithm de-

veloped by E.R. Panier, A.L. Tits, J.L. Zhou, and C.T. Lawrence (see ?).

CFSQP is licensed to AEM Design. The conditions for external use are

the following

1. The CFSQP routines may not be distributed to third parties. Inter-

ested parties shall contact AEM Design directly.

2. If modifications are performed on the routines, these modifications

shall be communicated to AEM Design. The modified routines will

remain the sole property of the authors.

3. Due acknowledgment shall be made of the use of the CFSQP rou-

tines in research reports or publications. Whenever such reports are

released for public access, a copy shall be forwarded to AEM Design.

4. The CFSQP routines may only be used for research and develop-

ment, unless it has been agreed otherwise with AEM Design in writ-

ing.
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If you have a CFSQP license, and need a Windows version of Biogeme 2.4

with CFSQP, send an Email to

(michel.bierlaire@epfl.ch) to receive the executable.

SOLVOPT Solvopt is defined by its authors, Alexei V. Kuntsevich and Franz

Kappel, as follows: The program SolvOpt (Solver for local optimization

problems) is concerned with minimization resp. maximization of nonlin-

ear, possibly non-smooth objective functions and with the solution of non-

linear programming problems taking into account constraints by the so-

called method of exact penalization. The package implements a version of

minimization method with space dilation by ?. See ? for a tutorial of the

package and the description of the algorithm.

DONLP2 DONLP2 is a sequential equality constrained quadratic programming

method, developed by ?. The algorithm is described by ? and ?. The

conditions of use of the DONLP2 package are the following.

1. donlp2 is under the exclusive copyright of P. Spellucci

e-mail:spellucci@mathematik.tu-darmstadt.de

“donlp2” is a reserved name

2. donlp2 and its constituent parts come with no warranty, whether ex-

pressed or implied, that it is free of errors or suitable for any specific

purpose. It must not be used to solve any problem, whose incorrect

solution could result in injury to a person , institution or property. It

is at the users own risk to use donlp2 or parts of it and the author

disclaims all liability for such use.

3. donlp2 is distributed “as is”. In particular, no maintenance, support

or trouble-shooting or subsequent upgrade is implied.

4. The use of donlp2 must be acknowledged, in any publication which

contains results obtained with it or parts of it. Citation of the authors

name and netlib-source is suitable.

5. The free use of donlp2 and parts of it is restricted for research pur-

poses commercial uses require permission and licensing from P. Spel-

lucci.
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2.12 Generating draws

All distributions needed by Biogeme 2.4 are generated from uniform [0,1] dis-

tributions. The derivation of uniform [-1,1] is obvious. The derivation of normal

N(0, 1) is performed using Wichura’s method ?.

The uniform [0,1] distributions can be generated in three different ways. See

Train, 2009 for more details.

1. Using Unix’s pseudo-random number generator.

2. Using Halton draws.

3. Using the Modified Latin Hypercube Sample procedure proposed by Hess

et al. (2006). It generates a small random perturbation of equally dis-

tributed draws. If R is the number of draws required, it generates a vector

d(0 : R− 1) such that

d(i) =
i

R
+

ξ

R

where ξ is a draw from a uniform [0:1] distribution, such that ξ 6= 0 and

ξ 6= 1.

2.13 Simulation: sample enumeration

The package Biosim 2.4 is invoked exactly like Biogeme 2.4, with the exact

same input file. But instead of performing a parameter estimation, it performs a

sample enumeration. Sample enumeration performed by Biosim 2.4, produces

correct predicted probabilities for all model versions as long as it is not in a panel

data setting. The panel data setting requires a large set of choice probability

calculations and this will not be available in Biosim 2.4 in the very near future.

The file mymodel.enu contains the result of the sample enumeration. For

each observation in the sample, the following results are provided:

1. The identifier of the choice actually reported in the sample file;

2. The name of the choice actually reported in the sample file;

3. The probability given by the model for the chosen alternative;

4. For each alternative, the utility given by the model;
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5. For each alternative, the probability given by the model;

6. A list of simulated choice, based on Monte-Carlo simulation using the

model.

The sample enumeration file is extremely useful for producing the aggregate
market shares computed at convergence. The usual way to produce the predicted
probabilities is to rename the file that is generated at convergence with a .res
extension into a file with a .mod extension. Then replace the word biogeme
with biosim in the call. For a model input file called mymodel.mod for which
we rename the mymodel.res file into mymodel_res.mod and given a data
base called sample.dat, the command:

biosim mymodel_res sample.dat

mymodel_res.enu which would contain among other things the choice

probabilities of each available alternatives. To produce an analysis of the impact

of a given policy, change the file mymodel_res.enu to reflect the change to

a given variable or a given set of variable. This is where using the [Expressions]

section to create variables takes all its sense. Applying Biosim 2.4 to this input

file would create a .enu file that would reflect the new values of the choice

probabilities following the change. Then, bringing the two .enu into an Excel

spreadsheet, for example, would allow one to measure the change of aggregate

shares computed by given market segments.

As a final note, the use of weights may be counter-intuitive in Biosim. If

an observation is weighted by ωn, its contribution to the log-likelihood in the

estimation process would be

ωn lnPn(in) = lnPn(in)
ωn.

As Biosim and Biogeme use the exact same formulation, the use of weights with

Biosim produces the value

Pn(in)
ωn,

which may not be the desired effect.

2.14 Ordinal logit

An ordinal binary choice model is derived when ordinal responses are available,

where the respondent not only reports the preference, but also the strength of the

preference. For instance, if alternatives i and j are available, the respondent can

report one of the following.
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• definitely choose j;

• probably choose j;

• indifferent;

• probably choose i;

• definitely choose i.

As for the binary choice model, the selected category is explained by the dif-

ference Uin − Ujn between the utilities of the two alternatives, as depicted in

Figure 2.3.

✲

0 Uin −Ujnτ1 τ2 τ3 τ4

Def. j Prob. j Indiff. Prob. i Def. i

Figure 2.3: Categories for the ordinal binary choice model

Formally, we consider Q ≥ 2 categories, ordered such that category q cor-

responds to a stronger preference towards alternative i compared to category

q − 1, for q = 1, . . . ,Q. We define Q + 1 parameters τq, q = 0, . . . ,Q, such

that τ0 = −∞, τQ = +∞, and τq−1 ≤ τq, q = 1, . . . ,Q. A category q is asso-

ciated with the interval [τq−1, τq]. The probability for category q to be selected

by the respondent is

Pn(q) = Pr(τq−1 ≤ Uin −Ujn ≤ τq)

= Pr(τq−1 ≤ (Vin − Vjn) − (εjn − εin) ≤ τq)

= Pr(Vin − Vjn − τq ≤ εn ≤ Vin − Vjn − τq−1)

= Fεn(Vin − Vjn − τq−1) − Fεn(Vin − Vjn − τq)

(2.10)

where εn = εjn − εin, and Fεn is the CDF of εn. By definition of the CDF, the

probability for the extreme categories simplify to

Pn(1) = Fεn(Vin − Vjn +∞) − Fεn(Vin − Vjn − τ1)

= 1 − Fεn(Vin − Vjn − τ1),

Pn(Q) = Fεn(Vin − Vjn − τQ−1) − Fεn(Vin − Vjn −∞)

= Fεn(Vin − Vjn − τQ−1).

(2.11)
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In particular, if εn is logistically distributed, we obtain the ordinal logit

model. We immediately note that binary choice models are specific instances

of ordinal binary choice models, with two categories (Q = 2), and τ1 = 0.

The parameter τ can be estimated by Biogeme 2.4 using Section [Ordinal-

Logit]

Example

The file 23ordinalLogit.mod contains an example of such a model, using

4 intervals (and, therefore, three thresholds τ1, τ2 and τ3). In order to comply

with the general syntax of Biogeme 2.4, the following conventions are used:

• the model must contain exactly two alternatives;

• the identifier of the alternative is completely ignored;

• alternative i is the first by alphabetical order, and alternative j is the sec-

ond.

To illustrate this last point, the example is designed with a xonfusing numbering.

“Alt2” is first if we rank the alternatives using the IDs, and second if we rank

them by alphabetical order. As the IDs are ignored, the model is based on Alt1

- Alt2, so that

• Vin = ASC1 * one + BETA1 * x11 + BETA2 * x12,

• Vjn = ASC2 * one + BETA1 * x21 + BETA2 * x22.

In order to remove any ambiguity, the exact formula used by the model (that

is, the difference of the two utilities) is reported in the output file.

Note that if all the threshold parameters are estimated, all constants must be

normalized to 0 (see the example).

2.15 Latent choice

A choice is said to be “latent” when it is not directly observed. This idea has been

proposed by ? in a route choice context where the actual chosen route was not

directly observed. Instead, the respondent reported a sequence of locations that

they traversed. In many cases, several routes in the network may have produced

the same reported locations.
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Each observation consists of an aggregate, a set of actual alternatives that

may correspond to the observed situations. If Cobs is the observed aggregate,

than the probability given by the choice model is

P(Cobs) =
∑

i∈C

P(Cobs|i)P(i|C). (2.12)

Equation P(Cobs|i) can be viewed as a measurement equation, and represents

the probability to observe Cobs if i was the actual choice.

In Biogeme 2.4, an aggregate observation is represented by a consecutive se-

quence of elemental observations, associated with the probability P(Cobs|i). Two

additional sections in the model specification file are used for the specification:

section [AggregateLast] defines a boolean with is true if the corresponding row

is the last elemental observation of the current aggregate, and false otherwise.

section [AggregateWeight] defines the value of P(Cobs|i).

2.16 The Zheng Fosgerau test

Biosim 2.4 can compute the Zheng-Fosgerau test. Proposed by ?, it has been

adapted to discrete choice models by ?. In addition to the value of the test itself,

Biosim 2.4 reports pictures allowing to perform residual analysis.
We consider here the example in the file 24ZhengFosgerau.mod. Note

that this is not a genuine model. Our objective here is to illustrate the tool. In
this file, 3 tests are proposed, with 3 definitions for the function t introduced
by ?. We consider the second one, which is exactly the expression of the utility
function of alternative 2. The syntax is

$E { ASC2 * one + BETA1 * x21 + BETA2 * x22 } 1 -1000 1000 "Util2"

Biosim 2.4 first generates a plot to show how t (i.e. the utility of alterna-

tive 2 in this case) is distributed in the sample. This plots appears in the file

24ZhengFosgerau zheng.tex, which must be processed with the LATEX4

word processor. The density function is estimated using nonparametric regres-

sion. As we can see on Figure 2.4, the shape is not too different from a nor-

mal distribution, with very few values of this expression are out of the range

[−10 : 10].

4LATEX is distributed freely on internet. Note that the package pstricks is required to

produce the plots.
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Figure 2.4: Density of Util2 = ( ( ASC2 * one ) + ( BETA1 * x21 ) ) + ( BETA2

* x22 )

Figure 2.5: Testing Util2 = ( ( ASC2 * one ) + ( BETA1 * x21 ) ) + ( BETA2 *

x22 ) with alt. Alt2

Figure 2.6: Testing Util2 in [−7 : 7] with alt. Alt2

Biosim 2.4 also generates plots of the residuals, that is the difference (yin −

Pn(i)), where yin is 1 if individual n has chosen alternative i in the sample, and

0 otherwise, and Pn(i) is the probability as computed by the model. In princi-

ple, the residuals should be a white noise unrelated to the independent variables.

Figure 2.5 plots a nonparametric estimation of the residuals for alternative 2 as

a function of t, that is the utility of alternative 2 in this case. Clearly, the resid-

uals are not independent from the utility, which is a sign of a misspecification.

Unfortunately, the source of the misspecification itself is not revealed by the plot.
We can trim the data and exclude values below -7 and above 7, using the

syntax

$E { ASC2 * one + BETA1 * x21 + BETA2 * x22 } 1 -7 7 "Util2"

Doing this, we exclude only 2.8% of the data, and the plot on Figure 2.6

emphasizes even more the misspecification. Note that trimming is not equivalent

to a zoom on the plot. The data are excluded before the nonparametric estimation

is performed. Although in principle it should not affect the general shape of

the plot, some discrepancies my appear especially at the borders of the selected

interval.
If LATEX is not available, the plots may be generated using Excel or something

similar. Indeed, Biosim 2.4 creates also the file 24ZhengFosgerau zheng.enu
which is an ASCII file, easily imported in a spreadsheet. The file is organized as
follows. For each test (that is for each function t defined by the user), a total of
5(J+ 1) rows are generated, where J is the number of alternatives. The name of
the function t is reported in the first column. The first 5 rows contain the small-
est and the largest values, the range, the bandwidth used for the nonparametric
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regression (that is c/
√
n, where n is the sample size and c is user defined, and 1

by default), and a description of the trimming using the syntax

[l:u]: nl < ni > nu <==> pl% < pi% > pu%

where l and u are the lower and the upper bound defined by the user, nl and

nu are the number pieces of data excluded because they are beyond the lower

(resp. upper) bound, and ni is the number of pieces of data considered in the

analysis. pl, pi and pu report the same information in terms of percentages.

For each alternative, 5 rows are generated, containing the following informa-

tion:

1. The name of the alternative, the ID and the value of the Zheng test;

2. A list of values corresponding to th x-axis of the plot. By default, there

are 100 of them.

3. A list of values for the residual, corresponding to the continuous line in

Figure 2.6.

4. A list of values for the lower bound of the confidence interval, correspond-

ing to the lower dashed line in Figure 2.6.

5. A list of values for the upper bound of the confidence interval, correspond-

ing to the upper dashed line in Figure 2.6.

2.17 IIA test

Suppose that we have estimated a logit model, using all the observations. The

final log likelihood of this model is L1. Denote by Pin the probability given by

this model that individual n in the sample chooses alternative i.

Consider Ĉ ⊆ C a given subset of alternatives. Define the new variables

zin =






Vin −

∑
j∈Ĉ PjnVjn
∑

j∈Ĉ Pjn

if i ∈ Ĉ,

0 if i 6∈ Ĉ.

(2.13)

Estimate the same model as before where the new variables have been also

included in the specification. Testing if IIA holds is equivalent to testing if all the
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coefficients of the new variables are 0, which can be performed with a likelihood

ratio test.

2.18 Merging files

It is often convenient (in particular when performing the IIA test described
in Section 2.17) to expand the original observation database with new vari-
ables that have been computed (for example) with Biosim 2.4. A simple utility,
called biomerge has been implemented to perform this task easily. If file1,
file2, . . . , filen are n ASCII files containing the exact same number of rows
each. The command

biomerge file1 file2 ... filen

will generate a file called biomergeOutput.lis such that row number j

of this file is the concatenation of row number j of all input files.

2.19 Known problems

1. The loglikelihood estimator used by Biogeme 2.4 to estimate a model with

panel data has been designed for instances where all random parameters

are panel. When some of the random parameters are cross-sectional, the

estimator is not exactly correct. It is conjectured that the estimates are still

consistent, but not as efficient as they should be. So, except if you have

good reasons to do otherwise, make sure that all the random variables are

listed in the [PanelData] section.

2. The values in the section “Variance of random coefficients” have been

reported wrong by several users on some model instances. Make sure to

verify if the reported values make sense. If not, simply ignore this section.

The value of the parameters reported in the “Utility parameters” section

are correct.

2.20 Basic examples

A list of examples is available from the BIOGEME webpage. Two complemen-

tary data files are available: sample.dat containing 1000 observations, and

sample2.dat containing 999 observations. These two files are grouped in the

file fullsample.dat. Therefore, the following runs are equivalent:
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biogeme mymodel sample.dat sample2.dat

and

biogeme mymodel fullsample.dat

These examples are designed to help the user understanding how to use Bio-

geme 2.4. They are not meant to illustrate how to build good models. Note that

reading this section supposes that you can read and edit the example files, and

run Biogeme 2.4.

A binary logit model

00bl.mod

Example of a model specification file for binary logit. The Alternative Spe-

cific Constant (ASC) associated with alternative 1 has been fixed, and will not

be estimated.
In order to use the same data file as for the other examples, all observations

with a choice strictly larger than 2 are excluded using the following syntax:

[Exclude]

Choice > 2

Therefore, each observation corresponds to the choice of alternative 1 or

alternative 2.

A binary probit model

00bp.mod

Example of a model specification file for binary probit. Except for the dis-

tribution assumption on the error term, the model specification is the same as in

00bl.mod.

A basic model

01mnl-basic.mod
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The file 01mnl-basic.mod contains the minimum model description needed

by Biogeme 2.4. It is a typical example of a file created by hand. The model

has 6 alternatives, and the utility functions contain only the Alternative Specific

Constants. The ASC associated with alternative 1 has been fixed, and will not

be estimated.

Weight the observations

02mnl-weights.mod

The observations are now weighted. But weighting the observations must
be done carefully. Namely, the sum of all weights should be equal to the sam-
ple size. Biogeme 2.4 provides some help to achieve this property. In the file
02mnl-weights.sta, it is reported

Sample size=1000

Total weight=994.295

--> It is recommended to multiply all weights by 1.005738e+00

Corrected weights

03mnl-weights.mod

The weights are corrected based on the recommendation from the .sta file in
the following way:

[Weight]

Weight * 1.005738

Heterogeneous samples

04mnl-heterosample.mod

This example illustrates the estimation of scale parameters for different groups
in the sample. We have here two groups, defined by

[Group]

(Id <= 50) * 1 + (Id >= 51) * 2

It means that group 1 is composed of individuals with ids up to 50, and group
2 with ids from 51. The associated scale parameters are defined by
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[Scale]

// Group_number Scale LowerBound UpperBound Status

1 1 0.001 1000 1

2 1 0.001 1000 0

Clearly, only one of them is identifiable. Note that this allows to avoid com-

plicated tricks based on nested structures in the presence of heterogeneous pop-

ulations.

More coefficients

05mnl-beta.mod

Here, we have included some additional coefficients into the model.

BETA1 0 -10000 10000 0

BETA2 0 -10000 10000 0

There are both significant:

Name Value Robust Std err Robust t-test

BETA1 +7.5924002e-001 +3.7156070e-002 +2.0433808e+001

BETA2 +7.7572746e-001 +3.6835050e-002 +2.1059493e+001

But they are correlated in such a way that the hypothesis that they are equal
cannot be rejected, at a 95% level:

Coefficient1 Coefficient2 Rob. cov. Rob. corr. Rob. t-test

˜˜˜˜˜˜˜˜˜˜˜˜ ˜˜˜˜˜˜˜˜˜˜˜˜ ˜˜˜˜˜˜˜˜˜ ˜˜˜˜˜˜˜˜˜˜ ˜˜˜˜˜˜˜˜˜˜˜

BETA1 BETA2 +1.0688450e-03 +7.8095080e-01 -6.7326255e-01 *

Modification of an attribute

06mnl-modif-attrib.mod

This example exploits the looping feature on the Expressions section.

[Utilities]

// Id Name Avail linear-in-parameter expression (beta1*x1 + beta2*x2 +

1 Alt1 av1 ASC1 * one + BETA1 * logx11 + BETA2 * x12

2 Alt2 av2 ASC2 * one + BETA1 * logx21 + BETA2 * x22

3 Alt3 av3 ASC3 * one + BETA1 * logx31 + BETA2 * x32

4 Alt4 av4 ASC4 * one + BETA1 * logx41 + BETA2 * x42

5 Alt5 av5 ASC5 * one + BETA1 * logx51 + BETA2 * x52
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6 Alt6 av6 ASC6 * one + BETA1 * logx61 + BETA2 * x62

[Expressions]

// Define here arithmetic expressions for name that are not directly

// available from the data

one = 1

$LOOP{ZZ 1 6 1} logxZZ1 = log( xZZ1 + 15.0 )

A simple Mixed Logit model

07mixed-mnl.mod

This example allows for a single normally distributed random coefficient BETA1 [ SIGMA1 ].

More detailed examples are provided in the next section.

07mixed-unif-mnl.mod

This example allows for a single uniformly distributed random coefficient BETA1 { SIGMA1 }.

Note that, in both cases, the number of draws is very low, because the only

purpose of these example is to illustrate the syntax, and to test the software. In

practice, the number of draws should be at least 1000.

Discrete mixture

08mixed-discrete.mod

This example allows for a the coefficient BETA1 to follow a discrete distribution.

It can take two values: B1, with probability W1, and B2, with probability W2.

For the model to make sense, it is necessary to impose the linear constraint:

[LinearConstraints]

W1 + W2 = 1.0

Due to the presence of this constraint, algorithm BIO cannot be used. There-
fore, a file 08mixed-discrete.par has been created, where the algorithm
DONLP2 is preferred:

gevAlgo = "DONLP2"
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A simple Non Linear model

09mnl-nonlinear.mod

The example 09mnl-nonlinear.mod demonstrates how to add non lin-

ear components to the specification of the utilities. In this case we apply a Box-

Tuckey transformation to the x variables in the specification of utility 1. The

code to implement this is:

[Utilities]

// Id Name Avail linear-in-parameter expression (beta1*x1 + beta2*x2 + ... )

1 Alt1 av1 ASC1 * one

2 Alt2 av2 ASC2 * one + BETA1 * x21 + BETA2 * x22

3 Alt3 av3 ASC3 * one + BETA1 * x31 + BETA2 * x32

4 Alt4 av4 ASC4 * one + BETA1 * x41 + BETA2 * x42

5 Alt5 av5 ASC5 * one + BETA1 * x51 + BETA2 * x52

6 Alt6 av6 ASC6 * one + BETA1 * x61 + BETA2 * x62

[GeneralizedUtilities]

1 BETA1 * ((x11 + 10 ) ˆ LAMBDA11 - 1) / LAMBDA11

+ BETA2 * ((x12 + 10 ) ˆ LAMBDA12 - 1) / LAMBDA12

09mnl-nonlinear-deriv.mod

Same file, where the derivatives are explicitly coded in the specification file

as follows:

[Derivatives]

1 BETA1 ((x11 + 10 ) ˆ LAMBDA11 - 1) / LAMBDA11

1 BETA2 ((x12 + 10 ) ˆ LAMBDA12 - 1) / LAMBDA12

1 LAMBDA11

BETA1 * ((x11 + 10) ˆ LAMBDA11 * LN(x11 + 10) * LAMBDA11

- (x11 + 10) ˆ LAMBDA11 + 1) / (LAMBDA11 * LAMBDA11 )

1 LAMBDA12

BETA2 * ((x12 + 10) ˆ LAMBDA12 * LN(x12 + 10) * LAMBDA12

- (x12 + 10) ˆ LAMBDA12 + 1) / (LAMBDA12 * LAMBDA12 )

A simple Nested Logit model

10nl.mod

A Nested Logit model with two nests, A and B, is tested. Alternatives 1, 2 and 3
belong to nest A, and the other alternatives to nest B.
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[NLNests]

// Name paramvalue LowerBound UpperBound status list of alt

NESTA 1.0 1.0 10.0 0 1 2 3

NESTB 1.0 1.0 10.0 0 4 5 6

Note that it is normalized from the top, that is µ = 1, imposing that NESTA

≥ 1 and NESTB ≥ 1, in order to obtain the conditions required by the theory,

that is

0 ≤ µ/NESTA ≤ 1,

and

0 ≤ µ/NESTB ≤ 1.

10nl-bottom.mod

In the file 10nl-bottom.mod, the exact same model is described, but
normalized from the bottom, while the previous was normalized from the top.
The coefficient of nest A is constrained to 1, and the µ parameter is estimated.

[Mu]

// Value LowerBound UpperBound Status

1.0 0.0 1.0 0

It is important to understand that both models are equivalent, even if the

estimated parameters do not have the same values. In the following table, the

column “Top” contains the estimated parameters for the model normalized at

the top, and “Bottom” the estimated parameters for the model normalized at the

bottom. The third column contains the scaled parameters, that is each param-

eter multiplied by µ, except for the nests parameters, where the value µ/µm is

reported, m being the nest. These values are independent of the normalization,

and should be used when comparing models.
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Top Bottom Scaled

ASC1 0 0 0

ASC2 -0.0897 -0.1527 -0.0897

ASC3 -0.0650 -0.1107 -0.0650

ASC4 -0.3282 -0.5587 -0.3282

ASC5 0.5651 0.9619 0.5651

ASC6 -0.8872 -1.5102 -0.8872

BETA1 0.5350 0.9107 0.5350

BETA2 0.5537 0.9426 0.5538

MU 1.0000 0.5875

NESTA 1.7023 1.0000 0.5874

NESTB 3.2339 1.8996 0.3092

10nl-constrained.mod

In this example, the nest parameters of the nested logit model are constrained

to be equal. Note that it is not a normalization constraint, as the drop in loglike-

lihood from −848.171 to −858.941 illustrates.

[LinearConstraints]

NESTA - NESTB = 0.0

A Cross-Nested Logit model

11cnl.mod

The CNL model has two nests, A and B, and each alternative belongs to both
nests. The α parameters are set to 1/2:

[CNLAlpha]

// Alt Nest value LowerBound UpperBound status

Alt1 NESTA 0.5 0.0001 1.0 1

Alt2 NESTA 0.5 0.0001 1.0 1

Alt3 NESTA 0.5 0.0001 1.0 1

Alt4 NESTA 0.5 0.0001 1.0 1

Alt5 NESTA 0.5 0.0001 1.0 1

Alt6 NESTA 0.5 0.0001 1.0 1

Alt1 NESTB 0.5 0.0001 1.0 1

Alt2 NESTB 0.5 0.0001 1.0 1

Alt3 NESTB 0.5 0.0001 1.0 1

Alt4 NESTB 0.5 0.0001 1.0 1

Alt5 NESTB 0.5 0.0001 1.0 1

Alt6 NESTB 0.5 0.0001 1.0 1
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12cnl.mod

In the file 12cnl.mod, the α parameters are now estimated. For each alterna-
tive, the sum of corresponding α parameters must sum up to 1.0. Therefore, we
add the constraints

[LinearConstraints]

NESTA_Alt1 + NESTB_Alt1 = 1.0

NESTA_Alt2 + NESTB_Alt2 = 1.0

NESTA_Alt3 + NESTB_Alt3 = 1.0

NESTA_Alt4 + NESTB_Alt4 = 1.0

NESTA_Alt5 + NESTB_Alt5 = 1.0

NESTA_Alt6 + NESTB_Alt6 = 1.0

13cnl.mod

The file 13cnl.mod is the same as 12cnl.mod, with another starting point

based on the estimates of the nested logit model.

A Network GEV model

14ngev.mod

The Nested Logit model of file 10nl.mod is described here using the Network

GEV syntax. Note that the high level of generality provided by the network GEV

model comes with a cost. On my computer, a Network GEV model takes much

longer to estimate than the same Nested Logit model.

15ngev.mod

It is important to note that the model formulation of the Network GEV model

(Daly and Bierlaire, 2006) is not consistent with the Cross-Nested Logit model

formulation. In order to illustrate it, the file 15ngev.mod is mimicking the

model described in 11cnl.mod, but should be used for syntax considerations

only. In general, the two models will give different results, although they are

theoretically equivalent, for two reasons.

1. The normalization conditions of the Network GEV models are not clear,

and definitely nonlinear. They have not been specified in the file 15ngev.mod,

and it complicates the run of the algorithm as the optimization is degener-

ate.



88 CHAPTER 2. BISONBIOGEME

2. When the α parameters are estimated in a CNL or a Network GEV model,

the loglikelihood function exhibits many local maxima. It is very rare

that estimations on the two versions of the model leads to the same local

maximum.

Panel data

16panel.mod

The MNL model from file 05mnl-beta.mod combined with individual spe-
cific error components ZERO [ SIGMA ] * one, where SIGMA is estimated.
Note that ZERO must be declared, but is fixed to 0. The section

[PanelData]

Id

ZERO_SIGMA

tells Biogeme 2.4 that individuals ids can be found under Id in the sample

file, and that the random coefficient ZERO_SIGMA does not vary across obser-

vations from the same individual. Note that it is assumed in Biogeme 2.4 that

the data file is sorted in such a way that all observations from each individual are

successive in the data file.

Expressions

17expressions.mod

Illustrates the syntax of expressions. Namely, a dummy variable which is

defined by

dum12 =

{
1 if x11 ≥ 1 or x21 ≥ 1

0 otherwise

is coded as

dum12 = ( x11 >= 1 ) || ( x21 >= 1 )

Selection bias

18selectionBias.mod
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Biogeme 2.4 has the capability to correct for selection bias in some circum-

stances. The syntax is simple: the list of additionnal parameters to be estimated

must be listed together with their associated alternative in the Section [Selec-

tionBias] of the .mod file, as illustrated in this file. See Section 1.2 and Bierlaire

et al., 2008 for more details.

Discrete distributions and panel data

19panelDiscrete.mod

Illustrate a model where one random coefficient has a continuous distribu-

tion, and another a discrete distribution, in a panel data context.

Seminonparametric transformation

20legendre.mod

Example of a mixture of MNL (actually, same as 07mixed-mnl.mod)

where a seminonparametric transformation, based on the Legendre polynomials

of degree 1, 3 and 4, has been applied. Not that, in practice, it is more common

to use consecutive terms. Again, this example is designed to illustrate the syntax,

and to emphasize that some terns may be omitted if necessary. See ? for details.

Lognormal distribution

21mixed-lognormal.mod

Example of a mixture with a lognormally distributed coefficient.

21mixed-lognormal.mod

Same example where the derivatives are explicitly implemented by the user.

It illustrate the use of the operator $DERIV used to ask BIOGEME to compute

the derivative for you. It is mandatory to use it when random variables are in-

volved, such as in this example.
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Ordinal logit

22ordinalLogit.mod

Exact same model as in the file 00bl.mod, but using the syntax of an or-

dinal logit model (with only two categories, in this case). It is interesting to

compare the sign of the coefficients between the two models.

23ordinalLogit.mod

Example of a model specification file for an ordinal logit model with 4 cate-
gories. Note the following section, defining the categories:

[OrdinalLogit]

1 $NONE // Category 1 spans -infty --> tau1

2 tau1 // 2 spans tau1 --> tau2

3 tau2 // 3 spans tau2 --> tau3

4 tau3 // 4 spans tau3 --> +infty

Remember the convention introduced in Section 2.14:

• the model must contain exactly two alternatives;

• the identifier of the alternative is completely ignored;

• alternative i is the first by alphabetical order, and alternative j is the sec-

ond.

The estimation of all basic examples are summarized in Table 2.3.

2.21 Examples of logit kernel (mixed logit)

formulations

The examples in this section have been kindly prepared and tested by D. Bolduc

and M.-H. Godbout

In this section, we explore several versions of logit kernel formulations in

order to demonstrate the capabilities of Biogeme. To achieve this, we generate

a sample of 1000 observations arising from a very general model specification

which contains, as a special case, several submodels that are often used in ap-

plied work.
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The data generating process

This subsection introduces the notation, describes the general model and shows

how we generated the synthetic sample datafile we provide with the examples.

The following section gives the specialized form of the model and provides the

associated input files. Let’s consider a choice situation involving the choice

among 6 alternatives. The following data generating process is used to generate

data for a sample of 1000 synthetic choices:

U1n = α1 +X11nβ1 +X12nβ2 +σ1ξ1n +ν1n

U2n = α2 +X21nβ1 +X22nβ2 +σ1ξ1n +σ2ξ2n +ν2n

U3n = α3 +X31nβ1 +X32nβ2 +σ2ξ2n +ν3n

U4n = α4 +X41nβ1 +X42nβ2 +σ2ξ2n +ν4n

U5n = α5 +X51nβ1 +X52nβ2 +σ2ξ2n +σ3ξ3n +ν5n

U6n = +X61nβ1 +X62nβ2 +σ3ξ3n +ν6n

(2.14)

In this specification, many interesting effects are allowed. For instance, for

a given alternative i, heteroscedasticity in utility i could be modeled using a

random alternative specific constant (ASC). The second two columns contains

two variables X1 and X2 associated with two generic coefficients. Flexibility

would allow them to be random. These components would permit to model

heterogeneity across individuals. In our example, β1 and β2 are assumed to

come from a joint normal distribution with respective means β̄1 and β̄2 and

variance and covariance matrix:

Σβ =

[
var(β1) cov(β1, β2)

cov(β1, β2) var(β2)

]
=

[
σ2
1 σ12

σ12 σ2
2

]
. (2.15)

For convenience, the X ′
kins , k = 1, 2, i = 1, ..., 6 and n = 1, ...,N = 1000, are

i.i.d. random variates generated from a standard normal distribution. The ξin are

error component terms (factors) that allow to model the correlation across the

utilities. Here, alternatives 1 and 2 are related through factor 1, alternatives 2, 3,

4 and 5 are related through common factor 2 and the last two alternatives have

factor 3 in common. The ν′
ins are i.i.d. Gumbel error terms.

On correlated random coefficients

[Cholesky factorization] In the above subsection, we assumed that:
(

β1

β2

)
∼ MVN(

(
β̄1

β̄2

)
,

[
σ2
1 σ12

σ12 σ2
2

]
).
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Using the Cholesky factorization, the vector (β1, β2)
′ can be replaced by:

(
β1

β2

)
=

(
β̄1

β̄2

)
+

[
p11 0

p21 p22

] [
ζ1
ζ2

]
(2.16)

where ζ1 and ζ2 are i.i.d. standard normal variates. Using a matrix notation, we

write it as:

β = β̄+ Pζ, (2.17)

where P corresponds to a lower triangular Cholesky factorization matrix such

that PP′ = Σβ.

We now consider several submodels of the above general formulation.

Linear specification with independent normally distributed

random coefficients

In this version, the model is written as:

U1n = α1 +X11nβ1 +X21nβ2 +ν1n

U2n = α2 +X12nβ1 +X22nβ2 +ν2n

U3n = α3 +X13nβ1 +X23nβ2 +ν3n

U4n = α4 +X14nβ1 +X24nβ2 +ν4n

U5n = α5 +X15nβ1 +X25nβ2 +ν5n

U6n = +X16nβ1 +X26nβ2 +ν6n

(2.18)

where the α′s are fixed and where the βk, k = 1, 2 are independently generated

as follows: β1 ∼ N(β̄1, σ
2
1) and β2 ∼ N(β̄2, σ

2
2).

Input file

17_2.mod

The main sections of the Biogeme file required to estimate this model is as

follows:

[Beta]

// Name Value LowerBound UpperBound status (0=variable, 1=fixed)

ASC1 1.0 -10.0 10.0 0

ASC2 1.0 -10.0 10.0 0

ASC3 1.0 -10.0 10.0 0
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ASC4 1.0 -10.0 10.0 0

ASC5 1.0 -10.0 10.0 0

BETA1 1.0 -10.0 10.0 0

BETA2 1.0 -10.0 10.0 0

BETA1_S 1.0 -10.0 10.0 0

BETA2_S 1.0 -10.0 10.0 0

[Utilities]

// Id Name Avail linear-in-parameter expression (beta1*x1 + beta2*x2 + ... )

1 Alt1 av1 ASC1 * one + BETA1 [ BETA1_S ] * x11 + BETA2 [ BETA2_S ] * x12

2 Alt2 av2 ASC2 * one + BETA1 [ BETA1_S ] * x21 + BETA2 [ BETA2_S ] * x22

3 Alt3 av3 ASC3 * one + BETA1 [ BETA1_S ] * x31 + BETA2 [ BETA2_S ] * x32

4 Alt4 av4 ASC4 * one + BETA1 [ BETA1_S ] * x41 + BETA2 [ BETA2_S ] * x42

5 Alt5 av5 ASC5 * one + BETA1 [ BETA1_S ] * x51 + BETA2 [ BETA2_S ] * x52

6 Alt6 av6 BETA1 [ BETA1_S ] * x61 + BETA2 [ BETA2_S ] * x62

[Model]

// Currently, only $MNL (multinomial logit), $NL (nested logit), $CNL

// (cross-nested logit) and $NGEV (Network GEV model) are valid keywords

//

$MNL

In the case with independent random coefficients, the parameter name be-

tween the brackets designates the standard deviation of the random parameter

term with mean specified on the left of the bracket.

Linear specification with correlated normally distributed

random coefficients

In this version, the model is written as:

U1n = α1 +X11nβ1 +X21nβ2 +ν1n

U2n = α2 +X12nβ1 +X22nβ2 +ν2n

U3n = α3 +X13nβ1 +X23nβ2 +ν3n

U4n = α4 +X14nβ1 +X24nβ2 +ν4n

U5n = α5 +X15nβ1 +X25nβ2 +ν5n

U6n = +X16nβ1 +X26nβ2 +ν6n

(2.19)

where the α′s are fixed and where each βk, k = 1, 2 are generated from equation

(2.16) where the p′s are Cholesky terms.



94 CHAPTER 2. BISONBIOGEME

Input file

17_3.mod

The main sections of the Biogeme file required to estimate this model is as

follows:

[Beta]

// Name Value LowerBound UpperBound status (0=variable, 1=fixed)

ASC1 1.0 -10.0 10.0 0

ASC2 1.0 -10.0 10.0 0

ASC3 1.0 -10.0 10.0 0

ASC4 1.0 -10.0 10.0 0

ASC5 1.0 -10.0 10.0 0

BETA1 1.0 -10.0 10.0 0

BETA2 1.0 -10.0 10.0 0

BETA1_S 1.0 -10.0 10.0 0

BETA2_S 1.0 -10.0 10.0 0

[Utilities]

// Id Name Avail linear-in-parameter expression (beta1*x1 + beta2*x2 + ... )

1 Alt1 av1 ASC1 * one + BETA1 [ BETA1_S ] * x11 + BETA2 [ BETA2_S ] * x12

2 Alt2 av2 ASC2 * one + BETA1 [ BETA1_S ] * x21 + BETA2 [ BETA2_S ] * x22

3 Alt3 av3 ASC3 * one + BETA1 [ BETA1_S ] * x31 + BETA2 [ BETA2_S ] * x32

4 Alt4 av4 ASC4 * one + BETA1 [ BETA1_S ] * x41 + BETA2 [ BETA2_S ] * x42

5 Alt5 av5 ASC5 * one + BETA1 [ BETA1_S ] * x51 + BETA2 [ BETA2_S ] * x52

6 Alt6 av6 BETA1 [ BETA1_S ] * x61 + BETA2 [ BETA2_S ] * x62

[ParameterCovariances]

// Par_i Par_j Value LowerBound UpperBound status (0=variable, 1=fixed)

BETA1_BETA1_S BETA2_BETA2_S 1.0 -10.0 10.0 0

[Model]

// Currently, only $MNL (multinomial logit), $NL (nested logit), $CNL

// (cross-nested logit) and $NGEV (Network GEV model) are valid keywords

//

$MNL

The only difference with the previous example is that, we added the section

ParameterCovariances which indicates which pairs of coefficients are correlated.

In a situation with correlation, the coefficients describing the variance covariance
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structure are Cholesky factorization terms. Thus, BETA1 S corresponds to p11,

BETA2 S corresponds to p22 and the term called

BETA1 BETA1 S BETA2 BETA2 S in Biogeme corresponds to p21. In the out-

put file, the estimates first presented correspond to those coefficients. Then the

Biogeme output converts the Cholesky terms into variances and covariances. By

definition, in the case with independent random coefficients, the terms on the di-

agonal of the diagonal Cholesky factorization matrix directly correspond to the

standard deviations of the respective random coefficients.

Specification with correlated normally and lognormally

distributed random coefficients

In this version, we allow β1 to be normally distributed and β2 to be lognormally

distributed. They are also allowed to be correlated. The model is written as:

U1n = α1 +X11nβ1 +X21nβ2 +ν1n

U2n = α2 +X12nβ1 +X22nβ2 +ν2n

U3n = α3 +X13nβ1 +X23nβ2 +ν3n

U4n = α4 +X14nβ1 +X24nβ2 +ν4n

U5n = α5 +X15nβ1 +X25nβ2 +ν5n

U6n = +X16nβ1 +X26nβ2 +ν6n

(2.20)

where the α′s are fixed and where each βk, k = 1, 2 are generated from the

equation:

(
β1

ln β2

)
=

(
β̄1

β̄2

)
+

[
p11 0

p21 p22

] [
ζ1
ζ2

]
(2.21)

where the p′s are Cholesky terms.

Input file

17_4.mod

[Example LogNormal] The main sections of the Biogeme file required to

estimate this model is as follows:

[Beta]

// Name Value LowerBound UpperBound status (0=variable, 1=fixed)
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ASC1 1.0 -10.0 10.0 0

ASC2 1.0 -10.0 10.0 0

ASC3 1.0 -10.0 10.0 0

ASC4 1.0 -10.0 10.0 0

ASC5 1.0 -10.0 10.0 0

BETA1 1.0 -10.0 10.0 0

BETA2 1.0 -10.0 10.0 0

BETA1_S 1.0 -10.0 10.0 0

BETA2_S 1.0 -10.0 10.0 0

[Utilities]

// Id Name Avail linear-in-parameter expression (beta1*x1 + beta2*x2 + ... )

1 Alt1 av1 ASC1 * one + BETA1 [ BETA1_S ] * x11

2 Alt2 av2 ASC2 * one + BETA1 [ BETA1_S ] * x21

3 Alt3 av3 ASC3 * one + BETA1 [ BETA1_S ] * x31

4 Alt4 av4 ASC4 * one + BETA1 [ BETA1_S ] * x41

5 Alt5 av5 ASC5 * one + BETA1 [ BETA1_S ] * x51

6 Alt6 av6 BETA1 [ BETA1_S ] * x61

[GeneralizedUtilities]

// Id Name Avail linear-in-parameter expression (beta1*x1 + beta2*x2 + ... )

1 exp( BETA2 [ BETA2_S ] ) * x12

2 exp( BETA2 [ BETA2_S ] ) * x22

3 exp( BETA2 [ BETA2_S ] ) * x32

4 exp( BETA2 [ BETA2_S ] ) * x42

5 exp( BETA2 [ BETA2_S ] ) * x52

6 exp( BETA2 [ BETA2_S ] ) * x62

[ParameterCovariances]

// Par_i Par_j Value LowerBound UpperBound status

BETA1_BETA1_S BETA2_BETA2_S 1.0 -10.0 10.0 0

As mentioned in the manual, non linearities in the parameters must abso-

lutely be incorporated in the GeneralizedUtilities section of the input file.

Linear specification with independent heteroscedastic utilities

In this version, the model is written as:
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U1n = α1 +X11nβ1 +X21nβ2 +ν1n

U2n = α2 +X12nβ1 +X22nβ2 +ν2n

U3n = α3 +X13nβ1 +X23nβ2 +ν3n

U4n = α4 +X14nβ1 +X24nβ2 +ν4n

U5n = α5 +X15nβ1 +X25nβ2 +ν5n

U6n = +X16nβ1 +X26nβ2 +ν6n

(2.22)

where the α′s are independent random variables each one with its own specific

variance, and where each βk, k = 1, 2 are fixed coefficients. Identification

conditions are discussed in Walker, Ben-Akiva and Bolduc (2004).

Input file

17_5.mod

The main sections of the Biogeme file required to estimate this model is as fol-
lows:

[Beta]

// Name Value LowerBound UpperBound status (0=variable, 1=fixed)

ASC1 1.0 -10.0 10.0 0

ASC2 1.0 -10.0 10.0 0

ASC3 1.0 -10.0 10.0 0

ASC4 1.0 -10.0 10.0 0

ASC5 1.0 -10.0 10.0 0

BETA1 1.0 -10.0 10.0 0

BETA2 1.0 -10.0 10.0 0

ASC1_S 1.0 -10.0 10.0 0

ASC2_S 1.0 -10.0 10.0 0

ASC3_S 1.0 -10.0 10.0 0

ASC4_S 1.0 -10.0 10.0 0

ASC5_S 1.0 -10.0 10.0 0

[Utilities]

// Id Name Avail linear-in-parameter expression (beta1*x1 + beta2*x2 + ... )

1 Alt1 av1 ASC1 [ ASC1_S ] * one + BETA1 * x11 + BETA2 * x12

2 Alt2 av2 ASC2 [ ASC2_S ] * one + BETA1 * x21 + BETA2 * x22

3 Alt3 av3 ASC3 [ ASC3_S ] * one + BETA1 * x31 + BETA2 * x32

4 Alt4 av4 ASC4 [ ASC4_S ] * one + BETA1 * x41 + BETA2 * x42

5 Alt5 av5 ASC5 [ ASC5_S ] * one + BETA1 * x51 + BETA2 * x52

6 Alt6 av6 BETA1 * x61 + BETA2 * x62



98 CHAPTER 2. BISONBIOGEME

[Model]

// Currently, only $MNL (multinomial logit), $NL (nested logit), $CNL

// (cross-nested logit) and $NGEV (Network GEV model) are valid keywords

//

$MNL

Linear specification with error component structure

In this version, the model is written as:

U1n = α1 +X11nβ1 +X12nβ2 +σ1ξ1n +ν1n

U2n = α2 +X21nβ1 +X22nβ2 +σ1ξ1n +σ2ξ2n +ν2n

U3n = α3 +X31nβ1 +X32nβ2 +σ2ξ2n +ν3n

U4n = α4 +X41nβ1 +X42nβ2 +σ2ξ2n +ν4n

U5n = α5 +X51nβ1 +X52nβ2 +σ2ξ2n +σ3ξ3n +ν5n

U6n = +X61nβ1 +X62nβ2 +σ3ξ3n +ν6n

(2.23)

where the α′s and each βk, k = 1, 2 are fixed parameters.

Input file

17_6.mod

The main sections of the Biogeme file required to estimate this model is as

follows:

[Beta]

// Name Value LowerBound UpperBound status (0=variable, 1=fixed)

ASC1 1.0 -10.0 10.0 0

ASC2 1.0 -10.0 10.0 0

ASC3 1.0 -10.0 10.0 0

ASC4 1.0 -10.0 10.0 0

ASC5 1.0 -10.0 10.0 0

BETA1 1.0 -10.0 10.0 0

BETA2 1.0 -10.0 10.0 0

fact1 0.0 -10.0 10.0 1

fact2 0.0 -10.0 10.0 1

fact3 0.0 -10.0 10.0 1

fact1_s 1.0 -10.0 10.0 0
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fact2_s 1.0 -10.0 10.0 0

fact3_s 1.0 -10.0 10.0 0

[Utilities]

// Id Name Avail linear-in-parameter expression (beta1*x1 + beta2*x2 + ... )

1 Alt1 av1 ASC1 * one + BETA1 * x11 + BETA2 * x12 + fact1 [ fact1_s ] *
2 Alt2 av2 ASC2 * one + BETA1 * x21 + BETA2 * x22 + fact1 [ fact1_s ] *

+ fact2 [ fact2_s ] * one

3 Alt3 av3 ASC3 * one + BETA1 * x31 + BETA2 * x32 + fact2 [ fact2_s ] *
4 Alt4 av4 ASC4 * one + BETA1 * x41 + BETA2 * x42 + fact2 [ fact2_s ] *
5 Alt5 av5 ASC5 * one + BETA1 * x51 + BETA2 * x52 + fact2 [ fact2_s ] *

+ fact3 [ fact3_s ] * one

6 Alt6 av6 BETA1 * x61 + BETA2 * x62 + fact3 [ fact3_s ] *

[Model]

// Currently, only $MNL (multinomial logit), $NL (nested logit), $CNL

// (cross-nested logit) and $NGEV (Network GEV model) are valid keywords

//

$MNL

Specification with non linear random heterogeneous value of

time

For this specialized version of the model, we consider estimating the following

model:

U1n = α1 +X11nβ1 +(cost1n · incηn)β2 +ν1n

U2n = α2 +X21nβ1 +(cost2n · incηn)β2 +ν2n

U3n = α3 +X31nβ1 +(cost3n · incηn)β2 +ν3n

U4n = α4 +X41nβ1 +(cost4n · incηn)β2 +ν4n

U5n = α5 +X51nβ1 +(cost5n · incηn)β2 +ν5n

U6n = +X61nβ1 +(cost6n · incηn)β2 +ν6n

(2.24)

where the α′s are fixed and where each βk, k = 1, 2 are independently generated

as follows: β1 ∼ N(β̄1, σ
2
1) and β2 ∼ N(β̄2, σ

2
2). The model contains a cost vari-

able which vary across alternatives and an income variable which is evaluated to

the power η where η is a normally distributed random coefficient. The database

may be found in the directory where the Biogeme input file resides.
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Input file

17_7.mod

The main sections of the Biogeme file required to estimate this model is as fol-

lows:

[Beta]

// Name Value LowerBound UpperBound status (0=variable, 1=fixed)

ASC1 1.0 -10.0 10.0 0

ASC2 1.0 -10.0 10.0 0

ASC3 1.0 -10.0 10.0 0

ASC4 1.0 -10.0 10.0 0

ASC5 1.0 -10.0 10.0 0

BETA1 1.0 -10.0 10.0 0

BETA2 1.0 -10.0 10.0 0

BETA1_S 1.0 -10.0 10.0 0

BETA2_S 1.0 -10.0 10.0 0

ETA 1.0 -10.0 10.0 0

ETA_S 1.0 -10.0 10.0 0

[Utilities]

// Id Name Avail linear-in-parameter expression

1 Alt1 av1 ASC1 * one + BETA1 [ BETA1_S ] * x11

2 Alt2 av2 ASC2 * one + BETA1 [ BETA1_S ] * x21

3 Alt3 av3 ASC3 * one + BETA1 [ BETA1_S ] * x31

4 Alt4 av4 ASC4 * one + BETA1 [ BETA1_S ] * x41

5 Alt5 av5 ASC5 * one + BETA1 [ BETA1_S ] * x51

6 Alt6 av6 BETA1 [ BETA1_S ] * x61

[GeneralizedUtilities]

// Id Name Avail linear-in-parameter expression

1 BETA2 [ BETA2_S ] * ( inc ˆ ETA [ ETA_S ] ) * cost1

2 BETA2 [ BETA2_S ] * ( inc ˆ ETA [ ETA_S ] ) * cost2

3 BETA2 [ BETA2_S ] * ( inc ˆ ETA [ ETA_S ] ) * cost3

4 BETA2 [ BETA2_S ] * ( inc ˆ ETA [ ETA_S ] ) * cost4

5 BETA2 [ BETA2_S ] * ( inc ˆ ETA [ ETA_S ] ) * cost5

6 BETA2 [ BETA2_S ] * ( inc ˆ ETA [ ETA_S ] ) * cost6

[Model]

// Currently, only $MNL (multinomial logit), $NL (nested logit), $CNL

// (cross-nested logit) and $NGEV (Network GEV model) are valid keywords

$MNL
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Again, non linearities must be incorporated in the GeneralizedUtilities sec-

tion of the input file.

Panel data

In Biogeme, when panel data is used, it is possible to identify which random pa-

rameters should vary only across individuals, and not across observations. This

functionality is illustrated by the files 17_8.mod and 17_8simple.mod.

2.22 Compiling from the sources

Biogeme 2.4 has been developed using GNU C++ (see, among many others,

?). In general, this environment is available on computer running linux or Mac

OS X operating systems. On computers running Windows, several distributions

of GNU tools are available (?). BIOGEME is actually developed within the

cygwin environment available from www.cygwin.com. The executable it-

self is compiled within the Minimalist GNU for Windows (MinGW)

environment, available at www.mingw.org. The following assumes that you

are familiar with one of these environments. I have included screen shots from

the MinGW environment.

Before starting the installation, make sure to install the Fast Light Toolkit

from www.fltk.org in order to be able to compile the Graphical User Inter-

face.

1. First, the distribution must be unzipped in a directory. It is good practice

to call that directory biogeme, but it is not required. In this example, the

directory is /home/biogeme. After unzipping, the following should

appear in the directory:

2. Before compiling, the environment variable MAKEHOME must contain the
name of the directory where the source files have been installed. Depend-
ing on the Shell you are using, the syntax may be slightly different. If you
use tcsh as a shell, type

setenv MAKEHOME ‘pwd‘

If you use bash as a shell, type
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export MAKEHOME=‘pwd‘

as illustrated here:

3. Type make or gmake to launch the compilation. Depending on your com-

puter, it may take several minutes. You will probably obtain the following

error message:

Just retype make or gmake. When it is done, you’ll obtain something

like:

These executables are now available:

biogeme

bioroute/bioroute

biosim/biosim

fltk/winbiogeme.exe

Make sure that you move them to a directory in your search path for exe-

cutables, or that you update your path so that they can be found.

2.23 Parallel computing with BIOGEME

It is possible to run Biogeme 2.4 much faster for the estimation of multinomial

logit (MNL) models, or mixtures of MNL, in particular those involving nonlinear

utility functions. This is done within the directory fastbiogeme. In order to

illustrate the process, we estimate the model from the file 16panel.mod on a

linux machine with 8 processors. We first copy the model specification file as

well as the data file in the fastbiogeme directory.
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The core of Biogeme 2.4 is available in this directory within the file libbiogeme.dll.

If you are using a linux machine, the extension is expected to be .so, not .dll.

In this case, just rename the file.

Now, the idea is to build an executable dedicated to your model. Before do-

ing that, it is useful to define the number of processors on your computer. Edit

the file default.par and set the parameter gevNumberOfThreads to the

appropriate value. If you define more processors than the actual number, the pro-

gram will run just fine, but may be slowed down due to unnecessary overhead. If

you only have one processor, it is still worth using this procedure, as the running

time is significantly decreased, especially when the model involves nonlinear

utility functions. In this case, set the parameter gevNumberOfThreads to 1.
When you’re done, compile the software using the command

make mymodel.exe

as illustrated below:

As you can see, this involves the compilation of a C++ code. Consequently,
it is recommended to use this feature after you’ve compiled Biogeme 2.4 on
your own computer using the procedure described in Section 2.22. The new
executable can now be used instead of biogeme using the following command:

16panel.exe 16panel sample.dat

instead of

biogeme.exe 16panel sample.dat

This feature is recent. Although we have tested and used it in many circum-

stances, there may be some problems on some computers. Therefore, it is always

good practice to check on simple models that the results provided by the parallel

version are the same as those provided by the regular version of Biogeme 2.4.

Please report any problem to the users’ group.

To illustrate the gain in speed, we have estimated the model 21mixed-lognormal

with 1000 and 5000 draws. The run time for estimation are reported in Table 2.4.
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Internal note: Talk about missing values
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Model Loglike Obs. Ind. BETA1 BETA2

00bl -151.954 1019 1019 0.921 0.954

00bp -151.709 1019 1019 0.509 0.528

01mnl-basic -2477.245 1999 1999 - -

02mnl-weights -2474.038 1999 1999 - -

03mnl-weights -2488.234 1999 1999 - -

04mnl-heterosample -2477.241 1999 1999 - -

05mnl-beta -891.225 1999 1999 0.779 0.81

06mnl-modif-attrib -904.776 1999 1999 12 0.793

07mixed-mnl -890.6261 1999 1999 0.782 0.811

07mixed-unif-mnl -890.8231 1999 1999 0.781 0.81

08mixed-discrete -891.225 1999 1999 -dist.- 0.81

09mnl-nonlinear-deriv -890.775 1999 1999 0.787 0.809

09mnl-nonlinear -890.775 1999 1999 0.787 0.809

10nl-bottom -848.171 1999 1999 0.911 0.943

10nl-constrained -858.941 1999 1999 0.536 0.558

10nl -848.171 1999 1999 0.535 0.554

10nlsim -848.171 1999 1999 0.535 0.554

11cnl -890.902 1999 1999 0.659 0.685

12cnl -846.9552 1999 1999 0.513 0.53

13cnl -846.955 1999 1999 0.513 0.53

14ngev -848.171 1999 1999 0.535 0.554

15ngev -890.92 1999 1999 0.647 0.672

16panel -890.0081 1999 200 0.782 0.813

17expressions -891.162 1999 1999 0.776 0.81

18selectionBias -846.778 1999 1999 0.539 0.558

19panelDiscrete -890.0081 1999 200 -dist.- 0.813

20legendre -891.341 1999 200 0.791 0.815

21mixed-lognormal-deriv -895.748 1999 1999 -0.256 0.806

21mixed-lognormal -895.748 1999 1999 -0.256 0.806

22ordinalLogit -151.954 1019 1019 -0.921 -0.954

23ordinalLogit -2113.617 1672 1672 -0.0856 -0.0968
1 The value will vary from machine to machine due to the random seed

2 On some machines, 12cnl converges to a loglikelihood of -891.225

Table 2.3: Summary of the estimation of the basic examples
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Version # processors Draws

1000 5000

BIOGEME 1 08:03 38:41

FASTBIOGEME 1 01:37 07:48

2 01:08 05:43

4 00:44 03:33

8 00:31 02:21

Table 2.4: Actual run time (mm:ss) of BIOGEME and FASTBIOGEME
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