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The train trajectory optimization problem consists in determining the speed profile of
a train between two stations that minimizes energy consumption while respecting the
scheduled arrival time and operational constraints such as speed limits. The problem
is well-known in the literature but has so far been studied without accounting for
external factors as weather conditions or train load that in reality vary in each journey.
These factors have an impact on the train resistance, which in turn can affect energy
consumption. In this paper, we focus on wind uncertainty and propose a novel train
resistance equation that accounts for the impact of wind intensity and direction. For
different wind conditions, we determine optimal trajectories as dynamic programs
defined on a space-speed network that embeds the physical train motion relations
updated with the actual wind information. Numerical experiments show that our
“wind-aware” train trajectories are more energy-efficient than traditional solutions
computed independent of wind information.

1. Introduction

Improving energy efficiency is a major challenge in modern railway transportation due to energy

consumption being one of the largest operating costs (Railenergy 2016). This topic has in fact drawn

considerable attention in the railway operations literature (see Yang et al. 2016 and De Martinis

and Corman 2018 for recent surveys). In particular, optimizing the speed profiles (or trajectories) of

individual trains while satisfying all operational constraints can lead to potential energy savings of

5–20% (Hansen and Pachl 2014) and is an attractive option for railway companies to reduce energy

consumption as it does not require infrastructural changes or investments.

This problem, henceforth the train trajectory optimization problem (TTOP), has been studied in

the scientific literature using a multitude of approaches including: (ii) direct methods, that formulate

and solve the problem as a mathematical program (usually mixed-integer or non-linear; Wang et al.

2013, Wang and Goverde 2016), (i) indirect methods, where the TTOP is formulated as a boundary

value problem using differential equations (Howlett 2000, Howlett and Pudney 2012), and (iii) dy-

namic programming (DP; Ko et al. 2004, Haahr et al. 2017, Zhou et al. 2017). Underlying the latter

approach is a network constructed with discrete space, time, and speed quantities; for instance, a

space-speed network (Haahr et al. 2017) or a space-speed-time network (Zhou et al. 2017).

The extant literature has studied the TTOP in a static environment in which speed profiles are

computed independently from actual journey-dependent conditions. In reality, factors such as wind,

rain, and train load, vary across journeys on the same track can affect energy consumption and

optimal driving strategy. Our intuition is that if we were able to account for these factors, then the

optimal trajectory could potentially be more energy-efficient because it adapts to more information
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neglected in previous research. Thus, our research questions is: Can we exploit knowledge of journey-

dependent factors, such as weather conditions, to compute more energy-efficient speed profiles?

To address this question, we focus on the example of wind and propose a new train resistance

equation that accounts for wind intensity and direction by decomposing the impact of wind on

the train into traversal and longitudinal components. Although train motion is governed by well-

established physical equations (see §2, or Wang and Rakha 2018 for a recent study on train dynamics),

the wind effect on train resistance has not been studied to our knowledge.

Given the current wind state, our goal is hence determining the optimal train trajectory for this

state (we call it a wind-aware trajectory) based on updated resistances. To compute this trajectory,

we propose a method that combines a simple line search algorithm with the known DP approach in a

space-speed network with arc costs adjusted for the actual wind state. We perform a numerical study

showing that our wind-aware trajectories deviate from classical trajectories computed independent

of wind and can be more energy-efficient. Although the resulting energy saving is rather limited

(usually below 0.5%), we prove with this research that there is a practical benefit in including external

factors such as weather in the computation of speed profiles. Our next step is to use this model,

but extend the uncontrollable externals factors to a pervasive description of uncertainty factors in

railway networks (like people onboard, friction coefficients, energy conversion efficiency, etc.). This

would allow to classify their relative effect and opportunities.

To summarize, this paper contributes to the TTOP and railway operations literature: (i) by

formulating a novel train resistance equation that incorporates wind direction and intensity, and (ii)

by numerically showing that accounting for the actual wind state (or in general, journey-dependent

conditions, uncontrollable conditions that can be known with limited knowledge at some specific time

only) when optimizing speed profiles has a practical impact in terms of energy consumption.

The rest of the paper is structured as follows. In §2, we present the new train resistance equation

that embeds wind. In §3, we describe our optimization approach to find wind-aware trajectories. In

§4, we introduce the setup of our numerical experiments and discuss the results. We conclude in §5.

2. Wind effect on train motion

The motion of railway vehicles is governed by the well-known equations (Hansen and Pachl 2014):

dvpsq

ds
“
fpsq ´Rtrainpvq ´Rlinepsq

ρ ¨m ¨ vpsq
; (1a)

dtpsq

ds
“

1

vpsq
, (1b)

where s is the traversed distance, vpsq the train speed, tpsq the time, fpsq represents the traction

force when positive and braking force when negative, and Rtrainpvq and Rlinepsq the train and line

resistance, respectively. The parameterm is the train mass and ρ the rotating mass factor. In addition

to (1), the train movement is constrained by upper bounds on the engine power fpsq ¨ vpsq ď pmax,

traction force fpsq ď fmax, and speed vpsq ď vmaxpsq, where vmaxpsq is the speed limit at location

s. Moreover, the acceleration is bounded by amin ď dvpsq{dtpsq ď amax to ensure riding comfort to

passengers, and time windows at passage points could also be enforced (Wang and Goverde 2016).

The train resistance Rtrainpvq, in particular, is composed by rolling, bearing, and air resistances
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and is generally expressed as a quadratic function of speed (Hansen and Pachl 2014):

Rtrainpvq “ α` β ¨ v ` γ ¨ v2, (2)

where α ą 0, β ą 0, and γ ą 0 are constant scalars. In reality, the train resistance is not only a

function of speed but it is also affected by external factors like wind, rain, and train load (number of

passengers) that change from journey to journey. Therefore, we propose to incorporate these factors

in (2) to obtain a more precise, journey-dependent description of the actual resistances.

In the rest of the paper we focus on the effect of wind on resistance. It is reasonable to assume

that wind affects the quadratic term (i.e., the air resistance) of (2) in a manner that depends on its

speed (w) and the angle between train movement and wind (θ). We introduce this relation by:

Rtrainpvq “ α` β ¨ v ` γ ¨maxtv ´ vepw, θq, 0u2, (3)

where vepw, θq is dubbed the wind effect and intuitively represents how much the relative train speed

in the quadratic term increases or decreases as a result of wind. We describe the wind effect by:

vepw, θq :“ w ¨ cos θ pξ1 ¨ L ¨ h ¨ | sin θ| ` ξ2 ¨ l ¨ h ¨ | cos θ|q , (4)

where L, l, and h are the train length, width, and height, while ξ1 and ξ2 are scaling parameters.

Figure 1: Illustration of the wind effect. The red
arrow indicates the train moving direction.

To build some intuition, we can think of (4)

as the sum of traversal and longitudinal wind

components. The traversal component describes

the force that wind exerts on the lateral side of

the train, and is hence proportional to the side

area L ¨ h and the impact angle via | sin θ|. Sim-

ilarly, the longitudinal component is the force

that wind exerts on the front/back of the train

and is proportional to the front area l¨h (approx-

imated by a rectangle) and the impact angle via

| cos θ|. The resulting sum is multiplied by the

wind speed w, and the outer cosine function that

adjusts the sign of ve and ensures the wind effect

is null when wind is perpendicular to the track

(θ “ ˘π{2). To illustrate, in Figure 1 we display

the wind effect corresponding to the parameters

w “ 20 km/h, L “ 160 m, l “ 3.2 m, h “ 4.4 m, ξ1 “ 0.0014, ξ2 “ 0.014, and different θ values. Here,

ve is larger when there is a traversal component that hits the side of the train (e.g., θ “ 0.33π),

compared to a fully parallel wind (θ “ 0) that only hits the back of the train (a much smaller area).

3. Trajectory optimization with wind

In §3.1, we construct a space-speed network embedding the new resistance equation. In §3.2, we

present a speed optimization method that combines dynamic programming with line search.

3.1 Space-speed network

We define our space-speed network as a directed acyclic graph G “ pN ,Aq as follows. We start by

considering a discrete set of locations s P S “ t0, . . . , Su, where s “ 0 corresponds to the departure
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station and s “ S to the arrival station, and a set of speed points v P Vpsq “ t0, . . . , vmaxpsqu. We

use a uniform discretization of location and speed with intervals ∆s and ∆v, respectively. A node

n P N in the network is represented by the space-speed pair n “ ps, vq P S ˆ Vpsq. We denote by

spnq and vpnq, respectively, the location and speed associated with node n.

For each pair of “consecutive” nodes n1, n2 P N , i.e. with spn2q = spn1q ` ∆s, we insert the

arc a “ pn1, n2q from n1 to n2 if the latter node is reachable from the previous node when taking

into account the physical relations of train motion including maximum acceleration, braking, traction

force, and engine power (see §2). Therefore, an arc a P A represents a feasible train movement (hence

a control) between two consecutive space-speed points n1 and n2. We associate with each arc a P A
the time ta needed to travel the arc, and the energy consumption ea. While the time ta is assumed

not to be affected by the train resistance (since space and speed points are fixed), the force, and

consequently the energy ea, needed for the train to change its speed between two target values in

the interval ∆s depends on the train resistance. Thus, given a wind state pw, θq, for each a P A we

compute the energy consumption ea “ eapw, θq using the resistance equations (3)–(4).

3.2 Dynamic programming

It is well-known that finding the minimum time train trajectory in graph G is equivalent to solving

a shortest path problem from ps, vq “ p0, 0q to ps, vq “ pS, 0q with arc costs equal to the travel time

ca “ ta, for a P A. Since G is directed acyclic, the shortest path can be found efficiently in Op|A|q
using DP (Ahuja et al. 1993). The same is true if the objective is to minimize energy consumption

regardless of time, by assigning arc costs capw, θq “ eapw, θq. However, in TTOP we must deal

with both energy consumption and travel time jointly by minimizing energy with a constraint on

time. One strategy is to formulate a resource-constrained shortest path problem (Hassin 1992) with

energy and time being respectively the unconstrained and constrained resource. This problem is

weakly NP-hard and solving it usually requires excessive computational memory for large networks.

To overcome this challenge, we opted for a second strategy where we solve standard shortest path

problems iteratively with arc costs defined by capη, w, θq “ ta ` η ¨ eapw, θq, for a P A, i.e. linear

combinations of time and energy. We optimize the trade-off parameter η using a line search scheme,

ensuring that the scheduled arrival time T S is respected. The procedure is outlined in Algorithm 1.

Algorithm 1: Line search DP for train trajectory optimization

Inputs: Graph G; Wind pw, θq; ηmax ą 0 (high value); Maximum iterations I; Time tolerance ε.

Initialization: T pw, θq “ `8, Epw, θq “ `8, ηmin “ 0.

For iteration i “ 1 to I do:

1. Set η :“ pηmax ` ηminq{2 and capη, w, θq :“ ta ` η eapw, θq, @a P A, obtaining G “ Gpη, w, θq;
2. Solve DP on Gpη, w, θq, resulting in trajectory Xη, travel time Tη, and energy Eη;

3. If
ˇ

ˇTη ´ T
S
ˇ

ˇ ă
ˇ

ˇT pw, θq ´ T S
ˇ

ˇ, update solution Xpw, θq “ Xη, T pw, θq “ Tη, Epw, θq “ Eη;

4. If Tη ă T S, redefine ηmin “ η, else, redefine ηmax “ η;

5. If
ˇ

ˇT pw, θq ´ T S
ˇ

ˇ ă ε, break.

Outputs: Optimized train trajectory Xpw, θq, time T pw, θq, and energy consumption Epw, θq.

To evaluate our wind-aware trajectories, we generate a set of K wind scenarios tpwk, θkq, k P Ku
and for each k P K solve Algorithm 1 using pw, θq “ pwk, θkq. This procedure results in the energy
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consumption distribution tEpwk, θkq, k P Ku. To evaluate the traditional “no-wind” trajectory under

the same wind conditions, we instead solve Algorithm 1 for pw, θq “ p0, 0q, and evaluate the outcome

solution Xp0, 0q using the true consumption eapwk, θkq, a P A, for all scenarios k P K, giving a second

energy consumption distribution. We compare these two energy distributions in the next section.

4. Numerical study

In this section, we first describe the instance in §4.1 and then present and discuss the results in §4.2.

4.1 Instance

In Table 1, we report the vehicle and instance parameters used in our experiments. The track is

20 km long and contains six different speed limits (which are displayed in Figures 2–3). We do not

use gradients in this example but they could easily be handled by our method. The resulting graph

G has approximately 40 000 nodes and 1.9 million feasible arcs. When running Algorithm 1, we use

ηmax “ 10, I “ 100, and ε “ 0.5, that is, our trajectories are within 0.5 seconds from the target T S.

Table 1: Vehicle and instance parameters.

Name Value Unit Name Value Unit Name Value Unit Name Value Unit

m 220 t α 5.8 kN amax 0.6 m/s2 ∆s 100 m
ρ 1.06 - β 0.02 kN h/km amin -0.8% m/s2 |V| 251 -
L 160 m γ 0.002 kN(h/km)2 pmax 1918 kW |S| 201 -
l 3.2 m ξ1 0.002 - fmax 170 kN S 20 km
h 4.4 m ξ2 0.021 - ∆v 0.48 km/h T S 900 s

4.2 Results

We start with an illustrative example. Assume that at 10 km (i.e. half-way) the track turns by 90˝ and

a strong wind of 50 km/h can blow according to the scenarios of Figures 2(a) and 2(b). In scenario

1, the wind is initially opposed to the train motion (resistance increases) and afterwards in favor

(resistance decreases). Intuitively, one could exploit this information by e.g. keeping a lower speed

during the first part of the journey but start coasting later, or doing the opposite in the second part.

Figure 2: Wind-aware vs. no-wind train trajectories computed under two wind scenarios.

(a) Scenario 1 (b) Scenario 2 (c) Trajectories
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Similar considerations apply to scenario 2. Our results confirm this intuition and the two wind-aware

trajectories deviate from the original one, allowing for an average saving of about 0.4 kWh (0.3%).

We now assume the track is a straight line, and evaluate the no-wind and wind-aware trajecto-

ries using K “ 1000 scenarios pwk, θkq. We model the wind direction with a uniform distribution

θ „ U r0, 2πs and the wind speed with a Weibull distribution, which is the standard choice in the

wind energy literature (Hennessey Jr. 1977). We chose shape and scale parameter of the Weibull

equal to 2 and 20, respectively (to have w in km/h). We display the results in Figure 3. As we

can see from Figure 3(a), the new trajectories differ from the original trajectory and, as expected,

the deviations mainly occur for high speeds for which the air resistance is higher, and consequently

the potential impact of wind. Figure 3(b) shows the distribution of savings achieved by the new

trajectories, with a mean of 0.23 kWh per journey (0.15%). Although wind-aware trajectories are

more energy-efficient, the average saving is overall rather small because most energy is clearly spent

on accelerating the train to a high speed which has to be done regardless of wind.

Figure 3: Wind-aware vs. no-wind trajectories and energy consumption under 1000 wind scenarios.

(a) Trajectories (b) Energy saving

The algorithm was implemented in C++ and run on a i7-8650U processor with 16 GB RAM.

Solving a single DP took on average 0.03 s (plus 0.1 s to update the resistances), and executing the

full line search, i.e. Algorithm 1, took 3.2 s on average for a given wind scenario.

5. Conclusion

In this paper, we have developed a train speed optimization model accounting for external factors

that can vary across journeys on the same track (e.g., weather conditions). We focused on the effect of

wind and proposed a new train resistance equation that embeds wind direction and intensity. Using

this equation, we combined a line search algorithm with dynamic programming on a space-speed

network to optimize speed in different wind scenarios. We performed a numerical study revealing

that our wind-aware trajectories outperform trajectories computed independent of wind. Although

the resulting energy saving is limited, this paper is the first showing the benefit of designing train

speed profiles incorporating external factors that depend on the specific journey. We expect the

saving to be larger when including more factors in the model, e.g., rain and train load.
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