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Capacitated Arc-Routing Problem (CARP)

Notation: Defined on undirected Graph G = (V ,E )

demands qe ≥ 0 on edges e ∈ E

required edges ER = {e ∈ E : qe > 0} ⊆ E

K homogeneous vehicles stationed at depot d with capacity Q

ce cost for traversing through e ∈ E

Task: Find K minimum cost vehicles tours which start and end at
depot d , service all required edges ER , and respect the vehicle capacity Q.
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CARP solutions

Complete solution Route 1

Route 2 Route 3
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Motivation

Letchford, A. N. and Oukil, A. (2009). Exploiting sparsity in pricing
routines for the capacitated arc routing problem, Computers &
Operations Research 36(7), 2320–2327.

An approach that fully exploits sparsity of CARP instances
should be superior
Drawbacks of the proposed CG algorithm:

1 Pure set-partitioning master program delivers worse bounds
than known compact formulations

2 Missing branching scheme

Branch-and-price for CARP is different than the
node-routing case!
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Review of Models and Exact Methods

Two types of exact approaches:
1 Full exact methods determine an optimal integer solution and

prove optimality by showing that its cost is a lower bound.
2 LB-based methods use heuristic solutions (often not computed

within the presented approach) to prove optimality by showing
that a computed lower bound matches with the heuristic’s
upper bound.

Methods presented in the Literature:
Two-Index Formulation (Belenguer and Benavent, 1998)
One-Index Formulation (Letchford, 1997; Belenguer and
Benavent, 1998, 2003)
Set-Partitioning Formulation (Gómez-Cabrero et al., 2005)
Transformation into Node-Routing Problem

5 / 31



Cut-First Branch-and-Price-Second

Key ideas:
use strong LB from one-index formulation
use aggregated set-partitioning formulation to avoid symmetric
solutions
exploit sparsity of real-world CARP graph;
fast pricing on sparse network

Difficulties that had to be solved:
negative reduced costs on deadheading edges (→dual optimal
inequalities; Ben Amor et al. (2006))
integer variables of aggregated formulation alone do not ensure
integrality of tours
(→complex branching scheme)
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Overview: Cut-first bap-second

Input: CARP Instance
1 Phase 1: Cut

Solve LP-relaxation of one-index formulation using a
cutting-plane algorithm
Let S be the set of active cuts at the end
(odd-set, capacity, and disjoint-path inequalities)

2 Phase 2: Branch-and-Price
Solve integer master program using CG und B&B
Initialize MP with cuts S

Output: Integer solution
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Column Generation

Master problem derived from Dantzig-Wolfe decomposition of two-index
formulation + cuts from one-index formulation + aggregation over vehicles:

min
∑
r∈Ω

c>r λr

s.t.
∑
r∈Ω

x̄erλr = 1 for all e ∈ ER (dual πe)∑
r∈Ω

dsrλr ≥ rs for all s ∈ S (dual βs)∑
r∈Ω

λr = K (dual µ)

λ ≥ 0 (∈ R|Ω|)
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Pricing Problem

Reduced Costs (rdc) can be transformed back onto variables of the
compact formulation:

c̃serve = cserve −πe for all e ∈ ER and c̃e = ce−
∑
s∈S

desβs for all e ∈ E .

Dual optimality inequalities guarantee non-negative rdc c̃e ≥ 0 for
deadheading (Bode and Irnich, 2012).

Pricing Problem:

min c̃ serv,>x + c̃>y − µ
s.t. x(δR(i)) + y(δ(i)) = 2pi for all i ∈ V

q>x ≤ Q

x(δR(S)) + y(δ(S)) ≥ 2xf for all S ⊆ V \ {d}, f ∈ ER(S)

p ∈ Z|V |
+ , y ∈ Z|E |

+ , x ∈ {0, 1}|ER |,

Example: x23 = x24 = 1, y13 = 2, y34 = 1 implies tour 1− 3− 4 a
= 2 b

= 3− 1
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Efficient Pricing

Pricing can be done on the original network (exploit sparsity,
Letchford and Oukil (2009))

Extension along deadheading edges can be done with the Dijkstra
Algorithm due to non-negative reduced costs c̃e ≥ 0.

Algorithm 1: Efficient Pricing Algorithm O (Q · (|E |+ |V | log |V |))
for q = 0, 1, 2, . . . ,Q do

// Dijkstra-like extension
// use rdc c̃e ≥ 0
// this creates new labels with identical load q
Extend labels (c, q) along deadheading edges and apply dominance algo
// Service extension
// use rdc c̃ servicee

// this creates only labels with higher load q′ > q
Extend labels (c, q) along service edges and apply dominance algo
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Efficient Pricing

Dijkstra-like Extension along deadheading edges for q = 3
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Pricing Relaxations

A tour is elementary iff no edge is serviced more than once.
Nodes may be visited more than once.
Edges may be traversed more than once, but only serviced
once.

Tradeoff: The stronger the relaxation, the better the master
program LB , but the harder the pricing problem.

Non-elementary:

feasible:

2-loop free:

feasible:

infeasible:
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Pricing Relaxations
3-loop free: feasible:

infeasible:

Partial elementary w.r.t. a set E ⊆ ER :
feasible w.r.t. E = {b, c}:

infeasible w.r.t. E = {a, b}:

NG-route:
feasible:

infeasible:
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Pricing Relaxations

Possible Relaxations (elementary problem is strongly NP -hard):

Relaxation Efficiency Who?
Worst Case

Non-elementary O (Q(|E |+ |V | log |V |)) Letchford and Oukil (2009)

2-loop free Factor 2 based on Houck et al. (1980)
= 1-cycle free and Benavent et al. (1992)

k-loop free Factor k! · (k − 1)! based on
for k ≥ 3 Irnich and Villeneuve (2006)

partial elementarity Factor 2|E| Desaulniers et al. (2008)
w.r.t. E ⊂ ER

NG-route relaxation Factor 2maxi |Ni | Baldacci et al. (2009)
w.r.t. Ni ⊂ ER , i ∈ V
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Branching

Hierarchical branching scheme with 3 Types of Branching Rules:
1 Branching on node degrees

→ select node with non-even node degree
2 Branching on edge flows

→ select node with fractional edge flow

Integral x and y variables do not guarantee integral route
variables λ

Example: ‘=’ is service and ‘–’ is deadheading
Tour 1 (1=3=8=6–8=3–1) λ1 = 1

3
Tour 2 (1=8=6–8=5=2=7–3–1) λ2 = 1

3
Tour 3 (1–3–2=4=7=3–1) λ3 = 1
Tour 4 (1–3=4=8=3–1) λ4 = 1

3
Tour 5 (1–3=2=6=7–3–1) λ5 = 1
Tour 6 (1=3–7=2=5=8=1) λ6 = 2

3
Tour 7 (1–3=4=8=6–8=4=3–1) λ7 = 1

3

⇒ 3rd class of branching rule is required
3 Branching on followers and non-followers
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Branching on Follower Information

Example (cont’d): ‘=’ is service and ‘–’ is deadheading
Tour 1 (1=3=8=6–8=3–1) λ1 = 1

3
Tour 2 (1=8=6–8=5=2=7–3–1) λ2 = 1

3
Tour 3 (1–3–2=4=7=3–1) λ3 = 1
Tour 4 (1–3=4=8=3–1) λ4 = 1

3
Tour 5 (1–3=2=6=7–3–1) λ5 = 1
Tour 6 (1=3–7=2=5=8=1) λ6 = 2

3
Tour 7 (1–3=4=8=6–8=4=3–1) λ7 = 1

3

Consider edges e = {1, 3} and e′ = {3, 8}.

→ in 1
3 of the cases e and e′ are direct followers (Tour 1)

→ in 2
3 of the cases e and e′ are not direct followers (Tour 6)
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Branching on Follower Information

Branching on (non-)followers can be handled by Network
Modifications:

Deletions and/or additions of required edges

Basic structure of the network remains unchanged

Let e and e′ be two edges with fractional follower information.

Non-Follower branch: Forbid the consecutive service of these two edges
→ Associate same task with e and e′ and perform 2-loop elimination

Follower branch: Enforce consecutive service
→ Replace e and e′ by four new edges modeling consecutive service
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Branching

Branching scheme needs pricing problem relaxation that is able to handle
two sets of tasks:

Tasks T B for branching (2-loop-free tours)

Tasks T E for (approximating) elementary routes
(k-loop free, partial elementary, NG-route)

Example:
T B = {X ,Y ,Z , . . . }
T E = {a, b, c , . . . }
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Branching and Pricing Relaxations

non-elementary
2-loop-free

part. element.
w.r.t. N ⊆ T E3-loop-free

4-loop-free

k-loop-free
k > 4

(3,2)-loop-free

(4,2)-loop-free

(k,2)-loop-free
k > 4

part. element.
w.r.t. N ⊆ T E

+ 2-loop-free

NG-route w.r.t. (Ni )i
+ 2-loop-free

NG-route
w.r.t. (Ni )i ,

Ni ⊇ N for all i

elementary

elementary
+ 2-loop-free

Note: weaker → stronger
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Theoretical Results for (k , 2)-Loop Free Pricing

Possible Relaxations (elementary problem is strongly NP -hard):

Relaxation Efficiency Who?
Relaxation Relaxation
R (R, 2)

Non-elementary O (Q(|E |+
|V | log |V |)) - Letchford and Oukil (2009)

2-loop free Factor 2 Factor 2 based on Houck et al. (1980)
= 1-cycle free and Benavent et al. (1992)

k-loop free Factor based on
for k ≥ 3 k! · (k − 1)! Factor (k + 1) Irnich and Villeneuve (2006)

partial elementarity Factor Desaulniers et al. (2008)
w.r.t. E ⊂ ER 2|E| Factor 2

NG-route relaxation Factor Baldacci et al. (2009)
w.r.t. Ni ⊂ ER , i ∈ V 2maxi |Ni | Factor 2
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Acceleration Techniques

Heuristic Pricing:
Reduced Networks (Elimination of Nodes and Arcs)
Stronger Dominance
Scaling
Metaheuristics
. . .

Acceleration of Exact Pricing Algorithms:
Bidirectional Pricing (Righini and Salani, 2006)
Bounding (Functions) (Baldacci et al., 2011)
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Bidirectional Pricing

Bidirectional Pricing (Righini and Salani, 2006):

1 Propagate FW up
to “middle”

2 Propagate BW up
to “middle”

3 Merge FW and
BW labels

Some Findings:

In undirected networks there is no difference between forward and
backward labels
⇒ we save approx. factor 2 in label extension
⇒ overall factor 1.5–2; better for (k , 2)-loop relaxation

2-loop: Simple Merge in O (Q)

⇒ guarantees identification of a minimum rdc path
⇒ but not all Pareto-optimal paths

NG-route: Standard half-way test not applicable
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Bounding

Bounding is possible with any relaxation of the pricing problem
(Baldacci et al., 2011):

Bounding function is
computed using
(backward) labeling
with a proper relaxation

Pricing with Relaxation
for Bounding

2-loop non-elementary
scaled instance

3-loop non-elementary
2-loop
scaled instance

4-loop non-elementary
2-loop or 3-loop
scaled instance

NG-route 2-loop
+ 2-loop NG-route with

subset of neighbors
Note: No Half-way Stop!
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Scaling

Scaling can be used as a . . .

Relaxation:
Rounded down demand
and capacity to next
integer multiple of a
factor f
Such a relaxation can be
used for bounding.

Restriction:
Rounded up demand and
capacity to next integer
multiple of a factor f
Can be used as a pricing
heuristic.
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Computational Results

Computational Setup:
Computation times do not include Phase 1 (cutting),
Time limit TL = 4 hours
Best node first is node selection rule for B&B
All Pricing Problems with bounding and solved bidirectionally
NG-neighborhoods are generated dynamically based on
iteratively solving the branch-and-price root node

all neighborhoods Ni := ∅ at start
select cycle C = (i1, i2, . . . , ik , i1) with maximum flow
first and last serviced/required edges are identical
e = {i1, i2} = {ik , i1}
task e is added to neighborhoods Ni1 ,Ni2 , . . . ,Nik

stop if bound on neighborhood size is exceeded
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Best known Bounds

Table : Best Known Bounds for the egl Instances

instance lbbest computed by ubbest computed by opt proved by
egl-e2-b 6317 Brandão and Eglese (2008) 6317 own
egl-e3-b 7744 own 7775 Polacek et al. (2008)
egl-e3-c 10244 Bartolini et al. (2012) 10292 Polacek et al. (2008)
egl-e4-a 6408 Bode and Irnich (2012) 6444 Santos et al. (2010)
egl-e4-b 8935 Bartolini et al. (2012) 8961 Bartolini et al. (2012)
egl-e4-c 11512 own 11529 own

egl-s2-a 9825 Bartolini et al. (2012) 9884 Santos et al. (2010)
egl-s2-b 13017 Bartolini et al. (2012) 13100 Brandão and Eglese (2008)
egl-s3-a 10165 own 10220 Santos et al. (2010)
egl-s3-b 13648 Bartolini et al. (2012) 13682 Polacek et al. (2008)
egl-s4-a 12153 own 12268 Santos et al. (2010)
egl-s4-b 16113 own 16283 Fu et al. (2010)
egl-s4-c 20430 Bartolini et al. (2012) 20481 Bartolini et al. (2012)

egl-g1-a 976907 own 1049708 Martinelli et al. (2011)
egl-g1-b 1093884 own 1140692 Martinelli et al. (2011)
egl-g1-c 1212151 own 1282270 Martinelli et al. (2011)
egl-g1-d 1341918 own 1420126 Martinelli et al. (2011)
egl-g1-e 1482176 own 1583133 Martinelli et al. (2011)
egl-g2-a 1067262 own 1129229 Martinelli et al. (2011)
egl-g2-b 1185221 own 1255907 Martinelli et al. (2011)
egl-g2-c 1311339 own 1417145 Martinelli et al. (2011)
egl-g2-d 1446680 own 1516103 Martinelli et al. (2011)
egl-g2-e 1581459 own 1701681 Martinelli et al. (2011)
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Best known Bounds

Table : Best Known Bounds for the bmcv Instances, Subsets C and E

instance lbbest computed by ubbest computed by opt proved by
C01 4145 own 4150 Beullens et al. (2003)
C04 3510 Beullens et al. (2003) 3510 own
C09 5245 own 5260 Brandão and Eglese (2008)
C11 4615 own 4630 Mei et al. (2009)
C12 4235 own 4240 Beullens et al. (2003)
C15 4920 own 4940 Beullens et al. (2003)
C18 5580 Bartolini et al. (2012) 5620 Santos et al. (2010)
C19 3115 Beullens et al. (2003) 3115 own
C21 3970 Beullens et al. (2003) 3970 own
C23 4075 own 4085 Beullens et al. (2003)
C24 3400 Beullens et al. (2003) 3400 own

E01 4900 own 4910 Brandão and Eglese (2008)
E09 5805 own 5820 Tang et al. (2009)
E11 4650 own
E15 4200 own 4205 Santos et al. (2010)
E16 3775 Beullens et al. (2003) 3775 own
E18 3835 Beullens et al. (2003) 3835 own
E19 3235 Beullens et al. (2003) 3235 own
E20 2825 Beullens et al. (2003) 2825 own
E23 3710 Beullens et al. (2003) 3710 own
E24 4020 Beullens et al. (2003) 4020 own
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Best known Bounds

Table : Best Known Bounds for the bmcv Instances, Subsets D and F

instance lbbest computed by ubbest computed by opt proved by
D08 3045 Beullens et al. (2003) 3045 own
D14 3280 Beullens et al. (2003) 3280 own
D19 2400 Beullens et al. (2003) 2400 own
D21 3005 own 3050 Beullens et al. (2003)
D23 3130 Beullens et al. (2003) 3130 own
D24 2705 own 2710 Beullens et al. (2003)

F04 3485 Beullens et al. (2003) 3485 own
F08 3705 Beullens et al. (2003) 3705 own
F12 3395 Beullens et al. (2003) 3395 own
F18 3065 Bartolini et al. (2012) 3075 Beullens et al. (2003)
F19 2515 own 2525 Beullens et al. (2003)
F23 3005 Beullens et al. (2003) 3005 own
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Conclusions and Outlook

Conclusions:

“Easy” instances: best to be solved with 2-loop or 3-loop relaxation

“Hard” instances: often best LBs with NG-route relaxation

dynamic generation of neighborhoods Ni ⊆ ER

maximum neighborhood size 5, 6 or 7 works best

Speedup by combining Bounding and Bidirectional Pricing gives a
speedup by

4-loop: approx. factor 8.0
NG-route/3-loop: approx. factor 4

Partial Elementary is not competitive with NG-route relaxation

Outlook:

1 Detailed experiments with Strong Branching necessary

2 Integration Subset-row inequalities and other non-robust Cuts
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Thank you for coming!

Questions?!
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Network Modification
Modifications become more intricate if several follower and non-follower
constraints are active.

Example: Active follower decisions F = {(e1, e2), (e3, e4)}
and non-follower decisions N = {(e1, e3)}.

F and N partition ER and one partition is {e1, e2, e3, e4}.
The set of all possible subsequences s is

{(e1, e2), (e3, e4), (e1, e2, e3, e4), (e1, e2, e4, e3), (e2, e1, e4, e3)}

These subsequences

are represented by
4 edges each

cost of a
subsequence can
be determined
solving a DP

a

b

c

d

e

f

g
h

e1

e2

e3

e4

a

b

c

d

e

f

g
h

(e1, e2)

(e3, e4)

(e1, e2, e3, e4)

(e1, e2, e4, e3)

(e2, e1, e4, e3)
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