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Seo et al. (2017) proposed a fundamental diagram (FD) of urban rail transit to describe the interaction 

between passenger demand and train operation, in a simple manner. This paper investigates their proposed 

FD and its variants by using empirical data from the Boston subway system. Specifically, three FD models, 

which are based on different assumptions of the train dwelling time, are calibrated and evaluated using 

subway operation and passenger arrival data. The results show that the free-flow regime of the FD models 

can explain the empirical data well. In addition, train dwelling time monotonically increasing with the 

number of boarding passengers might be sufficient to describe passenger congestion influence on transit 

operation. 
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1. Introduction  

Urban rail transit generally serves as the primary solution for commutersô travel demand in metropolises, 

owing to its high capacity and punctuality (Vuchic, 2017). However, passengers typically suffer from severe 

congestion and frequent delays, especially during the rush hours. For example, during the morning rush hours 

in the Tokyo metropolitan area, more than 40 rail transit lines observed congestion rates over 150% (the 

number of passengers divided by designed car capacity > 150%) and 29 lines reported delays of more than 5 

minutes, occurring on over 50% of the weekdays in a month (Ministry of Land, Infrastructure, Transport and 

Tourism, 2017a,b). Moreover, studies have shown that 96 of 311 metro stations adopted ordinary entry 

restriction in Beijing, China (Sohu News, 2018) and only 58.1% of weekday trains arrived on time in New 

York City (Hu, 2018). To relieve congestion during rush hours and to prevent the occurrence of delays, 

engineering efforts have been attempted, such as physically increasing capacity, or enhancing the reliability of 

equipment. These approaches are undoubtedly effective, but limitations widely exist. On the other hand, severe 

congestion and most delays appearing in urban rail transit are essentially caused by surging demand and the 

improper behavior of passengers (Ministry of Land, Infrastructure, Transport and Tourism, 2017a). Therefore, 

it is crucially important to understand congestion and the delay mechanisms that are caused by passenger 

influence.  

In general, congestion and delay can easily develop into a vicious circle during the rush hours. This effect 

is comprehensively reviewed by Tirachini et al. (2013). On the subject of rail transit, due to growing demand 

during rush hours, more passengers accumulate on the platform. Then, the dwelling time of trains is extended 

because of both in-vehicle and on-platform congestion. Next, the longer dwelling time leads to a delay in the 

following trains (also known as ñknock-on delayò, see Carey and KwieciŒski, 1994), especially in a high-

frequency rail transit system. Once the delay occurs, it propagates such that travel time and headways increase, 

which finally causes further accumulation of passengers on the platform.  

To describe the interaction between passenger demand and train operation in a high-frequency rail transit 

system in a simple manner, Seo et al. (2017) proposed a fundamental diagram (FD) of urban railway transit 

that expresses the train flow as a function of the train density and passenger arrival flow. The FD is analytically 

derived from the basic operation principles of trains. Seo et al. (2017) also discussed the applicability of the 

FD to a macroscopic simulation of rail transit operation dynamics through comparison with a microscopic 

simulation model.  

This study aims to investigate their proposed FD and its variants using empirical data. Specifically, the three 

FD models, which are based on different assumptions of the train dwelling time, are calibrated and evaluated 
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using Boston subway operation and passenger arrival data, provided by the Massachusetts Bay Transportation 

Authority (MBTA). The results show that the free-flow regime of the FD models can explain the empirical 

data well. In addition, the dwelling time monotonically increasing with the number of boarding passengers 

might be sufficient to describe passenger congestion influence on transit operation. 

This paper is structured as follows: the second section introduces the Boston subway data and depicts the 

relation among the train flow, density, and passenger arrival flow, based on the extracted data. The third section 

formulates the three FD models and provides numerical examples for each FD. Finally, the fourth section 

calibrates and evaluates the models using the empirical data, and a brief discussion on future work is provided. 

 

2. Boston Redline Operation Data 

To properly investigate passenger influence on railway operation, the data should include both the 

movements of trains and the arrival of passengers. Fortunately, the MBTA recently published a substantial 

amount of required data through its APIs. The raw data includes per minute turnstile entry counts at each 

station, as well as subway operation conditions in Googleôs GTFS format (Barry and Card, 2014). Here we 

choose the busiest section of the Redline (from Alewife to JFK/Umass with 13 stations) as the analysis target. 

The flow and density of the railway system are calculated by employing Edieôs definition (Edie, 1963) of 

traffic flow as shown in Eq. (1). 
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where A is the measurement time-space area and ȿὃȿ ὒ Ўὸ, and Ὠ  and  † are the total travel distance and 

travel time of vehicle n in A, respectively. The total length of the selected railway line section ὒ ρτȢτ Ὧά 
and the time unit Ўὸ ρπ άὭὲ. This implies that one data point in the FD represents the 10 min average flow 

and density of the railway system. Accordingly, the per minute passenger entry data is also aggregated into 10 

min average entries at each station, and is then converted to arrivals per hour (ὴὥὼȾὬ). The calculation utilizes 

data from 18 normal weekdays from 6:00 to 24:00. Figure 1 shows the time evolution of train flow 

(southbound) and the passenger arrival rate within-day, where the curve represents the mean values and the 

shadow indicates the variation. It can be observed that during the rush hours, the train flow declines after the 

peak of the passenger arrival rate, which implies that passenger congestion influences railway operation. 

To obtain relatively steady state data, we filter out the unsteady data by judging the adjacent train flow 

change over 20%. Finally, the FD of the Boston Redline is depicted in Figure 2. The color used represents the 

value of the passenger arrival rate, as illustrated in the color bar (ὴὥὼȾὬ). 
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Figure 1: Train and passenger flow transition during one day 



 
Figure 2: Weekday FD of the Boston Redline (southbound) 

3. Train Fundamental Diagram 

In this section, we present three different train FD models. One is proposed by Seo et al. (2017) and the 

others are slightly modified versions of the former, based on different train dwelling time assumptions.   

(1) Assumptions on railway operation 

The operation of the railway system basically depends on the dwelling and cruising behaviors of each train. 

With regard to the dwelling behavior at stations, we assume that the dwelling time ὸ is determined by the 

number of boarding passengers ὔ  on the platform. Here, three assumptions for dwelling time are considered: 

(a) ὸ keeps constant at ὸ  regardless of ὔ , which indicates that passenger congestion does not affect 

railway operation; 

(b) ὸ monotonically increases with ὔ  from a minimum value ὸ  (buffer time), which is the same 

assumption made in Seo et al. (2017); 

(c) ὸ keeps constant until a critical passenger number ὔ  is reached. It then starts increasing. This idea is 

inspired by the empirical work on passenger boarding by Kariyazaki et al. (2015). 

We also assume that all of the waiting passengers can always board the next approaching train, which means 

ὔ ὥϽὌ, where ὥ is the passenger arrival rate at stations and Ὄ is the time headway of successive trains. 

Now, the three assumptions of ὸ can be expressed as Eq. (2) - (4), respectively.  here can be interpreted as 

the dwelling time growth rate with increase in the number of boarding passenger. 
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On the other hand, the cruising behavior of a train is modeled using Newellôs simplified car-following model 

(2002). More specifically, the position ὼ ὸ of train m at time t is expressed as: 

() ( ) ( ){ }1min ,m m f mx t x t v x tt t t d-= - + - -                                                (5) 

where m-1 indicates the preceding train, † is the minimum time headway of successive trains, and  is the 

minimum spacing. The first term represents the free-flow regime where the train cruises with desired speed 

ὺ. The second term indicates the congested regime where the train decreases its speed to maintain the 

minimum headway and spacing. For clarity, hereinafter, we refer to each model, based on assumptions (a), (b) 

and (c), as model A, B, and C, respectively. 

(2) Derivation 

To derive a train FD, we consider railway operation under the steady state (also known as equilibrium state). 

Specifically, the following conditions are considered: 

ӎ parameters ὸ , ὸ , , ὥ, ὔ  are time-independent  ,† ,

ӎ headway Ὄ and desired cruising speed ὺ are also time-independent 

Also, for simplicity, we assume a homogeneous railway system, which indicates: 

if   ὥὌ ὔ  

if   ὥὌ ὔ  



ӎ trains stop at each station 

ӎ ὥ for each station is the same 

ӎ distance between any two adjacent stations is the same, referred as ὰ 

Now, the train FD as expressed in Eq. (6) can be separately derived in free-flow and congested regime by 

combining the above-mentioned assumptions.  

( ), pq Q k a kv= =                                                                          (6) 

where ή is the steady state train flow (tr/h) and ή ρȾὌ, Ὧ (tr/km) is the average density of the railway line, 

and ὺӶ is the average traveling speed of a train (or system), which can be described by Eq. (7). 
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where ὺ is the average cruising speed of a train. In the free-flow regime, ὺ ὺ so that the explicit expression 

of ή for model A, B and C can be easily derived by substituting Eq. (2) - (4) and Eq. (7) into Eq. (6).  

In the congested regime, the headway Ὄ should satisfy: 
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By taking the equal boundary condition of Eq. (8) and employing ή ρȾὌ, Eq. (2) - (4) can be substituted 

into Eq. (8) so that ή can be described as a function of ὺ and ὥ: 

( )1 , pq f v a= .                                                                               (9) 

Then, by inserting Eq. (7) and Eq. (9) into Eq. (6), we can also obtain Ὧ as a function of  ὺ and ὥ: 

( )2 , pk f v a=                                                                               (10) 

By using Eq. (9) and Eq. (10), the slope of the FD in the congested regime ὨήȾὨὯ can be derived since 

ὨήȾὨὯ ὨήȾὨὺϽὨὺȾὨὯ. Finally, employing the critical state train flow ήᶻ : 
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as a boundary condition, the FDs of model A, B and C can be formulated in Eq. (12) (see also, Seo et al, 2017, 

for the details of the derivation of the FD).   
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When ὥȾὔ ήᶻ 
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Model A is expressed by Eq. (12c) by taking  π, ὔ π and ὸ ὸ . Model B is also expressed by 

Eq. (12c) by taking ὔ π. For model C, the equation has to be separately written, depending on the relation 

between ὥȾὔ  and ήᶻ. 

Eqs. (12a) and (12b) actually describe the situation when ὥ is not large enough to force a condition in 

which the dwelling time is always larger than ὸ . More specifically, when Ὧ Ὧ Ὧ, the dwelling time 

ὸ ὸ , which implies that operation under this condition can guarantee the dwelling time is not extended 

due to passenger influence. While out of this range, dwelling time would be extended either because trains in 

operation are insufficient or abundant (train bunching). On the contrary, Eq. (12c) describes the situation when 

ὥ is large enough so that dwelling time is always larger than ὸ .  

For a better understanding of passenger influence on train flow, we present two numerical examples of the 

FDs for model B and C, as shown in Figure 3, based on the parameters in Table 1. From the comparison of 

Figures 3(a) and (b), it can be observed that under the same ὥ, model C can achieve higher train flow due to 

a relatively short dwelling time. 

 
Table 1: Parameters used in the numerical example 

 

 
                                         (a)                                                                              (b) 

Figure 3: Numerical examples of the FDs, (a) model B, and (b) model C 

 

 

4. Model Calibration and Evaluation 

In this section, we calibrate and evaluate the proposed models employing data from the Boston Redline. 

(1) Calibration based on enumeration method 

The three models are calibrated using the enumeration method. Specifically, we begin by preselecting the 

variation range for each parameter, and we then build a parameter set by accounting for all possible 

Parameter Value 

ὸȟ ὔȟ  30/3600 Ὤ,  500 ὴὥὼ,  0.1/3600 ὬȾὴὥὼ 

ὰȟ ὺȟ ȟ † 1.5 Ὧά,  40 ὯάȾὬ,  0.4 Ὧά,  1/60 Ὤ 

ὥ [0, 30000] ὴὥὼȾὬ 


