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1 What’s new?

• IIA test: BIOSIM 1.8 can generate the output necessary to perform a
IIA test (see Section [IIATest] in the .mod file, and Section section 20).

• The utility biomerge has been implemented to allow the merging of the
original data file and the output of BIOSIM 1.8(see Section section 21).

• Some bugs have been fixed. In particular, a significant memory leak
when estimating Network GEV models was identified and fixed.

2 Introduction

BIerlaire Optimization toolbox for GEv Model Estimation (BIOGEME) is a
freeware package designed for the development of research in the context of
discrete choice models in general, and of Generalized Extreme Value models
in particular ([McFadden, 1978]). The distribution of BIOGEME, as well as
related material, is maintained at

biogeme.epfl.ch.

The archives of the users group are at

groups.yahoo.com/group/biogeme

The documentation is currently limited to this document. If both the
document and your “trial-and-errors” do not help solving problems in using
the software, make sure you visit the archives of the users group. If you don’t
find a solution to your problem, post a message to

groups.yahoo.com/group/biogeme/post

Also, your contribution is very appreciated. If you have suggestions to im-
prove BIOGEME, post them to the users group as well.

BIOGEME has been developed on Linux, but two Windows version are
available. One to be executed in a terminal (DOS, Cygwin, or anything else),
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and another with a simple graphical user interface (GUI). We recommend to
use BIOGEME 1.8 in a terminal. The GUI is designed for teaching purposes,
where simple models are estimated.

With BIOGEME comes BIOSIM. Designed to perform simulations with
a given model, it is described in section 16.

The software BIOROUTE, distributed with previous versions of BIO-
GEME is no longer available. We plan to implement a new version in the
future.

In Section 23, we comment on the examples distributed with BIOGEME 1.8.
BIOGEME is distributed free of charge. We ask each user

1. to register to Biogeme’s users group, and

2. to mention explicitly the use of the package when publishing results,
using the following references:

• Bierlaire, M. (2003). BIOGEME: A free package for the esti-
mation of discrete choice models , Proceedings of the 3rd Swiss
Transportation Research Conference, Ascona, Switzerland.

• Bierlaire, M. (2008). Estimation of discrete choice models with
BIOGEME 1.8, biogeme.epfl.ch

If you have any question about BIOGEME 1.8, post them on the users’
group.

3 A simple example

Assume that we want to estimate a multinomial logit model with 6 alterna-
tives, where the utility function associated with alternative i is

Vi = ASCi + β1xi1 + β2xi2 (1)

where ASCi, i = 1, . . . , 6, β1 and β2 are coefficients to be estimated. Note
that the coefficient ASCi are alternative specific constants, and not all of
them are identified.

In order to estimate the coefficients of the model, we use a data file called
sample.dat including (among others) the following data: Choice, taking
value from 1 to 6 and identifying the choice actually made for each observa-
tion, x11, x21, x31, x41, x51, x61, x12, x22, x32, x42, x52, x62, which are
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the two variables of the model associated with each alternative, av1, av2,
av3, av4, av5, av6, which have the value 1 if the associated alternative is
available for the current observation, and 0 otherwise.

BIOGEME 1.8 assumes that the data file contains in its first line a list
of labels corresponding to the available data, and that each subsequent line
contains the exact same number of numerical data, each row corresponding
to an observation. Delimiters can be tabs or spaces.

BIOGEME 1.8 also needs a file where the model specification is described.
Use your favorite text editor to create such a file, which must have .mod as
an extension. This file is organized into many sections, most of them being
optional. For our simple example, we must define at least 5 sections:

1. Section Choice: it simply describes to BIOGEME 1.8 where the de-
pendent variable can be found in the file. The syntax is

[Choice]

Choice

Note that the syntax is case sensitive, and that choice is different from
Choice.

2. Section Beta: this section describes to BIOGEME 1.8 the list of coef-
ficients that must be estimated. The syntax is

[Beta]

// Name Value LowerBound UpperBound status (0=variable, 1=fixed)

ASC1 0 -10000 10000 1

ASC2 0 -10000 10000 0

ASC3 0 -10000 10000 0

ASC4 0 -10000 10000 0

ASC5 0 -10000 10000 0

ASC6 0 -10000 10000 0

BETA1 0 -10000 10000 0

BETA2 0 -10000 10000 0

We immediately note that every line starting by // are ignored by
BIOGEME 1.8 and are used to include comments in the file. The
section is organized into columns. The first column contains the name
of the coefficients. The second column contains a default value (usually
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0). The third and fourth columns contain lower and upper bounds
(respectively) on the value of the coefficients. Using -10000 and 10000
by default is appropriate is the vast majority of practical cases. The
last column tells BIOGEME 1.8 is the coefficient must be estimated
(0), or must be maintained at its default value (1). In this example,
not all alternative specific constants are identified. Therefore, ASC1 is
fixed to its default value 0 by putting a 1 in the last column.

3. Section Utilities: This is were the specification of the utility func-
tions is described. The specification for one alternative must start at a
new row, and may actually span several rows. For each of them, four
entries are specified:

(a) The identifier of the alternative, with a numbering convention
consistent with section [Choice];

(b) The name of the alternative;

(c) The availability condition. In this case, it is a direct reference to
one of the entries in the data file;

(d) The linear-in-parameter utility function is composed of a list of
terms, separated by a +. Each term is composed of the name of a
parameter and the name of an attribute, separated by a *. Note
that a space is required after each parameter name parameter.

[Utilities]

// Id Name Avail linear-in-parameter expression

1 Alt1 av1 ASC1 * one + BETA1 * x11 + BETA2 * x12

2 Alt2 av2 ASC2 * one + BETA1 * x21 + BETA2 * x22

3 Alt3 av3 ASC3 * one + BETA1 * x31 + BETA2 * x32

4 Alt4 av4 ASC4 * one + BETA1 * x41 + BETA2 * x42

5 Alt5 av5 ASC5 * one + BETA1 * x51 + BETA2 * x52

6 Alt6 av6 ASC6 * one + BETA1 * x61 + BETA2 * x62

4. Section Expressions: it describes to BIOGEME 1.8 how to compute
attributes not directly available from the data file. In this example, the
only such attribute is one.

[Expressions]
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// Define here arithmetic expressions for name that are not

// directly available from the data

one = 1

5. Section Model: it tells BIOGEME 1.8 which assumptions must be used
regarding the error term, that is which type of model must be esti-
mated. In this example, it is the multinomial logit model.

[Model]

// Currently, only $MNL (multinomial logit),

// $NL (nested logit), $CNL (cross-nested logit) and

// $NGEV (Network GEV model) are valid keywords

$MNL

Assume we have typed these sections in the file mymodel.mod. BIO-
GEME 1.8 is then run in a shell using the command

biogeme mymodel sample.dat

The following information appears on the screen:

• Information about the version of BIOGEME. The date is when the
software was compiled.

BIOGEME Version 1.7 [Sun Aug 3 11:04:51 2008]

Michel Bierlaire, EPFL

• BIOGEME 1.8 checks is a file called mymodel.par, containing various
parameters, exists. If not, it checks if the file called default.par exists.
If not, it creates it and set default values to the parameters. That’s
what most users need in the beginning. Note that the information like
[14:42:32]patFileNames.cc:68 can be safely ignored.

[14:42:32]patFileNames.cc:68 mymodel.par does not exist

[14:42:32]patFileNames.cc:72 Trying default.par instead

[14:42:32]patBiogeme.cc:135 File default.par does not exist. Default values will be used

[14:42:32]patBiogeme.cc:137 A file default.par has been created

• BIOGEME 1.8 then reads the model and data files and reports various
information.
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Read headers in sample.dat

22 headers read in sample.dat

Total number of different headers: 22

Read file mymodel.mod

Opening file sample.dat

Data file... line 500 Memory: 131 Kb

Data file... line 1000 Memory: 263 Kb

Total obs.: 999

Total memory: 263.672 Kb

Detailed info in mymodel.sta

Nbr of attributes: 23

Nbr of alternatives: 6

Sample size: 1000

Nbr of groups: 1

Nbr of betas: 8

Run time for data processing: 00:01

Dimension of the optimisation problem = 7

Utility function: Linear-in-parameters

• BIOGEME 1.8 then starts the estimation. It displays miscellaneous
information at each iteration of the estimation algorithm.

Init loglike=-1605.17

gmax Iter radius f(x) Status rhok nFree

+1.47e+00 1 1.00e+00 +1.6051696e+03 ****Converg +1.14e+00 7 ++

+3.61e-01 2 2.00e+00 +7.9759926e+02 ****Converg +1.24e+00 7 ++

+1.27e-01 3 4.00e+00 +6.2840108e+02 ****Converg +1.20e+00 7 ++

+3.62e-02 4 8.00e+00 +5.8370521e+02 ****Converg +1.11e+00 7 ++

+5.55e-03 5 1.60e+01 +5.7697041e+02 ****Converg +1.01e+00 7 ++

+4.50e-04 6 3.20e+01 +5.7600869e+02 ****Converg +1.00e+00 7 ++

+3.97e-05 7 6.40e+01 +5.7600213e+02 ****Converg +1.00e+00 7 ++

Convergence reached...

• For small problems (up to dimension 10), the solution of the optimiza-
tion problem as well as the gradient of the loglikelihood are displayed
in a raw format. Most users will not use this.

Solution = (-0.168235 -0.0436858 -0.486438 0.703237 -1.34032

0.75924 0.775727 )
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gk=(-4.60024e-06 2.17273e-05 -4.03214e-05 -2.35469e-06 1.43316e-05

-8.22817e-05 -6.41706e-05 )

• BIOGEME 1.8 reports the running time and prepares the output files.

Run time: 00:01

Final log-likelihood=-576.002

Be patient... BIOGEME is preparing the output files

Run time for var/covar computation: 00:00

• For the record, BIOGEME 1.8 reports the list of files that were actually
used as input.

BIOGEME Input files

===================

Parameters: default.par

Model specification: mymodel.mod

Sample 1 : sample.dat

• BIOGEME 1.8 reports the list of files that have been created, con-
taining the results of the estimation, as well as many other pieces of
information.

BIOGEME Output files

====================

Estimation results: mymodel.rep

Estimation results (HTML): mymodel.html

Estimation results (Latex): mymodel.tex

Estimation results (ALogit): mymodel.F12

Result model spec. file: mymodel.res

Sample statistics: mymodel.sta

• BIOGEME 1.8 reports also the name of files that may be helpful in
understanding problems with the model.

BIOGEME Debug files

===================

Log file: mymodel.log
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Parameters debug: parameters.out

Model debug: model.debug

Model spec. file debug: __specFile.debug

• BIOGEME 1.8 reports some information specific to the model. For
MNL, it reports the minimum argument of all exponentials computed
during the process, in order to signal a possible underflow. Most users
do not worry about this information.

Model informations: Multinomial Logit Model

==================

The minimum argument of exp was -18.2387

• Finally, BIOGEME 1.8 reports the time of the run.

Run time for estimation: 00:02

Total run time: 00:03

For the results, most users will consult the HTML file using their preferred
browser. A file written in ASCII format is also available, with the extension
.rep. A file with LATEX code is also created, so that the results can easily
be integrated in a report or an article written with this word processor. The
output looks like:

Model : Multinomial Logit
Number of estimated parameters : 7

Number of observations : 1000
Number of individuals : 1000

Null log-likelihood : -1605.170
Init log-likelihood : -1605.170

Final log-likelihood : -576.002
Likelihood ratio test : 2058.335

Rho-square : 0.641
Adjusted rho-square : 0.637
Final gradient norm : +1.150e-04

Diagnostic : Convergence reached...
Iteration : 7

Run time : 00:01
Variance-covariance : from analytical hessian

Sample file : sample.dat
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Summary statistics
Number of observations = 1000

L(0) = −1605.170

L(β̂) = −576.002

−2[L(0) − L(β̂)] = 2058.335

ρ2 = 0.641

ρ̄2 = 0.637

Robust
Variable Coeff. Asympt.
number Description estimate std. error t-stat p-value

1 ASC2 -0.168 0.164 -1.02 0.31
2 ASC3 -0.0437 0.172 -0.25 0.80
3 ASC4 -0.486 0.180 -2.70 0.01
4 ASC5 0.703 0.167 4.20 0.00
5 ASC6 -1.34 0.207 -6.48 0.00
6 BETA1 0.759 0.0372 20.43 0.00
7 BETA2 0.776 0.0368 21.06 0.00

4 Invoking BIOGEME 1.8

BIOGEME 1.8 is invoked in a shell under Linux, in a DOS command window
or a Cygwin command window under Windows using the following statement
structure

biogeme model_name sample_file_1 sample_file2 sample_file3 ...

By default, the sample_file_1 is assumed to be sample.dat, and the
model_name to be default. Therefore, typing

biogeme model_name

is equivalent to typing

biogeme model_name sample.dat

and typing

biogeme

is equivalent to typing
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biogeme default sample.dat

Finally, typing

biogeme -h

generates an output looking like

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

BIOGEME Version n.x [date]

Michel Bierlaire, EPFL

-- Compiled by Michel Bierlaire on MINGW32_NT-5.1

See http://biogeme.epfl.ch

!! CFSQP is available !!

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

"In every non-trivial program there is at least one bug."

Usage: biogeme model_name sampleFile1 sampleFile2 sampleFile3 ...

If the name of the model is mymodel, say, BIOGEME 1.8 reads the fol-
lowing files:

• a file containing the parameters controlling the behavior of BIOGEME 1.8:
mymodel.par (section 5)

• a file containing the model specification: mymodel.mod (section 6)

• a file containing the data: sample.dat (section 7)

• optionally a file containing the random numbers to use if estimation is
based on simulation.

It automatically generates the following output files:

• a file reporting the results of the estimation: mymodel.rep (section 10),

• the same file in HTML format,

• a file containing the main results in LATEX format: mymodel.tex,

• a file containing the main results in ALogit format: mymodel.F12,
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• a file containing the specification of the estimated model, in the same
format as the model specification file: mymodel.res

• a file containing the specification of the estimated model at each itera-
tion, in the same format as the model specification file: mymodel.bck

(only if the parameter gevSaveIntermediateResults is set to one),

• a file containing some descriptive statistics on the data: mymodel.sta

(section 9),

and the following files to help understanding possible problems

• a file containing messages produced by BIOGEME 1.8 during the run:
mymodel.log

• a file containing the values of the parameters which have been actually
used by BIOGEME 1.8: parameters.out

• a file containing the data stored in BIOGEME 1.8 to represent the
model: model.debug

• a file containing the specification of the model, as it has actually been
understood by BIOGEME 1.8: specFile.debug

These file names may be modified, according to the following rules:

1. If an input file mymodel.xxx does not exist, BIOGEME 1.8 attempts to
open the file default.xxx. If this file does not exist, BIOGEME 1.8 ex-
its with an error. Typically, the parameter file is not model-dependent.
Therefore, it is common to call it default.par to avoid copying it for
each different model to be estimated.

2. If an output file mymodel.xxx already exists, BIOGEME 1.8 does not
overwrite it. Instead, it creates the file mymodel~1.xxx. If the file
mymodel~1.xxx exists, BIOGEME 1.8 creates the file mymodel~2.xxx,
and so on.

To avoid any ambiguity, BIOGEME 1.8 displays the filenames it has
actually used for a specific run, for instance

14



BIOGEME Input files

===================

Parameters: default.par

Model specification: mymodel.mod

Sample 1 : sample.dat

Sample 2 : sample2.dat

BIOGEME Output files

====================

Estimation results: mymodel~3.rep

Estimation results (HTML): mymodel~3.html

Estimation results (Latex): mymodel~5.tex

Estimation results (ALogit): mymodel~1.F12

Result model spec. file: mymodel~2.res

Sample statistics: mymodel~1.sta

BIOGEME Debug files

===================

Log file: mymodel.log

Parameters debug: parameters.out

Model debug: model.debug

Model spec. file debug: __specFile.debug

BIOGEME 1.8 also generates a file called summary.html where a sum-
mary of all runs performed in the working directory are gathered. The name
of this file can be modified (section 5).

It is highly recommended to regularly clean the working directory and
save the output files in a different place.

4.1 Graphical user’s interface

The version of Biogeme with a Graphical user’s interface (GUI) is a very
simple interface (see Figures 1 on the following page and 2 on page 17)
developed with the library Fast Light Toolkit.

The user must select the model specification file and the data file, then
click one of the two buttons:

• Estimate for Biogeme.

• Simulate for Biosim.
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If the run completes successfully, the name of the report file is displayed at
the bottom of the screen. It can be viewed by clicking on the appropriate
button.

Figure 1: Graphical User Interface when winbiogeme.exe is launched

5 Parameter file

The parameter file provides the parameters controlling the execution of BIO-
GEME 1.8. It is not mandatory. If it does not exist, BIOGEME 1.8 uses
the default values, and automatically creates a file named default.par. If
entries are missing in the file, BIOGEME 1.8 will use the default values.

The file is divided into sections, each section containing a list of parame-
ters and their corresponding value.

Section [GEV ]

The five first parameters are the only parameters which most users will
ever use. The others are sorted alphabetically.
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Figure 2: Graphical User Interface when the run is finished

gevAlgo It selects the optimization algorithm to be used for log-likelihood
estimation. As of now, "BIO", "BIOMC", "CFSQP", "SOLVOPT" and
"DONLP2" are valid entries. The default is "BIO". More details
about these algorithms are available at section 13.

gevScreenPrintLevel This parameter defines the level of display to
be produced on the screen during a run. Valid values are 1 for
general messages only, 2 for detailed messages, and 3 for debug
messages. Default: 1.

gevLogFilePrintLevel This parameter defines the level of display to
be produced in the log file during a run. Valid values are 1 for
general messages only, 2 for detailed messages, and 3 for debug
messages. Default: 2.

gevPrintVarCovarAsList If set to 1, the variance-covariance matrix
of the estimated parameters is displayed as a list (one row per
entry). Default: 1.

gevPrintVarCovarAsMatrix If set to 1, the variance-covariance ma-
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trix of the estimated parameters is displayed as a matrix. We
recommend to use this feature only if the number of parameters
is small (not more than 10). Default: 0.

gevAutomaticScalingOfLinearUtility If 1, linear utility functions
are automatically scaled to avoid numerical problems during the
estimation. The scaling is computed in such a way that all at-
tributes have a level of magnitude of about 1.0. Default value:
0.

gevBinaryDataFile This is the name of the binary data file where the
processed data are stored. Default: BiogemeData.bin.

gevBufferSize BIOGEME 1.8 reads the first line of the data files, and
stores it in a buffer to analyze it and extract the labels. The size
of the buffer is determined by this parameter. The default value is
100’000. Adapt the value if the first line of your data file contains
more that 99’999 characters. BIOGEME provides a warning if the
default value is exceeded.

gevCheckDerivatives If set to 1, the analytical derivatives of the log-
likelihood functions and the nonlinear constraints are compared
to the finite difference derivatives. This is used basically when a
new model is included and for debugging purposes. Default value:
0.

gevDataFileDisplayStep While pre-processing the data file before
the estimation, BIOGEME 1.8 reports progress each time it has
read a given number of rows. This number is specified by the pa-
rameter getDataFileDisplayStep, and its default value is 500.

gevDebugDataFirstRow BIOGEME 1.8 can print what it actually reads
from the data file. This parameter is the number of the first row
for which his information is displayed. It is recommended to use
it when strange results are generated by the package. It helps
identifying garbage in the data file, such as strings, for instance.
Default: 0.

gevDebugDataLastRow BIOGEME 1.8 can print what it actually reads
from the data file. This parameter is the number of the last row
for which this information is displayed. Default: 0.

gevDecimalDigitsStats Number of digits after the decimal points to
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be used for printing general statistics in the output files. Default:
3.

gevDecimalDigitsTTest Number of digits after the decimal points to
be used for printing t-tests in the output files. Default: 2.

gevDumpDrawsOnFile If set to 1, BIOGEME 1.8 dumps the draws used
for simulated likelihood estimation. The name of the file is dis-
played at the end of the run. If the model name is model, the
filename is model.draws. Default value: 0.

gevForceScientificNotation If 1, use the scientific notation for print-
ing results, like in previous versions of Biogeme. Default: 0.

gevGenerateActualSample If set to 1, BIOGEME 1.8 generates a
copy of the sample file containing only the observations that have
not been excluded. Default: 0.

gevMinimumMu When the homogeneity parameter µ of GEV models is
estimated, its theoretical lower bound must be zero. However, nu-
merically, a value of 0 generates problems during the computation
of the model. Therefore, the lower bound is automatically set to
the value defined by this parameter. Default: 1.0e-5.

gevMaxPrimeNumber The generation of Halton sequences is based on
prime numbers. This parameter defines the maximum number of
prime numbers that can be used. Most users will never have to
change the default value. But if it is too low, an error message is
generated:

Warning: Error: 23 Halton series must be generated,

but there are only 10 prime numbers available.

Increase the value of gevMaxPrimeNumber in the

parameters file

Default value: 1000.

gevMissingValue This parameter is used mainly for debugging pur-
poses. It defines the value given to missing values in the data file.
If one of them is used in the computation of the utility functions,
an error message is triggered. Default value: 99999.0

gevOutputActualSample If parameter gevGenerateActualSample is
set to 1, this parameter defines the name of the file where the
sample is saved. Default: __actualSample.dat.
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gevPrintPValue If 1, print the p-value in the results. The p-value is
computed as follows: if t is the t-test of the parameters,

p = 2(1−Φ(t)), (2)

where Φ(·) is the cumulative density function of the univariate
normal distribution. Default: 1.

gevRandomDistrib There are three valid entries for this parameter:
PSEUDO, MLHS and HALTON. If PSEUDO is selected, maximum sim-
ulated likelihood is based on pseudo-random draws. If HALTON

is selected, Halton sequences are generated. If MLHS is selected,
a Modified Latin Hypercube Sampling strategy is adopted (see
[Hess et al., 2006]). Default: PSEUDO

gevSaveIntermediateResults If 1, the current estimates are saved
at each iteration in a file with extension .bck. This is particu-
larly useful for models that take a while to estimate, so that the
estimation can be restarted from the last iterate. Default: 0.

gevSeed It defines the seed value for the pseudo-random number gen-
erator. Default value: 9021967

gevSignificantDigitsParameters Number of significant digits to be
used for printing estimated parameters in the output files. De-
fault: 3.

gevSingularValueThreshold Identification problems are analyzed us-
ing a Singular Value Decomposition procedure. If a singular value
is small (that is, its absolute value is less than the value defined
by this parameter), the model is considered degenerate and the
source of this degeneracy is displayed. Default: 1.0e-4.

gevStopFileName During the optimization process, BIOGEME 1.8
checks for the existence of a file, whose name is defined by this
parameter. If the file exists, BIOGEME 1.8 interrupts the itera-
tions and generate output files. This is convenient to prematurely
stop iterations without loosing the computations performed thus
far. The default value is "STOP".

gevStoreDataOnFile BIOGEME 1.8 uses a database gathering the
processed data from the file provided by the user and, if applicable,
the draws for the simulated maximum likelihood estimation. If the
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parameter is 0, the database is stored in memory. If 1, it is stored
in the binary file defined by the parameter gevBinaryDataFile.
It is recommended to use 0, except if the data does not fit in
memory. Indeed, accessing to the file slows down the estimation
process. Default: 0.

gevSummaryFile Name of the file summarizing several runs of BIO-
GEME 1.8. Default value: summary.html

gevSummaryParameters Name of the file containing the name of the
parameters whose estimated values must be reported in the sum-
mary file. Default value: summary.lis

gevVarCovarFromBHHH The computation of the variance-covariance ma-
trix of the estimated parameters using finite difference approxima-
tion may take a while for complex models. It is sometimes useful
to use the BHHH approximation, which is much faster to com-
pute. If so, set this parameter to 1. It is recommended not to use
BHHH in the final model. Default: 0.

gevTtestThreshold Set the threshold for the t-test hypothesis tests.
If the absolute value of a t-test is less than gevTtestThreshold,
a symbol * will be appended to the relevant line in the report file
(section 10). Default value: 1.96.

gevWarningLowDraws BIOGEME 1.8 displays a warning if the number
of draws for simulated maximum likelihood estimation is consid-
ered too low. This parameter defines the threshold used in the
generation of this warning message. Note that it has no effect on
the estimation itself. Default: 1000.

gevWarningSign When a t-test is not successful, a warning size is dis-
played in the report file and in the HTML file. This parameter
defines the nature of this sign. Default value: *.

The following are new in BIOGEME 1.8:

gevNumberOfThreads When BIOGEME 1.8 is compiled to work with
parallel processors, this parameter specifies the number of threads
that will be launched. Note that it may exceed the actual number
of available processors. However, this may affect the performance
by creating unnecessary overhead. It is therefore advised to set
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this parameter to the exact number of available processors. De-
fault: 4.

gevOne Name of the expression that is replaced by the value 1.0. It
can be used in the specification of the utility without explicitly
defining it in the Section [Expressions]. Default: one.

gevEigenvalueThreshold An eigenvalue is considered to be zero (and
the matrix considered to be singular) if its absolute value is less
or equal to the value of this parameter. Default: 1.0e-6.

The following are new in BIOSIM 1.8:

gevNonParamPlotRes This parameter defines the number of equally
distributed values on the x-axis used to generate nonparametric
plots. Default: 100.

gevNonParamPlotMaxY When generating nonparametric plots, values
larger that this parameter are considered equal to the parame-
ter. Symmetrically, values lower than the negative parameter are
considered equal to the negative value. Default: 1000.0.

gevNonParamPlotXSizeCm Width in centimeters of the nonparametric
plots in the LATEX output. Default: 15.

gevNonParamPlotYSizeCm Height in centimeters of the nonparametric
plots in the LATEX output. Default: 10.

gevNonParamPlotMinXSizeCm Units on the x-axis are computed auto-
matically for nonparametric plots, but will no be lower than the
value of this parameter. Default: 0.00001.

gevNonParamPlotMinYSizeCm Units on the y-axis are computed auto-
matically for nonparametric plots, but will no be lower than the
value of this parameter. Default: 0.00001.

Section [BasicTrustRegion ]

This section is designed for the BIO and BIOMC optimization algo-
rithms (see section 13).

BTRMaxIter Maximum number of iterations to be performed. Default:
1000.

BTRTypf Typical value of the log-likelihood function (see section 13).
Default: 1.0.

22



BTRTolerance Value used for the stopping criterion (see section 13).
Default: 6.05545e-06.

BTRCheapHessian If 1, BHHH (see [Berndt et al., 1974]) is used as an
approximation of the second derivatives matrix. Default: 1.

BTRUsePreconditioner If 1, the subproblem is preconditioned using
a modified Cholesky factorization ([Schnabel and Eskow, 1991]).
Default: 0

BTRInitRadius Defines the initial radius of the trust region. Default:
1.

BTRIncreaseTRRadius Defines the factor by which the trust region is
updated. Default: 2.

BTRMinTRRadius Defines the minimum radius of the trust region. If
this radius is reached, the iterations are interrupted. Default:
1.0e-7.

BTRMaxTRRadius Defines the maximum radius of the trust region. If
this radius is reached, the trust region is not enlarged anymore.
Default: 1.0e10.

BTRStartDraws If BIOMC is used for simulated maximum likelihood
estimation, this parameter defines the number of draws which are
used during the first iterations. Default: 10.

BTRIncreaseDraws If BIOMC is used for simulated maximum likeli-
hood estimation, this parameters defines the factor by which the
number of draws is increased. Default: 2.

Section [cfsqp ] This section is designed to define parameters needed by
the CFSQP algorithm (section 13).

cfsqpIprint Set it to 1 for silent mode, and to 2 for information at
each iteration of the optimization algorithm. Default is 1.

cfsqpMaxIter Maximum number of iterations. Default is 500.

cfsqpMode Even if it is a descent algorithm, CFSQP sometimes allows
non-monotone iterates, hoping not to be trapped in local minima.
If the function is convex, a descent algorithm is more appropriate.
In this case, set the value to 100. See CFSQP manual for more
details. Default is 110.
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cfsqpEps See CFSQP manual. Default is 6.05545e-06. In general, it
should not be changed.

cfsqpEpsEqn See CFSQP manual. Default is 6.05545e-06. In general,
it should not be changed.

cfsqpUdelta See CFSQP manual. Default is 0.0. In general, it should
not be changed.

Section [solvopt ] This section is designed to define parameters needed by
the SOLVOPT algorithm (section 13).

solvoptMaxIter Maximum number of iterations. Default is 15000.

solvoptDisplay Controls the display of the algorithm. See SOLVOPT
manual. Default is 1.

solvoptErrorArgument See SOLVOPT manual. Default is 1.0e-4. In
general, it should not be changed.

solvoptErrorFunction See SOLVOPT manual. Default is 1.0e-6. In
general, it should not be changed.

Section [donlp2 ] This section is designed to define parameters needed by
the DONLP2 algorithm (section 13).

donlp2Epsx See DONLP2 manual. Default is 1.0e-5. In general, it
should not be changed.

donlp2Delmin See DONLP2 manual. Default is 1.0e-6. In general, it
should not be changed.

donlp2Smallw See DONLP2 manual. Default is 3.66685e-11. In gen-
eral, it should not be changed.

donlp2Epsdif See DONLP2 manual. Default is 0.0. In general, it
should not be changed.

donlp2NReset See DONLP2 manual. Default is 9 . In general, it
should not be changed.

It seems that syntax errors in default.par cause BIOGEME 1.8 to skip
the rest of the file, ignoring all remaining parameters without complain-
ing. This “bug” still has to be fixed. BIOGEME 1.8 writes in the file
parameters.out the values of the parameters that have been actually used.
Make sure you check this file regularly.
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Name Value
gevAlgo BIO

gevScreenPrintLevel 1
gevLogFilePrintLevel 2

gevPrintVarCovarAsList 1
gevPrintVarCovarAsMatrix 0

gevAutomaticScalingOfLinearUtility 0
gevBinaryDataFile BiogemeData.bin

gevBufferSize 100000
gevCheckDerivatives 0

gevDataFileDisplayStep 500
gevDebugDataFirstRow 0
gevDebugDataLastRow 0
gevDecimalDigitsStats 3

gevDecimalDigitsTTest 2
gevDumpDrawsOnFile 0

gevEigenvalueThreshold 1.0e-6
gevForceScientificNotation 0
gevGenerateActualSample 0

gevMinimumMu 1.0e-5
gevMaxPrimeNumber 1000

gevMissingValue 99999

Table 1: Default values of the parameters
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Name Value
gevNonParamPlotMaxY 1000.0

gevNonParamPlotMinXSizeCm 0.00001
gevNonParamPlotMinYSizeCm 0.00001

gevNonParamPlotRes 100
gevNonParamPlotXSizeCm 15
gevNonParamPlotYSizeCm 10

gevNumberOfThreads 4
gevOne one

gevOutputActualSample actualSample.dat

gevPrintPValue 1
gevRandomDistrib PSEUDO

gevSaveIntermediateResults 0
gevSeed 9021967

gevSignificantDigitsParameters 3
gevSingularValueThreshold 1.0e-4

gevStopFileName STOP
gevStoreDataOnFile 0

gevSummaryFile summary.log

gevSummaryParameters summary.lis

gevVarCovarFromBHHH 0
gevTtestThreshold 1.96

gevWarningLowDraws 1000
gevWarningSign *

Table 2: Default values of the parameters (ctd)
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6 Model specification file

The file mymodel.mod contains the specification of the discrete choice model
to be estimated. The sections of this file have to be specified as described
below. Note that comments can be included using //. All characters after
this command, up to the end of the current line, are ignored.

[ModelDescription] Type here any text that describes the model. It may
contain several lines. Each line must be within double-quotes, like this

[ModelDescription]

"This is the first line of the model description"

"This is the second line of the model description"

Note that it will be copied verbatim in the LATEX file. Therefore, if it
contains special characters which are interpreted by LATEX, such as $
or &, you may need to edit the LATEX file before processing it.

[Choice] Provide here the formula to compute the identifier of the chosen
alternative from the data file. Typically, a “choice” entry will be
available directly in the file, but any formula can be used to compute
it. Assume for example that you have numbered alternatives 100, 200
and 300. But in the data file, they are numbered 1,2 and 3. In this
case, you must write

[Choice]
100 * choice

Any expression described in Section [Expressions] is valid here.

[Weight] Provide here the formula to compute the weight associated to
each observation. The weight of an observation will be multiplied to
the corresponding term in the log-likelihood function. Ideally, the sum
of the weights should be equal to the total number of observations,
although it is not required. The file reporting the statistics contains
a recommendation to adjust the weights in order to comply with this
convention.

Important: do not use weights in BIOSIM 1.8.
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[Beta] Each line of this section corresponds to a parameter of the utility
functions. Five entries must be provided for each parameter:

1. Name: the first character must be a letter (any case) or an under-
score (_), followed by a sequence of letters, digits, underscore (_)
or dashes (-), and terminated by a white space. Note that case
sensitivity is enforced. Therefore varname and Varname would
represent two different variables.

2. Default value that will be used as a starting point for the estima-
tion, or used directly for the simulation in BIOSIM.

3. Lower bound on the valid values1;

4. Upper bound on the valid values;

5. Status, which is 0 if the parameter must be estimated, or 1 if the
parameter has to be maintained at the given default value.

Note that this section is independent of the specific model to be esti-
mated, as it captures the deterministic part of the utility function.

[Beta]
// Name Value LowerBound UpperBound status

ASC1 0 -10000 10000 1
ASC2 -0.159016 -10000 10000 0
ASC3 -0.0869287 -10000 10000 0
ASC4 -0.51122 -10000 10000 0
ASC5 0.718513 -10000 10000 0
ASC6 -1.39177 -10000 10000 0
BETA1 0.778982 -10000 10000 0
BETA2 0.809772 -10000 10000 0

[Mu] µ is the homogeneity parameter of the GEV model. Usually, it is
constrained to be one. However, BIOGEME 1.8 enables to estimate it
if requested (see example 10nl-bottom.mod for a nested logit model
normalized from the bottom, so that µ is estimated). Four entries are
specified here:

1Bounds specification is mandatory in BIOGEME 1.8. If you do not want bounds, just
put large negative values for lower bounds and large positive values for upper bounds.
Anyway, if the bound is not active at the solution, it does not play any role, except for
safeguarding the algorithm.
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1. Default value that will be used as a starting point for the estima-
tion (common value: 1.0);

2. Lower bound on the valid values (common value: 1.0e-5);

3. Upper bound on the valid values (common value: 1.0);

4. Status, which is 0 if the parameter must be estimated, or 1 if the
parameter has to be maintained at the given value.

[Utilities] Each row of this section corresponds to an alternative. Four
entries are specified:

1. The identifier of the alternative, with a numbering convention
consistent with the choice definition;

2. The name of the alternative: the first character must be a letter
(any case) or an underscore (_), followed by a sequence of letters,
digits, underscore (_) or dashes (-), and terminated by a white
space;

3. The availability condition: this must be a direct reference to an
entry in the data file (see Section 7), or to an expression defined
in the Section [Expressions];

4. The linear-in-parameter utility function is composed of a list of
terms, separated by a +. Each term is composed of the name
of a parameter and the name of an attribute, separated by a *.
The parameter must be listed in Section [Beta], if it is a regular
parameter. If it is a random parameter, the syntax is

nameParam [ nameParam ]

in the case of the normal distribution, or :

nameParam { nameParam }

to get a random parameter that comes from a uniform distribu-
tion. For example, in the case of the normal:

BETA [ SIGMA ]

29



Note that the blank after each name parameter is required. Also,
parameters BETA and SIGMA have to be listed in Section [Beta].
In the context of an independent random parameter, BETA repre-
sents the mean while SIGMA corresponds to the standard devia-
tion. With correlated random parameters, SIGMA technically cor-
responds to the appropriate term in the Cholesky decomposition
matrix that captures the variance-covariance structure among the
random parameters. For more details, see the technical section
on Cholesky factorization An attribute must be an entry of the
data file, or an expression defined in Section [Expressions]. In or-
der to comply with this syntax, the Alternative Specific Constants
must appear in a term like ASC * one, where one is defined in the
Section [Expressions]. Here is an example:

[Utilities]
// Id Name Avail linear-in-parameter expression

1 Alt1 av1 ASC1 * one + BETA1 [SIGMA] * x11 + BETA2 * x12
2 Alt2 av2 ASC2 * one + BETA1 [SIGMA] * x21 + BETA2 * x22
3 Alt3 av3 ASC3 * one + BETA1 [SIGMA] * x31 + BETA2 * x32
4 Alt4 av4 ASC4 * one + BETA1 [SIGMA] * x41 + BETA2 * x42
5 Alt5 av5 ASC5 * one + BETA1 [SIGMA] * x51 + BETA2 * x52
6 Alt6 av6 ASC6 * one + BETA1 [SIGMA] * x61 + BETA2 * x62

If the utility function does not contain any part which is linear-
in-parameters, then the keyword $NONE must be written. For ex-
ample:

[Utilities]
// Id Name Avail linear-in-parameter expression
1 Alt1 av1 $NONE

[GeneralizedUtilities] This section enables the user to add nonlinear
terms to the utility function. For each alternative, the syntax is sim-
ply the identifier of the alternative, followed by the expression. For
example, if the utility of alternative 1 is

β1x11 + β2
xλ12 − 1

λ
,

the syntax is

[Utilities]
1 Alt1 av1 BETA_1 * X11
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[GeneralizedUtilities]
1 BETA_2 * (X21 ^ LAMBDA - 1) / LAMBDA

Another example where a non-linear part is required is when specifying
a log-normal random coefficient. Consult: Example LogNormal.

[ParameterCovariances] BIOGEME 1.8 allows normally distributed ran-
dom parameters to be correlated, and can estimate their covariance.
By default, the variance-covariance matrix of the random parameters
is supposed to be diagonal, and no covariance is estimated. If some
covariances must be estimated, each pair of correlated random coef-
ficients must be identified in this section. Each entry of the section
should contain:

1. The name of the first random parameter in the given pair. If it
appears in the utility function as BETA [ SIGMA ], its name must
be typed BETA_SIGMA.

2. The name of the second random parameter involved in the pair,
using the same naming convention.

3. The default value that will be used as a starting point for the
estimation;

4. The lower bound on the valid values;

5. The upper bound on the valid values;

6. The status, which is 0 if the parameter must be estimated, or 1 if
the parameter has to be maintained at the given value.

See Section 24.3.1 for an example. If no covariance is to be estimated,
you must either entirely remove the section, or specify $NONE as follows:

[ParameterCovariances]
$NONE

[Draws] Number of draws to be used in Maximum Simulated Likelihood
estimation.
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[Expressions] In this section are defined all expressions appearing either in
the availability conditions or in the utility functions of the alternatives
defined in Section [Utilities]. If the expression is readily available from
the data file, it can be omitted in the list. We show their use with the
help of an example in section 8. As we will discover later in the tutorial,
it is good practice to generate new variables from this section especially
when one objective is to compute market shares or to evaluate effects
of policies with the help of BIOSIM 1.8.

We now summarize the syntax that can be used for generating new
variables. Variables which form an expression might be of type float
or of type integer. You can use numerical values or the name of a
numerical variable. New variables can be created using unary and
binary expression operators.

Unary expressions:

1. y = sqrt(x) // y is square root of x.

2. y = log(x) // y is natural log of x.

3. y = exp(x) // y is exponential of x.

4. y = abs(x) // y is absolute value of x.

binary expression: (Numerical)

1. y = x + z // y is sum of variables x and z

2. y = x - z // y is difference of variables x and z

3. y = x * z // y is product of variables x by z

4. y = x / z // y is division of variable x by z

5. y = x ^ z // y is x to power of z (square would be y = x ^ 2)

6. y = x % z // y is x modulo z, i.e. rest of x/z

binary expression: (Logical)

1. y = x == z // y is 1 if x equals z, 0 otherwise

2. y = x != z // y is 1 if x not equal to z, 0 otherwise

3. y = x || z // y is 1 if x != 0 OR z != 0, 0 otherwise

4. y = x && z // y is 1 if x != 0 AND z != 0, 0 otherwise
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5. y = x < z // y is 1 if x < z (note: also > )

6. y = x <= z // y is 1 if x <= z (note: also >= )

7. y = max(x,z) // y is max of x and z (note: also min)

Note that an expression is considered to be TRUE if it is non zero,
and FALSE if it is zero. For a full description of these expressions
and alternative syntaxes, please look at the files patSpecParser.y and
patSpecScanner.l in the BIOGEME distribution.

Loops can be defined if several expressions have almost the same syntax.
The idea is to replace all occurrences of a string, say xx, by numbers.
The numbers are generated within a loop, defined by 3 numbers: the
start of the loop (a), the end of the loop (b) and the step (c) with the
following syntax:

$LOOP {xx a b c}

The expression

$LOOP {xx 1 5 2} my_expression_xx = other_expression_xx * term_xx_first

is equivalent to

my_expression_1 = other_expression_1 * term_1_first
my_expression_3 = other_expression_3 * term_3_first
my_expression_5 = other_expression_5 * term_5_first

Warning: make sure that the string is awkward enough so that it cannot
match any other instance by mistake. For example, the loop

{xp 1 5 2} my_expression_xp = other_expression_xp * term_xp_first

is equivalent to
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my_e1ression_1 = other_e1ression_1 * term_1_first
my_e3ression_3 = other_e3ression_3 * term_3_first
my_e5ression_5 = other_e5ression_5 * term_5_first

which is probably not the desired effect.

[Group] Provide here the formula to compute the group ID of the observed
individual. Typically, a “group” entry will be available directly from
the data file, but any formula can be used to compute it. Any expres-
sion described in Section [Expressions] is valid here. A different scale
parameter will be estimated for the utility of each group.

[Exclude] Define an expression (see Section [Expressions]) which identifies
entries of the data file to be excluded. If the result of the expression is
not zero, the entry will be discarded.

[Model] Specifies which GEV model is to be used. Valid entries are $BP for
Binary Probit, $MNL for Multinomial Logit model, $NL for single level
Nested Logit model, $CNL for Cross-Nested Logit model and $NGEV for
Network GEV model. See section 14 for more details.

[PanelData] Used to specify the name of the variable (ex: userID) in the
dataset identifying the observations belonging to a given individual
and to specify the name of the random parameters that are invariant
within the observation of a given individual userID. See the example
at subsection 23.15.

[Scale] A scale parameter is associated with each group. The utility func-
tion of each member of a group is multiplied by the associated scale
parameter. A typical application is the joined estimation of revealed
and stated preferences. It is therefore possible to estimate a MNL com-
bining both data sources, without playing around with dummy nested
structures as proposed by [Bradley and Daly, 1991]. Each row of this
section corresponds to a group. Five entries are required per row:

1. Group number: the numbering must be consistent with the group
definition;

2. Default value that will be used as a starting point for the estima-
tion (1.0 is a good guess);
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3. Lower bound on the valid values;

4. Upper bound on the valid values;

5. Status, which is 0 if the parameter must be estimated, or 1 if the
parameter has to be maintained at the given value.

Clearly, one of the groups must have a fixed scale parameter.

[SelectionBias] Identifies the parameters capturing the selection bias, us-
ing the estimator proposed by [Bierlaire et al., 2008]. Each of them
has to be listed in Section [Beta]. The section must contain a row per
alternative for which a selection bias has to be estimated. Each row
contains the number of the alternative and the name of the associ-
ated parameter. Note that these parameters play a similar role as the
alternative specific constants, and must not be used with MNL.

[SelectionBias]

1 SB_1

4 SB_4

6 SB_6

[NLNests] This section is relevant only if the $NL option has been selected in
Section [Model]. If the model to estimate is not a Nested Logit model,
the section will be simply ignored. Note that multilevel Nested Logit
models must be modeled as Network GEV models. Each row of this
section corresponds to a nest. Six entries are required per row:

1. Nest name: the first character must be a letter (any case) or an
underscore (_), followed by a sequence of letters, digits, underscore
(_) or dashes (-), and terminated by a white space;

2. Default value of the nest parameter µm that will be used as a
starting point for the estimation (1.0 is a good guess);

3. Lower bound on the valid values. It is usually 1.0, if µ is con-
strained to be 1.0. Do not forget that, for each nest i, the condi-
tion µi ≥ µ must be verified to be consistent with discrete choice
theory;

4. Upper bound on the valid values;
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5. Status, which is 0 if the parameter must be estimated, or 1 if the
parameter has to be maintained at the given value.

6. The list of alternatives belonging to the nest, numbered as speci-
fied in Section [Utilities]. Make sure that each alternative belongs
to exactly one nest, as no automatic verification is implemented
in BIOGEME 1.8.

[CNLNests] This section is relevant only if the $CNL option has been selected
in Section [Model]. If the model to estimate is not a Cross-Nested Logit
model, the section will be simply ignored. Note that multilevel Cross-
Nested Logit models must be modeled as Network GEV models. Each
row of this section corresponds to a nest. Five entries are required per
row:

1. Nest name: the first character must be a letter (any case) or an
underscore (_), followed by a sequence of letters, digits, underscore
(_) or dashes (-), and terminated by a white space;

2. Default value of the nest parameter µm that will be used as a
starting point for the estimation;

3. Lower bound on the valid values. It is usually 1.0, if µ is con-
strained to be 1.0. Do not forget that, for each nest i, the condi-
tion µi ≥ µ must be verified to be consistent with discrete choice
theory;

4. Upper bound on the valid values;

5. Status, which is 0 if the parameter must be estimated, or 1 if the
parameter has to be maintained at the given value.

[CNLAlpha] This section is relevant only if the $CNL option has been selected
in Section [Model]. If the model to estimate is not a Cross-Nested Logit
model, the section will be simply ignored. Each row of this section
corresponds to a combination of a nest and an alternative. Six entries
are required per row:

1. Alternative name, as defined in Section [Utilities];

2. Nest name: the first character must be a letter (any case) or an
underscore (_), followed by a sequence of letters, digits, underscore
(_) or dashes (-), and terminated by a white space;
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3. Default value of the parameter capturing the level at which an
alternative belongs to a nest that will be used as a starting point
for the estimation;

4. Lower bound on the valid values (usually 0.0);

5. Upper bound on the valid values (usually 1.0);

6. Status, which is 0 if the parameter must be estimated, or 1 if the
parameter has to be maintained at the given value.

[Ratios] It is sometimes useful to read the ratio of two estimated coeffi-
cients. The most typical case is the value-of-time, being the ratio of
the time coefficient and the cost coefficient. This feature is only imple-
mented for fixed parameters. Computation of ratio of random parame-
ters is not permitted in this version. Note that it is not straightforward
to characterize the distribution of the ratio of two random coefficients.
[Ben-Akiva et al., 1993] suggest a simple approach that is directly im-
plementable in BIOGEME to handle ratio of random parameters. Each
row in this section enables to specify such ratios to be produced in the
output file. Three entries are required:

1. The parameter (from Section [Beta]) being the numerator of the
ratio;

2. The parameter (from Section [Beta]) being the denominator of the
ratio;

3. The name of the ratio, to appear in the output file: the first
character must be a letter (any case) or an underscore (_), followed
by a sequence of letters, digits, underscore (_) or dashes (-), and
terminated by a white space.

[ConstraintNestCoef] Since Version 0.2, it is possible to constrain nests
parameters to be equal. This is achieved by adding to this section
expressions like

NEST_A = NEST_B

where NEST_A and NEST_B are names of nests defined in Section [NLNests],
Section [CNLNests] or Section [NetworkGEVNodes]. This section will
become obsolete in future releases, as there is now a section for linear
constraints on the parameters: (Section [LinearConstraints]).
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[NetworkGEVNodes] This section is relevant only if the $NGEV option has
been selected in Section [Model]. If the model to estimate is not a
Network GEV model, the section will be simply ignored. Each row of
this section corresponds to a node of the Network GEV model. All
nodes of the Network GEV model except the root and the alternatives
must be listed here, with their associated parameter. Five entries are
required per row:

1. Node name: the first character must be a letter (any case) or an
underscore (_), followed by a sequence of letters, digits, underscore
(_) or dashes (-), and terminated by a white space;

2. Default value of the node parameter µj that will be used as a
starting point for the estimation;

3. Lower bound on the valid values. It is usually 1.0. Check the
condition on the parameters for the model to be consistent with
the theory in [Bierlaire, 2002];

4. Upper bound on the valid values;

5. Status, which is 0 if the parameter must be estimated, or 1 if the
parameter has to be maintained at the given value.

[NetworkGEVLinks] This section is relevant only if the $NGEV option has
been selected in Section [Model]. If the model to estimate is not a
Network GEV model, the section will be simply ignored. Each row of
this section corresponds to a link of the Network GEV model, starting
from the a-node to the b-node. The root node is denoted by __ROOT.
All other nodes must be either an alternative or a node listed in the
section [NetworkGEVNodes]. Note that an alternative cannot be the
a-node of any link, and the root node cannot be the b-node of any link.
Six entries are required per row:

1. Name of the a-node: it must be either __ROOT or a node listed in
the section [NetworkGEVNodes].

2. Name of the b-node: it must be either a node listed in the section
[NetworkGEVNodes], or the name of an alternative.

3. Default value of the link parameter that will be used as a starting
point for the estimation;

4. Lower bound on the valid values.
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5. Upper bound on the valid values;

6. Status, which is 0 if the parameter must be estimated, or 1 if the
parameter has to be maintained at the given value.

[LinearConstraints] In this section, the user can define a list of linear
constraints, in one of the following syntaxes:

1. Formula = number,

2. Formula ≤ number,

3. Formula ≥ number.

The syntax is formally defined as follows:

oneConstraint : equation <= numberParam |

equation = numberParam |

equation >= numberParam

equation: eqTerm |

- eqTerm |

equation + eqTerm |

equation - eqTerm

eqTerm: parameter | numberParam * parameter

For example, the constraint∑
i

ASCi = 0.0

is written

ASC1 + ASC2 + ASC3 + ASC4 + ASC5 + ASC6 = 0.0

and the constraint
µ ≤ µj

is written

MU - MUJ <= 0.0
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or

MUJ - MU >= 0.0

[NonLinearEqualityConstraints] In this section, the user can define a list
of nonlinear equality constraints of the form

h(x) = 0.0.

The section must contain a list of functions h(x). For example, the
constraint

α
µa
a1 + αµbb1 = 1

is written

[NonLinearEqualityConstraints]

ALPHA_A1 ^ MU_A + ALPHA_B1 ^ MU_B - 1.0

[NonLinearInequalityConstraints] BIOGEME 1.8 is not able to handle
nonlinear inequality constraints yet. It should be available in a future
version.

[DiscreteDistributions] Provide here the list of random parameters with
a discrete distribution, or $NONE if there are none in the model. Each
discrete parameter is described using the following syntax:

nameDiscreteParam < listOfDiscreteTerms >

where nameDiscreteParam is the name of the random parameter, and
listOfDiscreteTerms is recursively defined as

oneDiscreteTerm |

listOfDiscreteTerms oneDiscreteTerm

where oneDiscreteTerm is defined as

nameValueParam ( nameProbaParam )
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where nameValueParam is the name of the parameter capturing the
discrete value of the random parameter, and nameProbaParam is the
name of the parameter capturing the associated probability. Both must
be defined in Section [Beta]. As an example,

[DiscreteDistributions]

BETA1 < B1 ( W1 ) B2 ( W2 ) >

defines a random parameter BETA1, which takes the value B1 with prob-
ability (or weight) W1, and the value B2 with probability W2. Note
that for this to make sense, the constraint W1 + W2 = 1.0 should be
imposed (Section [LinearConstraints]). Note also that the parameter
BETA1 must not appear in Section [Beta].

[AggregateLast] Boolean which, for each row in the sample file, identifies if
it is the last observation in an aggregate. Make sure that the value for
the last row is nonzero. As all booleans in BIOGEME 1.8, a numerical
value of 0 means “FALSE” and a numerical value different from 0 means
“TRUE”. See section 18 for details. Any expression described in Section
[Expressions] is valid here.

[AggregateWeight] Associates a weight to elemental observations of an ag-
gregate. Corresponds to the term P(Cobs|i) in Eq. (27), Section 18.
Any expression described in Section [Expressions] is valid here.

These sections are new in BIOGEME 1.8:

[LaTeX] This section allows to define a description of each parameter to be
used in the LATEX file. For instance, the following section

[LaTeX]

ASC1 "Constant for alt. 1"

ASC2 "Constant for alt. 2"

ASC3 "Constant for alt. 3"

ASC4 "Constant for alt. 4"

ASC5 "Constant for alt. 5"

ASC6 "Constant for alt. 6"

BETA1 "$\beta_1$"

BETA2 "$\beta_2$"
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will produce the following table:

Robust
Variable Coeff. Asympt.
number Description estimate std. error t-stat p-value

1 Constant for alt. 2 -0.159 0.106 -1.49 0.13
2 Constant for alt. 3 -0.0869 0.111 -0.78 0.43
3 Constant for alt. 4 -0.511 0.172 -2.97 0.00
4 Constant for alt. 5 0.719 0.158 4.54 0.00
5 Constant for alt. 6 -1.39 0.195 -7.12 0.00
6 β1 0.779 0.0301 25.85 0.00
7 β2 0.810 0.0307 26.42 0.00

[Derivatives] This section is for advanced users only. Use it at
your own risk.

When nonlinear utility functions are used, BIOGEME 1.8 computes
automatically the derivatives needed by the maximum likelihood pro-
cedure. However, this automatic derivation can significantly slow down
the estimation process, as no simplification is performed. This section
allows the user to provide BIOGEME 1.8 with the analytical deriva-
tives of the utility function, in order to speed up the estimation process.
In some instances, half the estimation time was spared thanks to this
feature.

A row must be provided for each combination of nonlinear utilities
(defined in the Section Section [GeneralizedUtilities]) and parameters
involved in the formula. Each of these rows contains three items:

• the identifier of the alternative,

• the name of the parameter,

• the formula of the derivative.

For instance, assume that the systematic utility of alternative 1 is

V1 = ASC1 + β1
(x11 + 10)λ11 − 1

λ11
+ β2

(x12 + 10)λ12 − 1

λ12
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so that

∂V1

β1
=

(x11 + 10)λ11 − 1

λ11

∂V1

β2
=

(x12 + 10)λ12 − 1

λ12

∂V1

λ11
= β1

(x11+ 10)λ11λ11 ln(x11 + 10) − (x11 + 10)λ11 + 1

λ211
∂V1

λ12
= β2

(x12+ 10)λ12λ12 ln(x12 + 10) − (x12 + 10)λ12 + 1

λ212

which is coded in BIOGEME 1.8 as follows:

[Utilities]
// Id Name Avail linear-in-parameter expression (beta1*x1 + beta2*x2 + ... )

1 Alt1 av1 ASC1 * one
.
.

[GeneralizedUtilities]
1 BETA1 * ((x11 + 10 ) ^ LAMBDA11 - 1) / LAMBDA11 +

BETA2 * ((x12 + 10 ) ^ LAMBDA12 - 1) / LAMBDA12

[Derivatives]
1 BETA1 ((x11 + 10 ) ^ LAMBDA11 - 1) / LAMBDA11
1 BETA2 ((x12 + 10 ) ^ LAMBDA12 - 1) / LAMBDA12
1 LAMBDA11

BETA1 * ((x11 + 10) ^ LAMBDA11 * LN(x11 + 10) * LAMBDA11
- (x11 + 10) ^ LAMBDA11 + 1) / (LAMBDA11 * LAMBDA11 )

1 LAMBDA12
BETA2 * ((x12 + 10) ^ LAMBDA12 * LN(x12 + 10) * LAMBDA12

- (x12 + 10) ^ LAMBDA12 + 1) / (LAMBDA12 * LAMBDA12 )

In addition to usual expressions, the formula may contain the following
instruction:

$DERIV( formula , param )
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which means that you ask BIOGEME 1.8 to perform the derivation of
the formula for you. Although it may be useful to simplify the coding
of the derivatives, it is mandatory to use it for random parameters.

If BETA [ SIGMA ] is a random parameter, its derivative with respect
to BETA is 1, but its derivative with respect to SIGMA cannot be written
by the user, and must be coded

$DERIV( BETA [ SIGMA ] , SIGMA )

For instance, assume that the nonlinear utilities are defined as

1 exp( BETA1 [ SIGMA1 ] ) * x11
2 exp( BETA1 [ SIGMA1 ] ) * x21

The derivatives are coded as follows:

[Derivatives]
1 BETA1 exp( BETA1 [ SIGMA1 ] ) * x11
1 SIGMA1 exp( BETA1 [ SIGMA1 ] ) * x11

* $DERIV( BETA1 [ SIGMA1 ] , SIGMA1 )
2 BETA1 exp( BETA1 [ SIGMA1 ] ) * x21
2 SIGMA1 exp( BETA1 [ SIGMA1 ] ) * x21

* $DERIV( BETA1 [ SIGMA1 ] , SIGMA1 )

It is very easy to do an error in coding the analytical deriva-
tives. If there is an error, BIOGEME 1.8 will not be able to
estimate the parameters, and will not even be able to detect
that there is an error. Therefore, we strongly suggest to set
the parameter gevCheckDerivatives to 1 and make sure that
the numerical derivatives match sufficiently well the analytical
derivatives. Also, estimate the model with few observations
and few draws, once with and once without this section. The
results should be exactly the same.

[SNP] This section allows to implement the test proposed by [Fosgerau and Bierlaire, 2007]
(read the paper first if you are not familiar with the test). The section
is composed of two things:
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1. The name of the random parameter to be tested. If this parameter
appears in the utility function as BETA [ SIGMA ], its name in this
section must be typed BETA_SIGMA.

2. A list of positive integers associated with a parameter. The integer
is the degree of the Legendre polynomial, and the parameter the
associated coefficient in the development. Note that the name of
the parameter must appear in Section [Beta].

For instance, if parameter BETA [ SIGMA ] is tested using a seminon-
parametric development defined by

1+ δ1L1(x) + δ3L3(x) + δ4L4(x),

the syntax in BIOGEME 1.8 is

[Beta]
// Name Value LowerBound UpperBound status (0=variable, 1=fixed)
....

BETA 0 -10000 10000 0
SIGMA 1 -10000 10000 0
SMP1 0 -10000 10000 0
SMP3 0 -10000 10000 0
SMP4 0 -10000 10000 0

[SNP]
// Define the coefficients of the series
// generated by the Legendre polynomials
BETA_SIGMA
1 SMP1
3 SMP3
4 SMP4

Note that only one random parameter can be transformed at a time.

[OrdinalLogit] The parameters of ordinal binary logit models (see sec-
tion 17) can be estimated. However, this feature has not been
fully tested, and should be seen as a prototype. Thank you
for reporting any bug. The segments of the utility difference space
must be numbered in a sequential way, increasing from the leftmost
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to the rightmost. In this section, each segment must be associated
with its lower bound, except the first (because its lower bound is −∞).
For instance, if there are 4 segments, like in Figure 3 on page 69, the
following syntax is used:

[Beta]
....
tau1 0.3 -1000 1000 1
tau2 0.4 -1000 1000 0
tau3 0.5 -1000 1000 0

[OrdinalLogit]
1 $NONE // -infty --> tau1
2 tau1 // tau1 --> tau2
3 tau2 // tau2 --> tau3
4 tau3 // tau3 --> +infty

[LinearConstraints]
tau1 - tau2 <= 0
tau2 - tau3 <= 0

Note that the constraints impose that the segments are well-defined.
Recall also that the characters // represent a comment in the file and
they are not interpreted by BIOGEME 1.8, as well as all remaining
characters on the same line. Therefore, the following syntax for that
section is completely equivalent:

[OrdinalLogit]
1 $NONE
2 tau1
3 tau2
4 tau3

However, we strongly advise to use comments in order to clearly identify
the segments.

[SampleEnum] This section is ignored by BIOGEME. It is used by BIOSIM 1.8
and contains the number of simulations to perform in the sample enu-
meration step (see Section 16).
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[ZhengFosgerau] This section is ignored by BIOGEME. It is used by BIOSIM 1.8
and contains instructions to perform the Zheng-Fosgerau specification
test and residual analysis. Make sure to read the paper by [Fosgerau, 2008]
before using this section.

There is a line for each test, containing four items:

1. The first item defines the function t introduced by [Fosgerau, 2008]
to reduce the dimensionality of the test. It is typically either the
probability of an alternative, or an expression involving coeffi-
cients and attributes of the models, as soon as the expression is
continuous and not discrete. If it is a probability, the syntax is

$P { AltName }

where AltName is the name of the alternative as defined in Section
[Utilities]. If it is a general expression, the syntax is

$E { expr }

where expr is an expression complying with the syntax of Section
[Expressions]. However, it may also contain estimated parameters.

2. The second item is a parameter c used to define the bandwidth
for the nonparametric regression performed by the test (see end of
Section 2.1 in [Fosgerau, 2008]). The bandwidth used by BIOSIM 1.8
is defined as c/

√
n, where n is the sample size. Most users will

use the value c = 1.

3. The third and the fourth item are lower and upper bounds (resp.)
Values of t outside of the bounds will not be used in the produced
pictures. It is good practice to use wide bounds first, and to
adjust them in order to obtain decent pictures. Note that if t is
a probability, it does not make sense to have bounds wider and
[0 : 1].

4. The last item is the name of the function t, used in the report.
Make sure to put the name between double-quotes.

Here is an example of the syntax:

[ZhengFosgerau]

$P { Alt1 } 1 0 1 "P1"

$E { x31 } 1 -1000 1000 "x31"
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More details are available in Section 19.

[IIATest] This section is ignored by BIOGEME. It is used to compute the
variables necessary to perform the McFadden omitted variables test on
a subset of alternatives (see Eq. (28)).

The syntax is illustrated by the following example.

[IIATest]

// Description of the choice subsets to compute the new

// variable for McFadden’s IIA test

// Name list_of_alt

C123 1 2 3

C345 3 4 5

Each row corresponds to a new variable. It consists in the name of
the variable (it will appear as the column header in the output of
BIOSIM 1.8), followed by the list of alternatives to be included in the
associated subset.

7 Data file

BIOGEME 1.8 assumes that each data file contains in its first line a list
of labels corresponding to the available data, and that each subsequent line
contains the exact same number of numerical data, each row correspond-
ing to an observation. Delimiters can be tabs or spaces. Note that miss-
ing values must not be represented by dots. Instead, replace them by ob-
viously meaningless values, defined by gevMissingValue. For those who
have used it, the convention was the same in the HieLoW package (see
[Bierlaire and Vandevyvere, 1995], [Bierlaire, 1995]).

WARNING: if you have created a data file on DOS or Windows, it may
cause problems. If you work in a Windows environment and want to avoid
using Emacs, we recommend using TextPad which is very intuitive to Win-
dows users. Then just make sure you save the file in a UNIX format by
selecting the UNIX format in the Save As window. The users working under
Linux must convert the file with a utility like dos2unix, available from

http://www.megaloman.com/~hany/software/hd2u,
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or using Emacs. With GNU Emacs 20.7.1, a (DOS) tag appears at the left
of the Emacs info bar when the file is edited, indicating that the file needs
to be converted. Use the menu Mule|Set Coding System|Buffer File or
type2 C-x RET f. Emacs asks you to choose a

"Coding system for visited file (default, nil)".

Choose the default by hitting the return key and save the file.

8 Data transformation

In this section, we use a basic example where the variables x11 to x61 and
x12 to x62 are available on the dataset. Let us use the syntax available in
the Expression section of the input file to create new variables to be used
in the model. The following sections of an input file provide an examples
of some new variables that can be created using the Expression section.
If one wishes to use BIOSIM 1.8 to produce the predicted probabilities in
order to perform post estimation analysis, it is a good idea to create new
variables in the [Expressions] section. Assume that the idea is to see how
choice probabilities would vary as the value of x21 is increased, for instance.
To get the right calculation, because x21 is involved in the new variables, the
change would correctly disseminate.

[Beta]
// Name Value LowerBound UpperBound status (0=variable, 1=fixed)
ASC1 0 -10000 10000 1
ASC2 0 -10000 10000 0
ASC3 0 -10000 10000 0
ASC4 0 -10000 10000 0
ASC5 0 -10000 10000 0
ASC6 0 -10000 10000 0
BETA1 0 -10000 10000 0
BETA2 0 -10000 10000 0
GAMMA1 0 -10000 10000 0
GAMMA2 0 -10000 10000 0
[Utilities]
// Id Name Avail linear-in-parameter expression (beta1*x1 + beta2*x2 + ... )

1 Alt1 av1 ASC1 * one + BETA1 * x11 + BETA2 * x12

2In Emacs terminology, C-x means that you must press the Ctrl key and the x key
together.
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+ GAMMA1 * x11sq + GAMMA2 * dum12
2 Alt2 av2 ASC2 * one + BETA1 * x21 + BETA2 * x22

+ GAMMA1 * x21sq + GAMMA2 * dum12
3 Alt3 av3 ASC3 * one + BETA1 * x31 + BETA2 * x32

+ GAMMA1 * x31sq
4 Alt4 av4 ASC4 * one + BETA1 * x41 + BETA2 * x42

+ GAMMA1 * x41sq
5 Alt5 av5 ASC5 * one + BETA1 * x51 + BETA2 * x52

+ GAMMA1 * x51sq
6 Alt6 av6 ASC6 * one + BETA1 * x61 + BETA2 * x62

+ GAMMA1 * x61sq
[Expressions]
// Define here arithmetic expressions for name that are not directly
// available from the data
one = 1

// Loop over alternatives 1 to 6 to create the square of xi1
{zzz 1 6 1} xzzz1sq = xzzz1 ^ 2

// Create dum12 = 1 if x11 >= 1 or x21 >= 1, 0 otherwise.
dum12 = ( x11 >= 1 ) || ( x21 >= 1 )

9 Statistics

The file containing the statistics of the sample is mymodel.sta It contains
the following information.

1. The sample size and the sum of all weights are reported. If they don’t
match, BIOGEME 1.8 suggests a factor to modify the weights:

--> It is recommended to multiply all weights by 1.45678

In that case, you may want to modify the weight definition in the model
specification file:

[Weight]

weight * 1.45678
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2. The number of excluded observations, due to the condition defined in
Section [Exclude] of the model specification file, is reported.

3. The total number of observations in the file

4. The number of cases, which is the number of alternatives available to
each observation minus the number of observations (see [Ben-Akiva and Lerman, 1985],
p. 90).

5. For each attribute, the mean, the minimum and the maximum value
across the sample are reported.

6. The number of chosen alternatives, both not taking and taking the
weight into account.

7. The group membership, both not taking and taking the weight into
account.

10 Report file

The report file (mymodel.rep) contains the results of the maximum likelihood
estimation of the model. First, general information is reported:

• Type of model which has been estimated.

• Sample size.

• Null log-likelihood is the log-likelihood of the sample for a Multi-
nomial Logit model where all β parameters are 0. It is computed as

L0 =
∑

n∈sample

ωn ln
1

#Cn (3)

where #Cn is the number of alternatives available to individual n and
ωn is the associated weight.

• Cte log-likelihood is the log-likelihood of the sample for a Multino-
mial Logit model where the only coefficients are the alternative specific
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constants. If all alternatives are always available, it is computed
as ∑

j∈C

nj lnnj − n lnn, (4)

where nj is the number of times alternative j has been chosen, and
n =
∑
j∈C nj is the number of observations in the sample. Note that if

some alternatives are not available for some observations, the formula
is not valid, and the value is not reported.

• Init log-likelihood is the log-likelihood of the sample for the model
defined in the .mod file.

• Final log-likelihood is the log-likelihood of the sample for the es-
timated model.

• Likelihood ratio test is

− 2(L0 − L∗) (5)

where L0 is the log-likelihood of the sample for a Multinomial Logit
model where all β parameters are 0, defined by (3), and L∗ is the
log-likelihood of the sample for the estimated model.

• Rho-square is

ρ2 = 1−
L∗
L0 . (6)

• Adjusted rho-square is

ρ2 = 1−
L∗ − K

L0 . (7)

where K is the number of estimated parameters. Note that this statistic
is meaningless in the presence of constraints, where the number of
degrees of freedom is less than the number of parameters.

• Final gradient norm is the gradient of the log-likelihood function
computed for the estimated parameters. If no constraint is active at
the solution, it should be close to 0. If there are equality constraints,
or if some bound constraints or inequality constraints are active at the
solution (that is, they are verified with equality), the gradient may not
be close to zero.
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• Diagnostic is the diagnostic reported by the optimization algorithm.
If the algorithm has not converged, the estimation results presented in
the file cannot be used as such.

• Iterations is the number of iterations used by the algorithm before
it stopped.

• Run time is the actual time used by the algorithm before it stopped.

• Variance-covariance specifies how the second-derivative matrix (in-
verted to obtain the variance-covariance matrix) has been calculated.
If can be either from a finite difference approximation (which is accu-
rate, but may take time to compute), or from the BHHH matrix (which
is less accurate, but faster to compute, see [Berndt et al., 1974]). The
user selects this option with parameter gevVarCovarFromBHHH.

Then follow results about the parameters.

• The estimated value of the β parameters, with the associated stan-
dard error, the t-test and the corresponding p-value. A sign (defined
by gevWarningSign) is appended if the t-test fails, according to the
threshold specified by the parameter gevTtestThreshold in the pa-
rameter file. Similar values obtained from the robust estimation of the
variance-covariance matrix are also provided (see subsection 14.2).

• The estimated value of the µ parameter, with the associated standard
error and the t-test. A sign (defined by gevWarningSign) is appended
if the t-test fails, according to the threshold specified by the parame-
ter gevTtestThreshold in the parameter file. Similar values obtained
from the robust estimation of the variance-covariance matrix are also
provided (see subsection 14.2).

• The estimated value of the GEV model parameters, with the associated
standard error and the t-test. A sign (defined by gevWarningSign) is
appended if the t-test fails, according to the threshold specified by the
parameter gevTtestThreshold in the parameter file. Similar values
obtained from the robust estimation of the variance-covariance matrix
are also provided (see subsection 14.2). Note that the t-test is computed
to compare the estimated value both to 0 and 1.
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• The estimated value of the scale parameters, with the associated stan-
dard error and the t-test. A sign (defined by gevWarningSign) is ap-
pended if the t-test fails, according to the threshold specified by the
parameter gevTtestThreshold the parameter file. Similar values ob-
tained from the robust estimation of the variance-covariance matrix are
also provided (see subsection 14.2). Note that the t-test is computed
to compare the estimated value to 1.

• The ratios requested in Section [Ratios] of the model specification file.

• A covariance/correlation analysis of pairs of estimated β parameters,
sorted according to the t-test value. A sign (defined by gevWarningSign)
is appended if the t-test fails, according to the threshold specified by
the parameter gevTtestThreshold in the parameter file.

• When applicable, a report about the singularity of the second deriva-
tives matrix.

11 Summary file

This file is designed to be imported into a spreadsheet, for further analysis,
results comparisons and presentations. Each line corresponds to one run of
BIOGEME 1.8 in the directory. They contain

1. The date and time when the run has terminated;

2. The name of the model;

3. The name of the report file;

4. The final log-likelihood;

5. The sample size;

6. The estimated value and t-test of the parameters listed in the file de-
fined by gevSummaryParameters;

7. The exclusion condition.
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12 Other output files

BIOGEME 1.8 also generates files for debugging purposes.

1. parameters.out This file contains the list of parameters that BIO-
GEME 1.8 has actually used during the run, and the associated values.
Syntax errors in the file default.par are usually not detected by BIO-
GEME 1.8. Instead, in the presence of a syntax error, the rest of the
file is skipped without warning and default values of the parameters
are then used. This has to be improved in the future. At this point,
the file parameters.out helps to check if the values actually used by
BIOGEME 1.8 are the values that were set by the user.

2. model.debug This file contains debugging information about the model
specification. A regular user should not need it.

3. mymodel.res [res] This file has exactly the same structure as the file
mymodel.mod, where the default values of the parameters have been
replaced by the estimated values. This file is a valid model specification
file for a future BIOGEME 1.8 run. It just needs to be renamed with
a .mod extension.

When requested (see parameter gevDumpDrawsOnFile), the draws are
dumped into a file. They are organized as follows: for each observation, for
each random parameter, there are n draws generated, where n is defined
in the Section [Draws]. Those draws are either pseudo-random numbers or
Halton sequences, depending on the value of gevRandomDistrib).

13 Optimization algorithms

BIOGEME 1.8 can use five different optimization algorithms: CFSQP, DONLP2,
SOLVOPT, BIO and BIOMC. Note that it is possible that each of them pro-
duce different solutions. Usually, the discrepancies are small, and due to
numerical differences and various stopping criteria. Also, none of them iden-
tifies a global maximum of the likelihood function. Therefore, it may happen
that one of them is caught in a local maxima, different from local maxima
found by other algorithms.
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Which one to choose is difficult to say. They all have advantages and
disadvantages. BIO (which stands for BIerlaire’s Optimization, like in BIO-
GEME) has been specifically adapted for this software package, but it cannot
accommodate nontrivial constraints yet. A version for simulated maximum
likelihood estimation, called BIOMC, is also available. CFSQP is not free
and, therefore, not included in the general distribution of BIOGEME 1.8.
DONLP2 is slower than CFSQP, but faster than SOLVOPT. SOLVOPT can
sometimes be very slow. The algorithm is not to blame. It has not been orig-
inally designed for the kind of optimization problem involved in BIOGEME.
However, it seems robust on ill-specified models. When other algorithms fail
to converge, SOLVOPT may succeed in finding a solution. Therefore, our
recommendation would be:

• If there are no non-trivial constraint on the parameters, use BIO.

• If there are, or if BIO is very slow, use CFSQP if you have it.

• If not, use DONLP2.

• If all fail, try SOLVOPT.

• If it fails again, redefine your model.

It is always a good idea to solve the same problem with several algorithms.

BIO BIO is a trust-region algorithm (see [Conn et al., 2000]) designed for
problems with simple bounds constraints, using a truncated conjugate-
gradient method to solve the trust-region subproblem. By default, it
uses the BHHH ([Berndt et al., 1974]) matrix as an approximation of
the second derivatives matrix. At each iteration, it displays

1. The value used in the stopping criterion at iterate x, that is the
infinite norm of the relative gradient, computed as

γ = max
i

∣∣∣∣ |gi(xi)| max(1, |xi|)

max(f(x), tf)

∣∣∣∣ (8)

where g is the projection of the gradient of f onto the feasible set,
tf is defined by BTRTypf (see [Dennis and Schnabel, 1996]).

2. The iteration number;
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3. The radius of the trust region;

4. The current value of the objective function3;

5. The exit status of the subproblem solver;

6. The value used to check if the radius of the trust region is appro-
priate, that is

f(x+) − f(xc)

m(x+) −m(xc)

where xc is the current iterate, x+ the new candidate, and m the
quadratic model approximating f at xc (see [Conn et al., 2000] for
details).

7. The number of variables not constrained to one of their bounds:

8. The status of the iteration, that is very successful (++), successful
(+) or unsuccessful (-).

9. If the subproblem is preconditioned, a P is also displayed.

BIOMC is a version of BIO designed for simulated maximum likelihood.
The idea is to use BIO with few draws in the beginning, in order to
obtain a rough value of the parameters, and then to increase the number
of draws until reaching the number required by the user (du). Let dk
be the number of draws considered by BIOMC (where d0 is defined
by BTRStartDraws). Then, algorithm BIO runs until the following
condition is verified

lnγ

ln ε
≥ dk
du
,

where γ is defined by (8) and ε is defined by BTRTolerance, so that the
convergence requirements are not as strong when the number of draws
is low. Then, the number of draws is increased

dk+1 = min(λdk, du),

where the factor λ is defined by BTRIncreaseDraws, and the process
starts again. The algorithm stops when dk = du.

In general, BIOMC is not faster than BIO. But it allows to obtain good
approximations of the parameters pretty quickly.

3As it is a minimization algorithm, the objective function is the opposite of the log-
likelihood and, therefore, is a positive value.
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CFSQP CFSQP is a C implementation of the FSQP optimization algorithm
developed by E.R. Panier, A.L. Tits, J.L. Zhou, and C.T. Lawrence
(see [Lawrence et al., 1997]). CFSQP is licensed to AEM Design. The
conditions for external use are the following

1. The CFSQP routines may not be distributed to third parties.
Interested parties shall contact AEM Design directly.

2. If modifications are performed on the routines, these modifications
shall be communicated to AEM Design. The modified routines
will remain the sole property of the authors.

3. Due acknowledgment shall be made of the use of the CFSQP rou-
tines in research reports or publications. Whenever such reports
are released for public access, a copy shall be forwarded to AEM
Design.

4. The CFSQP routines may only be used for research and develop-
ment, unless it has been agreed otherwise with AEM Design in
writing.

If you have a CFSQP license, and need a Windows version of BIO-
GEME 1.8 with CFSQP, send an Email to
(michel.bierlaire@epfl.ch) to receive the executable.

SOLVOPT Solvopt is defined by its authors, Alexei V. Kuntsevich and
Franz Kappel, as follows: The program SolvOpt (Solver for local opti-
mization problems) is concerned with minimization resp. maximization
of nonlinear, possibly non-smooth objective functions and with the solu-
tion of nonlinear programming problems taking into account constraints
by the so-called method of exact penalization. The package implements
a version of minimization method with space dilation by [Shor, 1985].
See [Kuntsevich and Kappel, 1997] for a tutorial of the package and
the description of the algorithm.

DONLP2 DONLP2 is a sequential equality constrained quadratic program-
ming method, developed by [Spellucci, 1993]. The algorithm is de-
scribed by [Spellucci, 1998a] and [Spellucci, 1998b]. The conditions of
use of the DONLP2 package are the following.

1. donlp2 is under the exclusive copyright of P. Spellucci
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e-mail:spellucci@mathematik.tu-darmstadt.de

“donlp2” is a reserved name

2. donlp2 and its constituent parts come with no warranty, whether
expressed or implied, that it is free of errors or suitable for any
specific purpose. It must not be used to solve any problem, whose
incorrect solution could result in injury to a person , institution
or property. It is at the users own risk to use donlp2 or parts of
it and the author disclaims all liability for such use.

3. donlp2 is distributed “as is”. In particular, no maintenance, sup-
port or trouble-shooting or subsequent upgrade is implied.

4. The use of donlp2 must be acknowledged, in any publication which
contains results obtained with it or parts of it. Citation of the
authors name and netlib-source is suitable.

5. The free use of donlp2 and parts of it is restricted for research
purposes commercial uses require permission and licensing from
P. Spellucci.

14 Discrete choice models

This section is not an introduction to discrete choice models. Instead, it
describes the models that are implemented in BIOGEME 1.8. We refer the
reader to the abundant literature on the topic, including for example

• [Domencich and McFadden, 1975],

• [McFadden, 1981],

• [Hensher and Johnson, 1981],

• [Ben-Akiva and Lerman, 1985],

• [Anderson et al., 1992],

• [Bierlaire, 1998],

• [Ben-Akiva and Bierlaire, 1999],
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• [McFadden, 2000],

• [Walker, 2001] ,

• [Ben-Akiva et al., 2002].

• [Bierlaire, 2003],

• [Ben-Akiva and Bierlaire, 2003],

• [Hensher et al., 2005].

BIOGEME has been designed for GEV models ([McFadden, 1978]), in-
cluding mixtures of GEV models.

For GEV models, the probability of choosing alternative i within the
choice set C of a given choice maker is

P(i|C) =
yi
∂G
∂yi

(y1, . . . , yJ)

µG(y1, . . . , yJ)
(9)

where J is the number of available alternatives, yi = eVi , Vi is the deter-
ministic part of the utility function associated to alternative i, and G is a
non-negative differentiable function defined on RJ+ with the following prop-
erties:

1. G is homogeneous of degree µ > 0, that is G(αy) = αµG(y),

2. limyi→+∞G(y1, . . . , yi, . . . , yJ) = +∞, for each i = 1, . . . , J,

3. the kth partial derivative with respect to k distinct yi is non-negative
if k is odd and non-positive if k is even that is, for any distinct indices
i1, . . . , ik ∈ {1, . . . , J}, we have

(−1)k
∂kG

∂xi1 . . . ∂xik
(x) ≤ 0, ∀x ∈ RJ+. (10)

The homogeneity of G and Euler’s theorem give

P(i|C) =
eVi+lnGi(...)∑J
j=1 e

Vj+lnGj(...)
, (11)

where Gi = ∂G
∂yi

.
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BIOGEME 1.8 implements four instances of that family of discrete choice
models and through the use of random coefficients, to normal or uniform
mixture of each version.

1. The Multinomial Logit Model. If you are using BIOGEME, we safely
assume that you are kind of familiar with this model. If not, read
[Ben-Akiva and Lerman, 1985]. The G function is

G(y) =

J∑
i=1

y
µ
i .

2. The Nested Logit Model ([Ben-Akiva, 1973], [Daly, 1987]). In BIO-
GEME, a Nested Logit model contains only one level of nests. How-
ever, it is possible to handle multiple levels thanks to the Network GEV
model (see below).

G(y) =

M∑
m=1

(
Jm∑
i=1

y
µm
i

) µ
µm

with µ ≤ µm for all m.

3. The Cross-Nested Logit model. We refer the reader to the literature for
the description of cross-nested logit model ([Small, 1987], [Vovsha, 1997],
[Vovsha and Bekhor, 1998], [Ben-Akiva and Bierlaire, 1999], [Papola, 2004],
[Bierlaire, 2006], [Wen and Koppelman, 2001], [Swait, 2001], [Abbe et al., 2007]).

G(y1, . . . , yJ) =

M∑
m=1

(∑
j∈C

(αjm
1/µyj)

µm

) µ
µm

,

with µ ≤ µm for all m, and αjm ≥ 0 for all j and m. For identification
purposes, the constraint

M∑
m=1

αjm = 1 ∀j

must be imposed (see [Wen and Koppelman, 2001] and [Abbe et al., 2007]).
Note that versions up to 0.7 of Biogeme used the following formulation
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G(y1, . . . , yJ) =
∑
m

(∑
j∈C

αjmy
µm
j

) µ
µm

while version from 1.0 to 1.2 used the following formulation

G(y1, . . . , yJ) =
∑
m

(∑
j∈C

(αjmyj)
µm

) µ
µm

.

They are all equivalent, except for the interpretation of the α parame-
ters and their normalization conditions.

4. The Network GEV model. This family of models is equivalent to the
Recursive Nested Extreme Value Model proposed by [Daly, 2001], but
based purely on a network structure, as proposed by [Bierlaire, 2002].
We refer the reader to [Daly and Bierlaire, 2006] for details about this
model. It allows to define a wide class of GEV models by designing a
network structure, with specific properties, easy to verify. The Multi-
nomial Logit, the Nested Logit and the Cross-Nested Logit are special
instances of the Network GEV model. In the network, there is a pa-
rameter associated to each node and to each arc.

If i is a node corresponding to an alternative,

Gi(xi) = x
µi
i i = 1, . . . , J,

and if not,

Gi(x) =
∑

j∈succ(i)

α(i,j)G
j(x)

µi
µj ,

where succ(i) denotes the set of successors of i.

14.1 Random parameters

BIOGEME 1.8 allows one to define some unknown parameters to be ran-
domly distributed. The most general formulation for the utility function
is:

Un = λs(n)f(Xn;βf, βN, βU) + νn, (12)

where
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• Xn ∈ RJn×L is a matrix such that each row j = 1, . . . , Jn contains
both the attributes of alternative j perceived by individual n, and the
socio-economic characteristics of n,

• βf is a vector of fixed, real, parameters,

• βN ∼ N(β0, ΓΓ
T ) is a random vector of dimension K, normally dis-

tributed with mean β0 ∈ RK and variance-covariance matrix Σβ =

ΓΓ T ∈ RK×K,

• βU is a vector of independent uniformly distributed parameters, such
that (βU)i ∼ U(βai − βbi, βai + βbi).

• f : RJn×L×RK → RJn is a continuously differentiable nonlinear function,

• λs(n) is a scale factor associated with the market segment s(n),

• νn is a generalized extreme value distributed random vector with joint
cumulative distribution function

F(νn) = e−Gγ(e−(νn)1 ,...,e−(νn)J ) (13)

induced by a generating function Gγ : RJ+ → R verifying conditions
1–3.

We expand the random vector βN as follows:

βN = β0 + Γξ, (14)

where ξ ∼ N(0, I). Similarly, each uniformly distributed parameter is ex-
panded as follows:

(βU)i = (βa)i + (βb)i ∗ωi (15)

where νi ∼ U(−1, 1).
We rewrite (12) as:

Un = λs(n)f(Xn;βf, β0, Γ, βa, βb, ξ,ω) + νn. (16)

In the following, we will denote

Vn = λs(n)f(Xn;βf, β0, Γ, βa, βb, ξ,ω) (17)
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and
Vin = λs(n)f(Xn;βf, β0, Γ, βa, βb, ξ,ω)i (18)

where f(·)i is the ith component of f.
The final form of the probability model can be written by first deriving

the probability model conditional on ξ and ω (see [McFadden, 1978]) using
the GEV theory.

P(i|Cn, Xn, βf, β0, Γ, βa, βb, λ, γ, ξ,ω) =
eVin+logG ′

i(...)∑
j∈Cn e

Vjn+logG ′
j(...)

, (19)

where λ ∈ RS is the vector of scale factors associated with market segments,
and

G ′j(. . .) =
∂Gγ

∂yj
(eV1n , . . . , eVJn). (20)

We now obtain the probability model by integrating with respect to ξ,
that is P(i|Cn, Xn, βf, β0, Γ, βa, βb, λ, γ) =∫

ω

∫
ξ

P(i|Cn, Xn, β0, Γ, λ, γ, ξ)n(ξ; 0, I)dξu(ω; −1, 1)dω (21)

where n(ξ; 0, I) denotes the multivariate normal density centered at zero with
covariance matrix I, evaluated at ξ, and u(ω; −1, 1) the uniform density for
the interval [-1:1], evaluated at ω.

The generality of this model provides a great deal of modeling flexibility.
Not only many models are special cases of this formulation, as described
below, but new models can be derived in the same context.

We now link this formulation with the entries of the model file (section 6).
A normally distributed random parameter is mentioned in the definition of
the utility function using the syntax

BETA [ GAMMA ]

For each such random parameter, there must be two entries in the Section
[Beta], one corresponding to the entry in β0 (BETA in the example above),
and the other corresponding to the associated diagonal element of Γ (GAMMA).
If Γ is diagonal, this is sufficient. If Γ is not diagonal, each non-zero off-
diagonal entry must be listed in the Section [ParameterCovariances]. Each
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off-diagonal entry is designed to capture the covariance between two ran-
dom parameters. The name of a random parameter BETA [ GAMMA ] is by
convention BETA_GAMMA.

Note that BIOGEME 1.8 estimates the entries of β0 and of Γ . But for
most practical applications, the value of Γ is irrelevant, and the values within
ΓΓ T are needed. The section Variance of random coefficients in the
report files reports the entries of the ΓΓ T matrix. Note that if Γ is diag-
onal, those are simply the square of the estimated values reported in the
Utility parameters section.

A uniformly distributed random parameter is mentioned in the definition
of the utility function using the syntax

BETAA { BETAB }

For each such random parameter, there must be two entries in the Section
[Beta], one corresponding to the entry in βa (BETA in the example above),
and the other corresponding to the entry in βb(BETB in the example above).

14.2 Robust variance-covariance matrix

As it is now widely done in standard econometric software, allowance for
non severe misspecification errors related with the characteristics of the pos-
tulated distributions for the error terms, we produce for the estimators a
variance covariance matrix that is robust against those types of misspecifica-
tion. When evaluated at the maximum likelihood estimate θ̂, it is computed
as

∇2L(θ̂)−1 R ∇2L(θ̂)−1, (22)

The R matrix corresponds to the BHHH matrix (see [Berndt et al., 1974])
which is given by

R =

N∑
n=1

∇θ ln P̂(in|Cn, Xn, θ̂)∇θ ln P̂(in|Cn, Xn, θ̂)T . (23)

where P̂ is the estimated choice probability. In the context of maximum like-
lihood estimation, and if the postulated model is correct, matrices −∇2L(θ̂)

and R are asymptotically equal. In this case, the estimator of the variance-
covariance matrix simplifies to

−∇2L(θ̂)−1 (24)
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However, (22) is more robust and should be preferred to (24). BIOGEME 1.8
reports and uses both.

14.3 Selection bias

BIOGEME 1.8 has the capability to correct for selection bias in some circum-
stances, using the estimator proposed by [Bierlaire et al., 2008]. It consists
in estimating new parameters, playing a role similar to alternative specific
constants, but designed to absorb the potential bias due to choice-based
samples.

The definition of this estimator is simple. The additional parameters to
be estimated must be listed in Section [SelectionBias] of the .mod file, and
associated with their alternative. Note that each of them has to be listed
in Section [Beta]. The section must contain a row per alternative for which
a selection bias has to be estimated. Each row contains the number of the
alternative and the name of the associated parameter.

This estimator must be used only with non-MNL GEV models.

15 Generating draws

All distributions needed by BIOGEME 1.8 are generated from uniform [0,1]
distributions. The derivation of uniform [-1,1] is obvious. The derivation of
normal N(0, 1) is performed using Wichura’s method [Wichura, 1988].

The uniform [0,1] distributions can be generated in three different ways.
See [Train, 2003] for more details.

1. Using Unix’s pseudo-random number generator.

2. Using Halton draws.

3. Using the Modified Latin Hypercube Sample procedure proposed by
[Hess et al., 2006]. It generates a small random perturbation of equally
distributed draws. If R is the number of draws required, it generates a
vector d(0 : R− 1) such that

d(i) =
i

R
+
ξ

R

where ξ is a draw from a uniform [0:1] distribution, such that ξ 6= 0

and ξ 6= 1.
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16 Simulation: sample enumeration

The package BIOSIM 1.8 is invoked exactly like BIOGEME 1.8, with the ex-
act same input file. But instead of performing a parameter estimation, it per-
forms a sample enumeration. Sample enumeration performed by BIOSIM 1.8,
produces correct predicted probabilities for all model versions as long as it
is not in a panel data setting. The panel data setting requires a large set of
choice probability calculations and this will not be available in BIOSIM 1.8
in the very near future.

The file mymodel.enu contains the result of the sample enumeration. For
each observation in the sample, the following results are provided:

1. The identifier of the choice actually reported in the sample file;

2. The name of the choice actually reported in the sample file;

3. The probability given by the model for the chosen alternative;

4. For each alternative, the utility given by the model;

5. For each alternative, the probability given by the model;

6. A list of simulated choice, based on Monte-Carlo simulation using the
model.

The sample enumeration file is extremely useful for producing the aggre-
gate market shares computed at convergence. The usual way to produce the
predicted probabilities is to rename the file that is generated at convergence
with a .res extension into a file with a .mod extension. Then replace the word
biogeme with biosim in the call. For a model input file called mymodel.mod

for which we rename the mymodel.res file into mymodel_res.mod and given
a data base called sample.dat, the command:

biosim mymodel_res sample.dat

mymodel_res.enu which would contain among other things the choice prob-
abilities of each available alternatives. To produce an analysis of the impact
of a given policy, change the file mymodel_res.enu to reflect the change to a
given variable or a given set of variable. This is where using the [Expressions]
section to create variables takes all its sense. Applying BIOSIM 1.8 to this
input file would create a .enu file that would reflect the new values of the
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choice probabilities following the change. Then, bringing the two .enu into
an Excel spreadsheet, for example, would allow one to measure the change
of aggregate shares computed by given market segments.

As a final note, the use of weights may be counter-intuitive in Biosim. If
an observation is weighted by ωn, its contribution to the log-likelihood in
the estimation process would be

ωn lnPn(in) = lnPn(in)
ωn .

As Biosim and Biogeme use the exact same formulation, the use of weights
with Biosim produces the value

Pn(in)
ωn ,

which may not be the desired effect.

17 Ordinal logit

An ordinal binary choice model is derived when ordinal responses are avail-
able, where the respondent not only reports the preference, but also the
strength of the preference. For instance, if alternatives i and j are available,
the respondent can report one of the following.

• definitely choose j;

• probably choose j;

• indifferent;

• probably choose i;

• definitely choose i.

As for the binary choice model, the selected category is explained by the
difference Uin−Ujn between the utilities of the two alternatives, as depicted
in Figure 3.

Formally, we consider Q ≥ 2 categories, ordered such that category q
corresponds to a stronger preference towards alternative i compared to cate-
gory q− 1, for q = 1, . . . ,Q. We define Q+ 1 parameters τq, q = 0, . . . ,Q,
such that τ0 = −∞, τQ = +∞, and τq−1 ≤ τq, q = 1, . . . ,Q. A category q
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-
0 Uin −Ujnτ1 τ2 τ3 τ4

Def. j Prob. j Indiff. Prob. i Def. i

Figure 3: Categories for the ordinal binary choice model

is associated with the interval [τq−1, τq]. The probability for category q to
be selected by the respondent is

Pn(q) = Pr(τq−1 ≤ Uin −Ujn ≤ τq)
= Pr(τq−1 ≤ (Vin − Vjn) − (εjn − εin) ≤ τq)
= Pr(Vin − Vjn − τq ≤ εn ≤ Vin − Vjn − τq−1)

= Fεn(Vin − Vjn − τq−1) − Fεn(Vin − Vjn − τq)

(25)

where εn = εjn − εin, and Fεn is the CDF of εn. By definition of the CDF,
the probability for the extreme categories simplify to

Pn(1) = Fεn(Vin − Vjn +∞) − Fεn(Vin − Vjn − τ1)

= 1 − Fεn(Vin − Vjn − τ1),

Pn(Q) = Fεn(Vin − Vjn − τQ−1) − Fεn(Vin − Vjn −∞)

= Fεn(Vin − Vjn − τQ−1).

(26)

In particular, if εn is logistically distributed, we obtain the ordinal logit
model. We immediately note that binary choice models are specific instances
of ordinal binary choice models, with two categories (Q = 2), and τ1 = 0.

The parameter τ can be estimated by BIOGEME 1.8 using Section [Or-
dinalLogit]

18 Latent choice

A choice is said to be “latent” when it is not directly observed. This idea
has been proposed by [Bierlaire and Frejinger, 2008] in a route choice con-
text where the actual chosen route was not directly observed. Instead, the
respondent reported a sequence of locations that they traversed. In many
cases, several routes in the network may have produced the same reported
locations.
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Each observation consists of an aggregate, a set of actual alternatives that
may correspond to the observed situations. If Cobs is the observed aggregate,
than the probability given by the choice model is

P(Cobs) =
∑
i∈C

P(Cobs|i)P(i|C). (27)

Equation P(Cobs|i) can be viewed as a measurement equation, and repre-
sents the probability to observe Cobs if i was the actual choice.

In BIOGEME 1.8, an aggregate observation is represented by a consec-
utive sequence of elemental observations, associated with the probability
P(Cobs|i). Two additional sections in the model specification file are used
for the specification: section [AggregateLast] defines a boolean with is true
if the corresponding row is the last elemental observation of the current ag-
gregate, and false otherwise. section [AggregateWeight] defines the value of
P(Cobs|i).

19 The Zheng Fosgerau test

BIOSIM 1.8 can compute the Zheng-Fosgerau test. Proposed by [Zheng, 1996],
it has been adapted to discrete choice models by [Fosgerau, 2008]. In addi-
tion to the value of the test itself, BIOSIM 1.8 reports pictures allowing to
perform residual analysis.

We consider here the example in the file 24ZhengFosgerau.mod. Note
that this is not a genuine model. Our objective here is to illustrate the
tool. In this file, 3 tests are proposed, with 3 definitions for the function t
introduced by [Fosgerau, 2008]. We consider the second one, which is exactly
the expression of the utility function of alternative 2. The syntax is

$E { ASC2 * one + BETA1 * x21 + BETA2 * x22 } 1 -1000 1000 "Util2"

BIOSIM 1.8 first generates a plot to show how t (i.e. the utility of alterna-
tive 2 in this case) is distributed in the sample. This plots appears in the
file 24ZhengFosgerau zheng.tex, which must be processed with the LATEX4

word processor. The density function is estimated using nonparametric re-
gression. As we can see on Figure 4, the shape is not too different from a
normal distribution, with very few values of this expression are out of the
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0−10.0

0.100

Figure 4: Density of Util2 = ( ( ASC2 * one ) + ( BETA1 * x21 ) ) + (
BETA2 * x22 )
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Figure 5: Testing Util2 = ( ( ASC2 * one ) + ( BETA1 * x21 ) ) + ( BETA2
* x22 ) with alt. Alt2

range [−10 : 10].
BIOSIM 1.8 also generates plots of the residuals, that is the difference

(yin − Pn(i)), where yin is 1 if individual n has chosen alternative i in
the sample, and 0 otherwise, and Pn(i) is the probability as computed by
the model. In principle, the residuals should be a white noise unrelated
to the independent variables. Figure 5 plots a nonparametric estimation
of the residuals for alternative 2 as a function of t, that is the utility of
alternative 2 in this case. Clearly, the residuals are not independent from
the utility, which is a sign of a misspecification. Unfortunately, the source of
the misspecification itself is not revealed by the plot.

We can trim the data and exclude values below -7 and above 7, using the
syntax

4LATEX is distributed freely on internet. Note that the package pstricks is required
to produce the plots.
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0.100

−0.100

−0.200

−0.300

Figure 6: Testing Util2 in [−7 : 7] with alt. Alt2

$E { ASC2 * one + BETA1 * x21 + BETA2 * x22 } 1 -7 7 "Util2"

Doing this, we exclude only 2.8% of the data, and the plot on Figure 6 empha-
sizes even more the misspecification. Note that trimming is not equivalent
to a zoom on the plot. The data are excluded before the nonparametric es-
timation is performed. Although in principle it should not affect the general
shape of the plot, some discrepancies my appear especially at the borders of
the selected interval.

If LATEX is not available, the plots may be generated using Excel or some-
thing similar. Indeed, BIOSIM 1.8 creates also the file 24ZhengFosgerau zheng.enu

which is an ASCII file, easily imported in a spreadsheet. The file is organized
as follows. For each test (that is for each function t defined by the user), a
total of 5(J + 1) rows are generated, where J is the number of alternatives.
The name of the function t is reported in the first column. The first 5 rows
contain the smallest and the largest values, the range, the bandwidth used
for the nonparametric regression (that is c/

√
n, where n is the sample size
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and c is user defined, and 1 by default), and a description of the trimming
using the syntax

[l:u]: nl < ni > nu <==> pl% < pi% > pu%

where l and u are the lower and the upper bound defined by the user, nl and
nu are the number pieces of data excluded because they are beyond the lower
(resp. upper) bound, and ni is the number of pieces of data considered in the
analysis. pl, pi and pu report the same information in terms of percentages.

For each alternative, 5 rows are generated, containing the following infor-
mation:

1. The name of the alternative, the ID and the value of the Zheng test;

2. A list of values corresponding to th x-axis of the plot. By default, there
are 100 of them.

3. A list of values for the residual, corresponding to the continuous line
in Figure 6.

4. A list of values for the lower bound of the confidence interval, corre-
sponding to the lower dashed line in Figure 6.

5. A list of values for the upper bound of the confidence interval, corre-
sponding to the upper dashed line in Figure 6.

20 IIA test

Suppose that we have estimated a logit model, using all the observations.
The final log likelihood of this model is  L1. Denote by Pin the probability
given by this model that individual n in the sample chooses alternative i.

Consider Ĉ ⊆ C a given subset of alternatives. Define the new variables

zin =


Vin −

∑
j∈bC PjnVjn∑
j∈bC Pjn if i ∈ Ĉ,

0 if i 6∈ Ĉ.
(28)

Estimate the same model as before where the new variables have been
also included in the specification. Testing if IIA holds is equivalent to testing
if all the coefficients of the new variables are 0, which can be performed with
a likelihood ratio test.
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21 Merging files

It is often convenient (in particular when performing the IIA test described
in Section section 20) to expand the original observation database with new
variables that have been computed (for example) with BIOSIM 1.8. A simple
utility, called biomerge has been implemented to perform this task easily.
If file1, file2, . . . , filen are n ASCII files containing the exact same
number of rows each. The command

biomerge file1 file2 ... filen

will generate a file called biomergeOutput.lis such that row number j of
this file is the concatenation of row number j of all input files.

22 Known problems

1. The loglikelihood estimator used by BIOGEME 1.8 to estimate a model
with panel data has been designed for instances where all random pa-
rameters are panel. When some of the random parameters are cross-
sectional, the estimator is not exactly correct. It is conjectured that
the estimates are still consistent, but not as efficient as they should be.
So, except if you have good reasons to do otherwise, make sure that all
the random variables are listed in the [PanelData] section.

2. The values in the section “Variance of random coefficients” have been
reported wrong by several users on some model instances. Make sure to
verify if the reported values make sense. If not, simply ignore this sec-
tion. The value of the parameters reported in the “Utility parameters”
section are correct.

23 Basic examples

A list of examples is available from the BIOGEME webpage. Two comple-
mentary data files are available: sample.dat containing 1000 observations,
and sample2.dat containing 999 observations. These two files are grouped
in the file fullsample.dat. Therefore, the following runs are equivalent:

biogeme mymodel sample.dat sample2.dat
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and

biogeme mymodel fullsample.dat

These examples are designed to help the user understanding how to use BIO-
GEME 1.8. They are not meant to illustrate how to build good models. Note
that reading this section supposes that you can read and edit the example
files, and run BIOGEME 1.8.

23.1 A binary logit model

00bl.mod

Example of a model specification file for binary logit. The Alternative
Specific Constant (ASC) associated with alternative 1 has been fixed, and
will not be estimated.

In order to use the same data file as for the other examples, all obser-
vations with a choice strictly larger than 2 are excluded using the following
syntax:

[Exclude]

Choice > 2

Therefore, each observation corresponds to the choice of alternative 1 or
alternative 2.

23.2 A binary probit model

00bp.mod

Example of a model specification file for binary probit. Except for the
distribution assumption on the error term, the model specification is the
same as in 00bl.mod.

23.3 A basic model

01mnl-basic.mod

The file 01mnl-basic.mod contains the minimum model description needed
by BIOGEME 1.8. It is a typical example of a file created by hand. The
model has 6 alternatives, and the utility functions contain only the Alter-
native Specific Constants. The ASC associated with alternative 1 has been
fixed, and will not be estimated.
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23.4 Weight the observations

02mnl-weights.mod

The observations are now weighted. But weighting the observations must
be done carefully. Namely, the sum of all weights should be equal to the
sample size. BIOGEME 1.8 provides some help to achieve this property. In
the file 02mnl-weights.sta, it is reported

Sample size=1000
Total weight=994.295

--> It is recommended to multiply all weights by 1.005738e+00

23.5 Corrected weights

03mnl-weights.mod

The weights are corrected based on the recommendation from the .sta file
in the following way:

[Weight]
Weight * 1.005738

23.6 Heterogeneous samples

04mnl-heterosample.mod

This example illustrates the estimation of scale parameters for different groups
in the sample. We have here two groups, defined by

[Group]
(Id <= 50) * 1 + (Id >= 51) * 2

It means that group 1 is composed of individuals with ids up to 50, and
group 2 with ids from 51. The associated scale parameters are defined by

[Scale]
// Group_number Scale LowerBound UpperBound Status

1 1 0.001 1000 1
2 1 0.001 1000 0

Clearly, only one of them is identifiable. Note that this allows to avoid
complicated tricks based on nested structures in the presence of heteroge-
neous populations.
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23.7 More coefficients

05mnl-beta.mod

Here, we have included some additional coefficients into the model.

BETA1 0 -10000 10000 0
BETA2 0 -10000 10000 0

There are both significant:

Name Value Robust Std err Robust t-test
BETA1 +7.5924002e-001 +3.7156070e-002 +2.0433808e+001
BETA2 +7.7572746e-001 +3.6835050e-002 +2.1059493e+001

But they are correlated in such a way that the hypothesis that they are
equal cannot be rejected, at a 95% level:

Coefficient1 Coefficient2 Rob. cov. Rob. corr. Rob. t-test
~~~~~~~~~~~~ ~~~~~~~~~~~~ ~~~~~~~~~ ~~~~~~~~~~ ~~~~~~~~~~~
BETA1 BETA2 +1.0688450e-03 +7.8095080e-01 -6.7326255e-01 *

23.8 Modification of an attribute

06mnl-modif-attrib.mod

This example exploits the looping feature on the Expressions section.

[Utilities]
// Id Name Avail linear-in-parameter expression (beta1*x1 + beta2*x2 + ... )
1 Alt1 av1 ASC1 * one + BETA1 * logx11 + BETA2 * x12
2 Alt2 av2 ASC2 * one + BETA1 * logx21 + BETA2 * x22
3 Alt3 av3 ASC3 * one + BETA1 * logx31 + BETA2 * x32
4 Alt4 av4 ASC4 * one + BETA1 * logx41 + BETA2 * x42
5 Alt5 av5 ASC5 * one + BETA1 * logx51 + BETA2 * x52
6 Alt6 av6 ASC6 * one + BETA1 * logx61 + BETA2 * x62

[Expressions]
// Define here arithmetic expressions for name that are not directly
// available from the data
one = 1

$LOOP{ZZ 1 6 1} logxZZ1 = log( xZZ1 + 15.0 )
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23.9 A simple Mixed Logit model

07mixed-mnl.mod

This example allows for a single normally distributed random coefficient
BETA1 [ SIGMA1 ]. More detailed examples are provided in the next section.

07mixed-unif-mnl.mod

This example allows for a single uniformly distributed random coefficient
BETA1 { SIGMA1 }.

Note that, in both cases, the number of draws is very low, because the
only purpose of these example is to illustrate the syntax, and to test the
software. In practice, the number of draws should be at least 1000.

23.10 Discrete mixture

08mixed-discrete.mod

This example allows for a the coefficient BETA1 to follow a discrete distribu-
tion. It can take two values: B1, with probability W1, and B2, with probability
W2. For the model to make sense, it is necessary to impose the linear con-
straint:

[LinearConstraints]

W1 + W2 = 1.0

Due to the presence of this constraint, algorithm BIO cannot be used.
Therefore, a file 08mixed-discrete.par has been created, where the algo-
rithm DONLP2 is preferred:

gevAlgo = "DONLP2"

23.11 A simple Non Linear model

09mnl-nonlinear.mod

The example 09mnl-nonlinear.mod demonstrates how to add non linear
components to the specification of the utilities. In this case we apply a Box-
Tuckey transformation to the x variables in the specification of utility 1. The
code to implement this is:
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[Utilities]
// Id Name Avail linear-in-parameter expression (beta1*x1 + beta2*x2 + ... )
1 Alt1 av1 ASC1 * one
2 Alt2 av2 ASC2 * one + BETA1 * x21 + BETA2 * x22
3 Alt3 av3 ASC3 * one + BETA1 * x31 + BETA2 * x32
4 Alt4 av4 ASC4 * one + BETA1 * x41 + BETA2 * x42
5 Alt5 av5 ASC5 * one + BETA1 * x51 + BETA2 * x52
6 Alt6 av6 ASC6 * one + BETA1 * x61 + BETA2 * x62

[GeneralizedUtilities]
1 BETA1 * ((x11 + 10 ) ^ LAMBDA11 - 1) / LAMBDA11
+ BETA2 * ((x12 + 10 ) ^ LAMBDA12 - 1) / LAMBDA12

09mnl-nonlinear-deriv.mod

Same file, where the derivatives are explicitly coded in the specification
file as follows:

[Derivatives]
1 BETA1 ((x11 + 10 ) ^ LAMBDA11 - 1) / LAMBDA11
1 BETA2 ((x12 + 10 ) ^ LAMBDA12 - 1) / LAMBDA12
1 LAMBDA11

BETA1 * ((x11 + 10) ^ LAMBDA11 * LN(x11 + 10) * LAMBDA11
- (x11 + 10) ^ LAMBDA11 + 1) / (LAMBDA11 * LAMBDA11 )

1 LAMBDA12
BETA2 * ((x12 + 10) ^ LAMBDA12 * LN(x12 + 10) * LAMBDA12

- (x12 + 10) ^ LAMBDA12 + 1) / (LAMBDA12 * LAMBDA12 )

23.12 A simple Nested Logit model

10nl.mod

A Nested Logit model with two nests, A and B, is tested. Alternatives 1, 2
and 3 belong to nest A, and the other alternatives to nest B.

[NLNests]
// Name paramvalue LowerBound UpperBound status list of alt
NESTA 1.0 1.0 10.0 0 1 2 3
NESTB 1.0 1.0 10.0 0 4 5 6

Note that it is normalized from the top, that is µ = 1, imposing that
NESTA ≥ 1 and NESTB ≥ 1, in order to obtain the conditions required by the
theory, that is

0 ≤ µ/NESTA ≤ 1,
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and
0 ≤ µ/NESTB ≤ 1.

10nl-bottom.mod

In the file 10nl-bottom.mod, the exact same model is described, but
normalized from the bottom, while the previous was normalized from the
top. The coefficient of nest A is constrained to 1, and the µ parameter is
estimated.

[Mu]

// Value LowerBound UpperBound Status

1.0 0.0 1.0 0

It is important to understand that both models are equivalent, even if the
estimated parameters do not have the same values. In the following table, the
column “Top” contains the estimated parameters for the model normalized
at the top, and “Bottom” the estimated parameters for the model normalized
at the bottom. The third column contains the scaled parameters, that is each
parameter multiplied by µ, except for the nests parameters, where the value
µ/µm is reported, m being the nest. These values are independent of the
normalization, and should be used when comparing models.

Top Bottom Scaled
ASC1 0 0 0
ASC2 -0.0897 -0.1527 -0.0897
ASC3 -0.0650 -0.1107 -0.0650
ASC4 -0.3282 -0.5587 -0.3282
ASC5 0.5651 0.9619 0.5651
ASC6 -0.8872 -1.5102 -0.8872

BETA1 0.5350 0.9107 0.5350
BETA2 0.5537 0.9426 0.5538

MU 1.0000 0.5875
NESTA 1.7023 1.0000 0.5874
NESTB 3.2339 1.8996 0.3092

10nl-constrained.mod

In this example, the nest parameters of the nested logit model are con-
strained to be equal. Note that it is not a normalization constraint, as the
drop in loglikelihood from −848.171 to −858.941 illustrates.
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[LinearConstraints]

NESTA - NESTB = 0.0

23.13 A Cross-Nested Logit model

11cnl.mod

The CNL model has two nests, A and B, and each alternative belongs to
both nests. The α parameters are set to 1/2:

[CNLAlpha]
// Alt Nest value LowerBound UpperBound status
Alt1 NESTA 0.5 0.0001 1.0 1
Alt2 NESTA 0.5 0.0001 1.0 1
Alt3 NESTA 0.5 0.0001 1.0 1
Alt4 NESTA 0.5 0.0001 1.0 1
Alt5 NESTA 0.5 0.0001 1.0 1
Alt6 NESTA 0.5 0.0001 1.0 1
Alt1 NESTB 0.5 0.0001 1.0 1
Alt2 NESTB 0.5 0.0001 1.0 1
Alt3 NESTB 0.5 0.0001 1.0 1
Alt4 NESTB 0.5 0.0001 1.0 1
Alt5 NESTB 0.5 0.0001 1.0 1
Alt6 NESTB 0.5 0.0001 1.0 1

12cnl.mod

In the file 12cnl.mod, the α parameters are now estimated. For each alterna-
tive, the sum of corresponding α parameters must sum up to 1.0. Therefore,
we add the constraints

[LinearConstraints]

NESTA_Alt1 + NESTB_Alt1 = 1.0

NESTA_Alt2 + NESTB_Alt2 = 1.0

NESTA_Alt3 + NESTB_Alt3 = 1.0

NESTA_Alt4 + NESTB_Alt4 = 1.0

NESTA_Alt5 + NESTB_Alt5 = 1.0

NESTA_Alt6 + NESTB_Alt6 = 1.0

13cnl.mod

The file 13cnl.mod is the same as 12cnl.mod, with another starting point
based on the estimates of the nested logit model.
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23.14 A Network GEV model

14ngev.mod

The Nested Logit model of file 10nl.mod is described here using the Network
GEV syntax. Note that the high level of generality provided by the network
GEV model comes with a cost. On my computer, a Network GEV model
takes much longer to estimate than the same Nested Logit model.

15ngev.mod

It is important to note that the model formulation of the Network GEV
model ([Daly and Bierlaire, 2006]) is not consistent with the Cross-Nested
Logit model formulation. In order to illustrate it, the file 15ngev.mod is
mimicking the model described in 11cnl.mod, but should be used for syntax
considerations only. In general, the two models will give different results,
although they are theoretically equivalent, for two reasons.

1. The normalization conditions of the Network GEV models are not
clear, and definitely nonlinear. They have not been specified in the
file 15ngev.mod, and it complicates the run of the algorithm as the
optimization is degenerate.

2. When the α parameters are estimated in a CNL or a Network GEV
model, the loglikelihood function exhibits many local maxima. It is
very rare that estimations on the two versions of the model leads to
the same local maximum.

23.15 Panel data

16panel.mod

The MNL model from file 05mnl-beta.mod combined with individual specific
error components ZERO [ SIGMA ] * one, where SIGMA is estimated. Note
that ZERO must be declared, but is fixed to 0. The section

[PanelData]

Id

ZERO_SIGMA
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tells BIOGEME 1.8 that individuals ids can be found under Id in the sample
file, and that the random coefficient ZERO_SIGMA does not vary across obser-
vations from the same individual. Note that it is assumed in BIOGEME 1.8
that the data file is sorted in such a way that all observations from each
individual are successive in the data file.

23.16 Expressions

17expressions.mod

Illustrates the syntax of expressions. Namely, a dummy variable which is
defined by

dum12 =

{
1 if x11 ≥ 1 or x21 ≥ 1
0 otherwise

is coded as

dum12 = ( x11 >= 1 ) || ( x21 >= 1 )

23.17 Selection bias

18selectionBias.mod

BIOGEME 1.8 has the capability to correct for selection bias in some
circumstances. The syntax is simple: the list of additionnal parameters to
be estimated must be listed together with their associated alternative in
the Section [SelectionBias] of the .mod file, as illustrated in this file. See
Section 14.3 and [Bierlaire et al., 2008] for more details.

23.18 Discrete distributions and panel data

19panelDiscrete.mod

Illustrate a model where one random coefficient has a continuous distri-
bution, and another a discrete distribution, in a panel data context.
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23.19 Seminonparametric transformation

20legendre.mod

Example of a mixture of MNL (actually, same as 07mixed-mnl.mod)
where a seminonparametric transformation, based on the Legendre poly-
nomials of degree 1, 3 and 4, has been applied. Not that, in practice, it is
more common to use consecutive terms. Again, this example is designed to
illustrate the syntax, and to emphasize that some terns may be omitted if
necessary. See [Fosgerau and Bierlaire, 2007] for details.

23.20 Lognormal distribution

21mixed-lognormal.mod

Example of a mixture with a lognormally distributed coefficient.

21mixed-lognormal.mod

Same example where the derivatives are explicitly implemented by the
user. It illustrate the use of the operator $DERIV used to ask BIOGEME
to compute the derivative for you. It is mandatory to use it when random
variables are involved, such as in this example.

23.21 Ordinal logit

22ordinalLogit.mod

Exact same model as in the file 00bl.mod, but using the syntax of an
ordinal logit model (with only two categories, in this case). It is interesting
to compare the sign of the coefficients between the two models.

23ordinalLogit.mod

Example of a model specification file for an ordinal logit model with 4
categories. Note the following section, defining the categories:

[OrdinalLogit]
1 $NONE // Category 1 spans -infty --> tau1
2 tau1 // 2 spans tau1 --> tau2
3 tau2 // 3 spans tau2 --> tau3
4 tau3 // 4 spans tau3 --> +infty

The estimation of all basic examples are summarized in Table 3.
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24 Examples of logit kernel (mixed logit) for-

mulations

T he examples in this section have been kindly prepared and tested by D.
Bolduc and M.-H. Godbout

In this section, we explore several versions of logit kernel formulations
in order to demonstrate the capabilities of Biogeme. To achieve this, we
generate a sample of 1000 observations arising from a very general model
specification which contains, as a special case, several submodels that are
often used in applied work.

24.1 The data generating process

This subsection introduces the notation, describes the general model and
shows how we generated the synthetic sample datafile we provide with the
examples. The following section gives the specialized form of the model and
provides the associated input files. Let’s consider a choice situation involving
the choice among 6 alternatives. The following data generating process is
used to generate data for a sample of 1000 synthetic choices:

U1n = α1 +X11nβ1 +X12nβ2 +σ1ξ1n +ν1n
U2n = α2 +X21nβ1 +X22nβ2 +σ1ξ1n +σ2ξ2n +ν2n
U3n = α3 +X31nβ1 +X32nβ2 +σ2ξ2n +ν3n
U4n = α4 +X41nβ1 +X42nβ2 +σ2ξ2n +ν4n
U5n = α5 +X51nβ1 +X52nβ2 +σ2ξ2n +σ3ξ3n +ν5n
U6n = +X61nβ1 +X62nβ2 +σ3ξ3n +ν6n

(29)

In this specification, many interesting effects are allowed. For instance,
for a given alternative i, heteroscedasticity in utility i could be modeled
using a random alternative specific constant (ASC). The second two columns
contains two variables X1 and X2 associated with two generic coefficients.
Flexibility would allow them to be random. These components would permit
to model heterogeneity across individuals. In our example, β1 and β2 are
assumed to come from a joint normal distribution with respective means β̄1
and β̄2 and variance and covariance matrix:

Σβ =

[
var(β1) cov(β1, β2)

cov(β1, β2) var(β2)

]
=

[
σ21 σ12
σ12 σ22

]
. (30)

86



For convenience, the X ′kins , k = 1, 2, i = 1, ..., 6 and n = 1, ...,N =

1000, are i.i.d. random variates generated from a standard normal distri-
bution. The ξin are error component terms (factors) that allow to model
the correlation across the utilities. Here, alternatives 1 and 2 are related
through factor 1, alternatives 2, 3, 4 and 5 are related through common fac-
tor 2 and the last two alternatives have factor 3 in common. The ν′ins are
i.i.d. Gumbel error terms.

24.1.1 On correlated random coefficients

[Cholesky factorization] In the above subsection, we assumed that:(
β1
β2

)
∼ MVN(

(
β̄1
β̄2

)
,

[
σ21 σ12
σ12 σ22

]
).

Using the Cholesky factorization, the vector (β1, β2)
′ can be replaced by:(

β1
β2

)
=

(
β̄1
β̄2

)
+

[
p11 0

p21 p22

] [
ζ1
ζ2

]
(31)

where ζ1 and ζ2 are i.i.d. standard normal variates. Using a matrix notation,
we write it as:

β = β̄+ Pζ, (32)

where P corresponds to a lower triangular Cholesky factorization matrix such
that PP′ = Σβ.

We now consider several submodels of the above general formulation.

24.2 Linear specification with independent normally
distributed random coefficients

In this version, the model is written as:

U1n = α1 +X11nβ1 +X21nβ2 +ν1n
U2n = α2 +X12nβ1 +X22nβ2 +ν2n
U3n = α3 +X13nβ1 +X23nβ2 +ν3n
U4n = α4 +X14nβ1 +X24nβ2 +ν4n
U5n = α5 +X15nβ1 +X25nβ2 +ν5n
U6n = +X16nβ1 +X26nβ2 +ν6n

(33)

where the α′s are fixed and where the βk, k = 1, 2 are independently gener-
ated as follows: β1 ∼ N(β̄1, σ

2
1) and β2 ∼ N(β̄2, σ

2
2).
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24.2.1 Input file

17_2.mod

The main sections of the Biogeme file required to estimate this model is
as follows:

[Beta]

// Name Value LowerBound UpperBound status (0=variable, 1=fixed)

ASC1 1.0 -10.0 10.0 0

ASC2 1.0 -10.0 10.0 0

ASC3 1.0 -10.0 10.0 0

ASC4 1.0 -10.0 10.0 0

ASC5 1.0 -10.0 10.0 0

BETA1 1.0 -10.0 10.0 0

BETA2 1.0 -10.0 10.0 0

BETA1_S 1.0 -10.0 10.0 0

BETA2_S 1.0 -10.0 10.0 0

[Utilities]

// Id Name Avail linear-in-parameter expression (beta1*x1 + beta2*x2 + ... )

1 Alt1 av1 ASC1 * one + BETA1 [ BETA1_S ] * x11 + BETA2 [ BETA2_S ] * x12

2 Alt2 av2 ASC2 * one + BETA1 [ BETA1_S ] * x21 + BETA2 [ BETA2_S ] * x22

3 Alt3 av3 ASC3 * one + BETA1 [ BETA1_S ] * x31 + BETA2 [ BETA2_S ] * x32

4 Alt4 av4 ASC4 * one + BETA1 [ BETA1_S ] * x41 + BETA2 [ BETA2_S ] * x42

5 Alt5 av5 ASC5 * one + BETA1 [ BETA1_S ] * x51 + BETA2 [ BETA2_S ] * x52

6 Alt6 av6 BETA1 [ BETA1_S ] * x61 + BETA2 [ BETA2_S ] * x62

[Model]

// Currently, only $MNL (multinomial logit), $NL (nested logit), $CNL

// (cross-nested logit) and $NGEV (Network GEV model) are valid keywords

//

$MNL

In the case with independent random coefficients, the parameter name
between the brackets designates the standard deviation of the random pa-
rameter term with mean specified on the left of the bracket.

24.3 Linear specification with correlated normally dis-
tributed random coefficients

In this version, the model is written as:

U1n = α1 +X11nβ1 +X21nβ2 +ν1n
U2n = α2 +X12nβ1 +X22nβ2 +ν2n
U3n = α3 +X13nβ1 +X23nβ2 +ν3n
U4n = α4 +X14nβ1 +X24nβ2 +ν4n
U5n = α5 +X15nβ1 +X25nβ2 +ν5n
U6n = +X16nβ1 +X26nβ2 +ν6n

(34)

where the α′s are fixed and where each βk, k = 1, 2 are generated from
equation (31) where the p′s are Cholesky terms.
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24.3.1 Input file

17_3.mod

The main sections of the Biogeme file required to estimate this model is
as follows:

[Beta]

// Name Value LowerBound UpperBound status (0=variable, 1=fixed)

ASC1 1.0 -10.0 10.0 0

ASC2 1.0 -10.0 10.0 0

ASC3 1.0 -10.0 10.0 0

ASC4 1.0 -10.0 10.0 0

ASC5 1.0 -10.0 10.0 0

BETA1 1.0 -10.0 10.0 0

BETA2 1.0 -10.0 10.0 0

BETA1_S 1.0 -10.0 10.0 0

BETA2_S 1.0 -10.0 10.0 0

[Utilities]

// Id Name Avail linear-in-parameter expression (beta1*x1 + beta2*x2 + ... )

1 Alt1 av1 ASC1 * one + BETA1 [ BETA1_S ] * x11 + BETA2 [ BETA2_S ] * x12

2 Alt2 av2 ASC2 * one + BETA1 [ BETA1_S ] * x21 + BETA2 [ BETA2_S ] * x22

3 Alt3 av3 ASC3 * one + BETA1 [ BETA1_S ] * x31 + BETA2 [ BETA2_S ] * x32

4 Alt4 av4 ASC4 * one + BETA1 [ BETA1_S ] * x41 + BETA2 [ BETA2_S ] * x42

5 Alt5 av5 ASC5 * one + BETA1 [ BETA1_S ] * x51 + BETA2 [ BETA2_S ] * x52

6 Alt6 av6 BETA1 [ BETA1_S ] * x61 + BETA2 [ BETA2_S ] * x62

[ParameterCovariances]

// Par_i Par_j Value LowerBound UpperBound status (0=variable, 1=fixed)

BETA1_BETA1_S BETA2_BETA2_S 1.0 -10.0 10.0 0

[Model]

// Currently, only $MNL (multinomial logit), $NL (nested logit), $CNL

// (cross-nested logit) and $NGEV (Network GEV model) are valid keywords

//

$MNL

The only difference with the previous example is that, we added the
section ParameterCovariances which indicates which pairs of coefficients are
correlated. In a situation with correlation, the coefficients describing the vari-
ance covariance structure are Cholesky factorization terms. Thus, BETA1 S
corresponds to p11, BETA2 S corresponds to p22 and the term called
BETA1 BETA1 S BETA2 BETA2 S in Biogeme corresponds to p21. In the
output file, the estimates first presented correspond to those coefficients.
Then the Biogeme output converts the Cholesky terms into variances and
covariances. By definition, in the case with independent random coefficients,
the terms on the diagonal of the diagonal Cholesky factorization matrix di-
rectly correspond to the standard deviations of the respective random coef-
ficients.
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24.4 Specification with correlated normally and log-
normally distributed random coefficients

In this version, we allow β1 to be normally distributed and β2 to be lognor-
mally distributed. They are also allowed to be correlated. The model is
written as:

U1n = α1 +X11nβ1 +X21nβ2 +ν1n
U2n = α2 +X12nβ1 +X22nβ2 +ν2n
U3n = α3 +X13nβ1 +X23nβ2 +ν3n
U4n = α4 +X14nβ1 +X24nβ2 +ν4n
U5n = α5 +X15nβ1 +X25nβ2 +ν5n
U6n = +X16nβ1 +X26nβ2 +ν6n

(35)

where the α′s are fixed and where each βk, k = 1, 2 are generated from the
equation: (

β1
ln β2

)
=

(
β̄1
β̄2

)
+

[
p11 0

p21 p22

] [
ζ1
ζ2

]
(36)

where the p′s are Cholesky terms.

24.4.1 Input file

17_4.mod

[Example LogNormal] The main sections of the Biogeme file required to
estimate this model is as follows:

[Beta]

// Name Value LowerBound UpperBound status (0=variable, 1=fixed)

ASC1 1.0 -10.0 10.0 0

ASC2 1.0 -10.0 10.0 0

ASC3 1.0 -10.0 10.0 0

ASC4 1.0 -10.0 10.0 0

ASC5 1.0 -10.0 10.0 0

BETA1 1.0 -10.0 10.0 0

BETA2 1.0 -10.0 10.0 0

BETA1_S 1.0 -10.0 10.0 0

BETA2_S 1.0 -10.0 10.0 0

[Utilities]

// Id Name Avail linear-in-parameter expression (beta1*x1 + beta2*x2 + ... )

1 Alt1 av1 ASC1 * one + BETA1 [ BETA1_S ] * x11

2 Alt2 av2 ASC2 * one + BETA1 [ BETA1_S ] * x21

3 Alt3 av3 ASC3 * one + BETA1 [ BETA1_S ] * x31

4 Alt4 av4 ASC4 * one + BETA1 [ BETA1_S ] * x41

5 Alt5 av5 ASC5 * one + BETA1 [ BETA1_S ] * x51

6 Alt6 av6 BETA1 [ BETA1_S ] * x61

[GeneralizedUtilities]

// Id Name Avail linear-in-parameter expression (beta1*x1 + beta2*x2 + ... )
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1 exp( BETA2 [ BETA2_S ] ) * x12

2 exp( BETA2 [ BETA2_S ] ) * x22

3 exp( BETA2 [ BETA2_S ] ) * x32

4 exp( BETA2 [ BETA2_S ] ) * x42

5 exp( BETA2 [ BETA2_S ] ) * x52

6 exp( BETA2 [ BETA2_S ] ) * x62

[ParameterCovariances]

// Par_i Par_j Value LowerBound UpperBound status

BETA1_BETA1_S BETA2_BETA2_S 1.0 -10.0 10.0 0

As mentioned in the manual, non linearities in the parameters must ab-
solutely be incorporated in the GeneralizedUtilities section of the input file.

24.5 Linear specification with independent heteroscedas-
tic utilities

In this version, the model is written as:

U1n = α1 +X11nβ1 +X21nβ2 +ν1n
U2n = α2 +X12nβ1 +X22nβ2 +ν2n
U3n = α3 +X13nβ1 +X23nβ2 +ν3n
U4n = α4 +X14nβ1 +X24nβ2 +ν4n
U5n = α5 +X15nβ1 +X25nβ2 +ν5n
U6n = +X16nβ1 +X26nβ2 +ν6n

(37)

where the α′s are independent random variables each one with its own specific
variance, and where each βk, k = 1, 2 are fixed coefficients. Identification
conditions are discussed in Walker, Ben-Akiva and Bolduc (2004).

24.5.1 Input file

17_5.mod

The main sections of the Biogeme file required to estimate this model is as
follows:

[Beta]

// Name Value LowerBound UpperBound status (0=variable, 1=fixed)

ASC1 1.0 -10.0 10.0 0

ASC2 1.0 -10.0 10.0 0

ASC3 1.0 -10.0 10.0 0

ASC4 1.0 -10.0 10.0 0

ASC5 1.0 -10.0 10.0 0

BETA1 1.0 -10.0 10.0 0

BETA2 1.0 -10.0 10.0 0

ASC1_S 1.0 -10.0 10.0 0

ASC2_S 1.0 -10.0 10.0 0

ASC3_S 1.0 -10.0 10.0 0

ASC4_S 1.0 -10.0 10.0 0

ASC5_S 1.0 -10.0 10.0 0
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[Utilities]

// Id Name Avail linear-in-parameter expression (beta1*x1 + beta2*x2 + ... )

1 Alt1 av1 ASC1 [ ASC1_S ] * one + BETA1 * x11 + BETA2 * x12

2 Alt2 av2 ASC2 [ ASC2_S ] * one + BETA1 * x21 + BETA2 * x22

3 Alt3 av3 ASC3 [ ASC3_S ] * one + BETA1 * x31 + BETA2 * x32

4 Alt4 av4 ASC4 [ ASC4_S ] * one + BETA1 * x41 + BETA2 * x42

5 Alt5 av5 ASC5 [ ASC5_S ] * one + BETA1 * x51 + BETA2 * x52

6 Alt6 av6 BETA1 * x61 + BETA2 * x62

[Model]

// Currently, only $MNL (multinomial logit), $NL (nested logit), $CNL

// (cross-nested logit) and $NGEV (Network GEV model) are valid keywords

//

$MNL

24.6 Linear specification with error component struc-
ture

In this version, the model is written as:

U1n = α1 +X11nβ1 +X12nβ2 +σ1ξ1n +ν1n
U2n = α2 +X21nβ1 +X22nβ2 +σ1ξ1n +σ2ξ2n +ν2n
U3n = α3 +X31nβ1 +X32nβ2 +σ2ξ2n +ν3n
U4n = α4 +X41nβ1 +X42nβ2 +σ2ξ2n +ν4n
U5n = α5 +X51nβ1 +X52nβ2 +σ2ξ2n +σ3ξ3n +ν5n
U6n = +X61nβ1 +X62nβ2 +σ3ξ3n +ν6n

(38)

where the α′s and each βk, k = 1, 2 are fixed parameters.

24.6.1 Input file

17_6.mod

The main sections of the Biogeme file required to estimate this model is
as follows:

[Beta]

// Name Value LowerBound UpperBound status (0=variable, 1=fixed)

ASC1 1.0 -10.0 10.0 0

ASC2 1.0 -10.0 10.0 0

ASC3 1.0 -10.0 10.0 0

ASC4 1.0 -10.0 10.0 0

ASC5 1.0 -10.0 10.0 0

BETA1 1.0 -10.0 10.0 0

BETA2 1.0 -10.0 10.0 0

fact1 0.0 -10.0 10.0 1

fact2 0.0 -10.0 10.0 1

fact3 0.0 -10.0 10.0 1

fact1_s 1.0 -10.0 10.0 0

fact2_s 1.0 -10.0 10.0 0

fact3_s 1.0 -10.0 10.0 0
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[Utilities]

// Id Name Avail linear-in-parameter expression (beta1*x1 + beta2*x2 + ... )

1 Alt1 av1 ASC1 * one + BETA1 * x11 + BETA2 * x12 + fact1 [ fact1_s ] * one

2 Alt2 av2 ASC2 * one + BETA1 * x21 + BETA2 * x22 + fact1 [ fact1_s ] * one

+ fact2 [ fact2_s ] * one

3 Alt3 av3 ASC3 * one + BETA1 * x31 + BETA2 * x32 + fact2 [ fact2_s ] * one

4 Alt4 av4 ASC4 * one + BETA1 * x41 + BETA2 * x42 + fact2 [ fact2_s ] * one

5 Alt5 av5 ASC5 * one + BETA1 * x51 + BETA2 * x52 + fact2 [ fact2_s ] * one

+ fact3 [ fact3_s ] * one

6 Alt6 av6 BETA1 * x61 + BETA2 * x62 + fact3 [ fact3_s ] * one

[Model]

// Currently, only $MNL (multinomial logit), $NL (nested logit), $CNL

// (cross-nested logit) and $NGEV (Network GEV model) are valid keywords

//

$MNL

24.7 Specification with non linear random heteroge-
neous value of time

For this specialized version of the model, we consider estimating the following
model:

U1n = α1 +X11nβ1 +(cost1n · incηn)β2 +ν1n
U2n = α2 +X21nβ1 +(cost2n · incηn)β2 +ν2n
U3n = α3 +X31nβ1 +(cost3n · incηn)β2 +ν3n
U4n = α4 +X41nβ1 +(cost4n · incηn)β2 +ν4n
U5n = α5 +X51nβ1 +(cost5n · incηn)β2 +ν5n
U6n = +X61nβ1 +(cost6n · incηn)β2 +ν6n

(39)

where the α′s are fixed and where each βk, k = 1, 2 are independently gen-
erated as follows: β1 ∼ N(β̄1, σ

2
1) and β2 ∼ N(β̄2, σ

2
2). The model contains

a cost variable which vary across alternatives and an income variable which
is evaluated to the power η where η is a normally distributed random coeffi-
cient. The database may be found in the directory where the Biogeme input
file resides.

24.7.1 Input file

17_7.mod

The main sections of the Biogeme file required to estimate this model is as
follows:

[Beta]
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// Name Value LowerBound UpperBound status (0=variable, 1=fixed)
ASC1 1.0 -10.0 10.0 0
ASC2 1.0 -10.0 10.0 0
ASC3 1.0 -10.0 10.0 0
ASC4 1.0 -10.0 10.0 0
ASC5 1.0 -10.0 10.0 0
BETA1 1.0 -10.0 10.0 0
BETA2 1.0 -10.0 10.0 0
BETA1_S 1.0 -10.0 10.0 0
BETA2_S 1.0 -10.0 10.0 0
ETA 1.0 -10.0 10.0 0
ETA_S 1.0 -10.0 10.0 0

[Utilities]
// Id Name Avail linear-in-parameter expression

1 Alt1 av1 ASC1 * one + BETA1 [ BETA1_S ] * x11
2 Alt2 av2 ASC2 * one + BETA1 [ BETA1_S ] * x21
3 Alt3 av3 ASC3 * one + BETA1 [ BETA1_S ] * x31
4 Alt4 av4 ASC4 * one + BETA1 [ BETA1_S ] * x41
5 Alt5 av5 ASC5 * one + BETA1 [ BETA1_S ] * x51
6 Alt6 av6 BETA1 [ BETA1_S ] * x61

[GeneralizedUtilities]
// Id Name Avail linear-in-parameter expression
1 BETA2 [ BETA2_S ] * ( inc ^ ETA [ ETA_S ] ) * cost1
2 BETA2 [ BETA2_S ] * ( inc ^ ETA [ ETA_S ] ) * cost2
3 BETA2 [ BETA2_S ] * ( inc ^ ETA [ ETA_S ] ) * cost3
4 BETA2 [ BETA2_S ] * ( inc ^ ETA [ ETA_S ] ) * cost4
5 BETA2 [ BETA2_S ] * ( inc ^ ETA [ ETA_S ] ) * cost5
6 BETA2 [ BETA2_S ] * ( inc ^ ETA [ ETA_S ] ) * cost6

[Model]
// Currently, only $MNL (multinomial logit), $NL (nested logit), $CNL
// (cross-nested logit) and $NGEV (Network GEV model) are valid keywords
$MNL

Again, non linearities must be incorporated in the GeneralizedUtilities
section of the input file.

24.8 Panel data

In Biogeme, when panel data is used, it is possible to identify which random
parameters should vary only across individuals, and not across observations.
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This functionality is illustrated by the files 17_8.mod and 17_8simple.mod.

25 Compiling from the sources

BIOGEME 1.8 has been developed using GNU C++ (see, among many oth-
ers, [Swan, 1999]). In general, this environment is available on computer run-
ning linux or Mac OS X operating systems. On computers running Windows,
several distributions of GNU tools are available ([Hagerty et al., 2001]). BIO-
GEME is actually developed within the cygwin environment available from
www.cygwin.com. The executable itself is compiled within the Minimalist

GNU for Windows (MinGW) environment, available at www.mingw.org. The
following assumes that you are familiar with one of these environments. I
have included screen shots from the MinGW environment.

Before starting the installation, make sure to install the Fast Light Toolkit
from www.fltk.org in order to be able to compile the Graphical User Inter-
face.

1. First, the distribution must be unzipped in a directory. It is good
practice to call that directory biogeme, but it is not required. In this
example, the directory is /home/biogeme. After unzipping, the follow-
ing should appear in the directory:

2. Before compiling, the environment variable MAKEHOME must contain the
name of the directory where the source files have been installed. De-
pending on the Shell you are using, the syntax may be slightly different.
If you use tcsh as a shell, type

setenv MAKEHOME ‘pwd‘

If you use bash as a shell, type
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export MAKEHOME=‘pwd‘

as illustrated here:

3. Type make or gmake to launch the compilation. Depending on your
computer, it may take several minutes. You will probably obtain the
following error message:

Just retype make or gmake. When it is done, you’ll obtain something
like:

These executables are now available:

biogeme

bioroute/bioroute

biosim/biosim

fltk/winbiogeme.exe

Make sure that you move them to a directory in your search path for
executables, or that you update your path so that they can be found.
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26 Parallel computing with BIOGEME

It is possible to run BIOGEME 1.8 much faster for the estimation of multino-
mial logit (MNL) models, or mixtures of MNL, in particular those involving
nonlinear utility functions. This is done within the directory fastbiogeme.
In order to illustrate the process, we estimate the model from the file 16panel.mod
on a linux machine with 8 processors. We first copy the model specification
file as well as the data file in the fastbiogeme directory.

The core of BIOGEME 1.8 is available in this directory within the file
libbiogeme.dll. If you are using a linux machine, the extension is expected
to be .so, not .dll. In this case, just rename the file.

Now, the idea is to build an executable dedicated to your model. Before
doing that, it is useful to define the number of processors on your computer.
Edit the file default.par and set the parameter gevNumberOfThreads to
the appropriate value. If you define more processors than the actual number,
the program will run just fine, but may be slowed down due to unnecessary
overhead. If you only have one processor, it is still worth using this pro-
cedure, as the running time is significantly decreased, especially when the
model involves nonlinear utility functions. In this case, set the parameter
gevNumberOfThreads to 1.

When you’re done, compile the software using the command

make mymodel.exe

as illustrated below:
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As you can see, this involves the compilation of a C++ code. Conse-
quently, it is recommended to use this feature after you’ve compiled BIO-
GEME 1.8 on your own computer using the procedure described in Sec-
tion 25. The new executable can now be used instead of biogeme using the
following command:

16panel.exe 16panel sample.dat

instead of

biogeme.exe 16panel sample.dat

This feature is recent. Although we have tested and used it in many
circumstances, there may be some problems on some computers. Therefore,
it is always good practice to check on simple models that the results provided
by the parallel version are the same as those provided by the regular version
of BIOGEME 1.8. Please report any problem to the users’ group.

To illustrate the gain in speed, we have estimated the model 21mixed-lognormal
with 1000 and 5000 draws. The run time for estimation are reported in Ta-
ble 4.

98



27 Acknowledgments

Alexandre Alahi introduced me to the library fltk used to implement the
graphical user interface.

Nicolas Antille spent hours working with buggy and undocumented ver-
sions of the package, in order to get results for his diploma thesis. His
patience, (many) questions and (good) comments helped to improve the soft-
ware.

Kay Axhausen and his team have provided relevant suggestions to im-
prove both the user interface and the functionalities of BIOGEME.

John Bates helped in identifying numerical problems caused by exponen-
tial overflows.

Denis Bolduc has been of great help in the implementation of the mixture
GEV models and the panel data features. Although I have not included his
codes as such, they have been of tremendous help and the main source of
inspiration for the development of the most complicated parts of Biogeme.
Also, Denis has spent a lot of time in comparing Biogeme with his own
programs to test the validity of the code.

Andrew Daly and his team at RAND Europe intensively tested BIO-
GEME, and checked that it replicates the results obtained with ALOGIT. A
couple of modifications to the code were necessary, thanks to Andrew Daly’s
comments.

Mogens Fosgerau had the great idea of using seminonparametric tech-
niques to test the distribution of random parameters. He coded the approach
with Ox ([Doornik, 2001]). Once we were convinced that it actually works, I
have coded it in Biogeme, and we have carefully (and successfully) compared
the results (see [Fosgerau and Bierlaire, 2007]). He was also very helpful for
the Zheng-Fosgerau test within BIOSIM (see [Fosgerau, 2008]).

Marie-Hélène Godbout has generated all the advanced examples distributed
with Biogeme, those which take a long time to converge... I thank her for
her competence and her patience.

Stephane Hess is one of the most demanding users of BIOGEME. He
made plenty of tests and comments, and has challenged the software in all
its limits.

Richard Hurni implemented a first prototype of Biogeme. Although the
code itself has not been used in Biogeme, a lot of insights have been gained
from the development of this prototype.

99



Joan Walker made relevant comments that helped to improve this docu-
ment.

I am very grateful to my PhD students and teaching asssitants, and in
particular to Gianluca Antonini, Mamy Fetiarison, Emma Frejinger, Carmine
Gioia, Carolina Osorio, Thomas Robin, Matteo Sorci, and Michaël Thémans,
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Model Loglike Obs. Ind. BETA1 BETA2
00bl -151.954 1019 1019 0.921 0.954

00bp -151.709 1019 1019 0.509 0.528
01mnl-basic -2477.245 1999 1999 - -

02mnl-weights -2474.038 1999 1999 - -
03mnl-weights -2488.234 1999 1999 - -

04mnl-heterosample -2477.241 1999 1999 - -
05mnl-beta -891.225 1999 1999 0.779 0.81

06mnl-modif-attrib -904.776 1999 1999 12 0.793
07mixed-mnl -890.626 1999 1999 0.782 0.811

07mixed-unif-mnl -890.823 1999 1999 0.781 0.81
08mixed-discrete -891.225 1999 1999 -dist.- 0.81

09mnl-nonlinear-deriv -890.775 1999 1999 0.787 0.809
09mnl-nonlinear -890.775 1999 1999 0.787 0.809

10nl-bottom -848.171 1999 1999 0.911 0.943
10nl-constrained -858.941 1999 1999 0.536 0.558

10nl -848.171 1999 1999 0.535 0.554
10nlsim -848.171 1999 1999 0.535 0.554

11cnl -890.902 1999 1999 0.659 0.685
12cnl -846.955 1999 1999 0.513 0.53
13cnl -846.955 1999 1999 0.513 0.53

14ngev -848.171 1999 1999 0.535 0.554
15ngev -890.92 1999 1999 0.647 0.672

16panel -890.008 1999 200 0.782 0.813
17expressions -891.162 1999 1999 0.776 0.81

18selectionBias -846.778 1999 1999 0.539 0.558
19panelDiscrete -890.008 1999 200 -dist.- 0.813

20legendre -891.34 1999 200 0.791 0.815
21mixed-lognormal-deriv -895.748 1999 1999 -0.256 0.806

21mixed-lognormal -895.748 1999 1999 -0.256 0.806
22ordinalLogit -151.954 1019 1019 -0.921 -0.954
23ordinalLogit -1472.729 1417 1417 -0.111 -0.118

Table 3: Summary of the estimation of the basic examples
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Version # processors Draws
1000 5000

BIOGEME 1 08:03 38:41
FASTBIOGEME 1 01:37 07:48

2 01:08 05:43
4 00:44 03:33
8 00:31 02:21

Table 4: Actual run time (mm:ss) of BIOGEME and FASTBIOGEME
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