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Seo et al. (2017) proposed a fundamental diagram (FD) of urban rail transsttibele¢he interaction
between passenger demand and train operation, in a simple manner. This paper investigates their proposed
FD and its variants by using empirical datarirthe Boston subway system. Specifically, three FD models,
which are based on d&rent assumptions of the train dwelling time, are calibrated and evaluated using
subway operation and passenger arrival data. The results show that-flerfnegime of tle FD models
can explain the empirical data well. In additiorain dwelling time nonotonically increasing witlthe
number ofboarding passengemight besufficientto describgpassengecongestiorinfluenceon transit
operation.
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1. Introduction

Urbanrailt ransit generally serves as t he pmetropalisey s ol 1
owing to its high capacity and punctualityuchic, 2017). However, passengers typically suffer from severe
congestion and frequent delays, especially duriegulh hours. For example, during the morning rush hours
in the Tokyo metropolitan area, more than 40 rail transit lines observed congestion rates over 150% (the
number of passengers divided by designed car capacity > 150%) and 29 lines reported detagsiodn 5
minutes, occurring on over 50% of the weekdays in a madviithigtry of Land, Infrastructure, Transport and
Tourism 2017a,b). Moreover, studies have whothat 96 of 311 metro stations adopted ordinary entry
restriction in Beijing, ChinaJohuNews 2018) and only 58% of weekday trains arriveon timein New
York City (Hu, 2018). To relieve congestion during rush hours and to prevent the occurrenslaysf, d
engineering efforts have been attempted, such as physically increasing capachgnoirg the reliability of
equipment. These approaches are undoubtedly effective, but limitations widely exist. On the other hand, severe
congestion and most dekappearing in urban rail transit are essentially caused by surging demand and the
improperbehavior of passengefilinistry of Land, Infrastructure, Transport and Tourjg@17a) Therefore,
it is crucially important to understand congestion and the dakghanisms that are caused by passenger
influence.

In general, congestion and delay casilgadevelop into a vicious circle during the rush hours. This effect
is comprehensively reviewed by Tirachini et al. (2013). On the subject of rail transit, ghasving demand
during rush hours, more passengers accumulate on the platform. Then, ity dinree of trains is extended
because of both #aehicle and ofplatform congestion. Next, the longer dwelling time leads to a delay in the
following trains (al®8 known &% fillh Cegdyandksveiee c i1984) kespecially in a high
frequencyrail transit system. Once the delay occurs, it propagates such that travel time and headways increase,
which finally causes further accumulation of passengerb®platform.

To describe the interaction between passenger demand and train operatiighifrequency rail transit
system in a simple manner, Seo et al. (2017) proposed a fundamental diagram (FD) of urban railway transit
that expresses the train flas a function of the train density and passenger arrival flow. The FD is analytically
derived from the basic operation principles of trains. Seo et al. (281%@)discussed the applicability of the
FD to a macroscopic simulation of rail transit operatilgnamicsthroughcomparson with a microscopic
simulation model.

This study aims tovestgate their proposed FD and its variants using empirical 8pegifically, the three
FD models, which are based on different assumptions of the train dwellingatienealibrated and evaluated
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usingBostonsubway operation and passenger arrival,dataided by the Massachusetts Bay Transportation
Authority (MBTA). The results show that the frlew regime of theFD models can explain the empirical

datawell. In addition, the dwelling time monotonically increasing with the number of boarding passengers
might besufficientto describe passengewngestiorinfluence on transit operation.

This paper is structured as follows: the second section introduces the Bost@y siatavand depicts the
relation among the train flow, density, and passenger arrival fl@agsedn the extracted data. The third section
formulates the threED models andprovidesnumerical examplefor eachFD. Finally, the fourth section
calibrates ad evaluates the models using the empirical data, and a brief discussion on futurepnerided

2. Boston Redline Operation Data

To properly investigate passenger influence on railway operatiendata should include both the
movements ofrainsandthe arrival of passengers. Fortunatetlye MBTA recently publisheda substantial

amount of requid data through its APIs. The raw data includes per minute turnstile entry counts at each

station as wd as subway operation conditisn n

traffic flow as shown in Eq. (1).

whereA is the measurement tingpace area ar@s 0 Yo, andQ and t are the total travel distance and
traveltime of vehiclen in A, respectively. Thedtal length ofthe selected railwayine sectiord p 8 Qa
and the time uni¥d p ™ "Q&Thisimplies that one data poiitt the FD represents the Ifiin average flow
and density of theailway systemAccordingly, the per minute passenger entry data isagoegatethto 10
minaveage entries at each statiamdis then cowerted to arrivalperhour ) wke). The calculation utilizes
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choosehe busiest section tiie Redline (from Alewife to JR/Umass with 13 stations) as the analysis target.
The flow and density of the railway system are caleutht by e mpl oy i n dEdi& d96&)dd s
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data from 18 normal weekdays from 6:00 to 24:00. Figure 1 shows the time evolution of train flow

(southbound) and the passenger arrival rate iy, where the curve represents the medmegaand the

shadow indicates the variation. It can be observed that during the rush hours, the train flow declines after the

peak of the passenger arrival rate, which implies that passenger congestion iaftadweg operation.
To obtainrelatively stady state dataye filter out theunsteadydata by judging the adjacent train flow

change over 20%-inally, the FD of the Boston Redline is depicted in Figure 2. The color used represents the
value of the passger arrival rate, as illustrated in the adbar §) o).
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3. Train Fundamental Diagram

In this sectionwe present three different train FD modédse is proposed by Seo et al. (2017) and the
others are slightly modified versisof the formerbased on different train dwelling time assumptions.

(1) Assumptions on railway operation

The operation of the flavay system basically depends on the dwelling and cruising behaviors of each train.
With regard to the dwelling behavior at stations, weiasthat the dwelling time is determined by the
number of boarding passengérson the platform. Here, three assumptions for dwelling time are considered:
(a) 0 keeps constant at  regardless ob , which indicateghat passenger congesti daes not dfect
railway operation

(b) 6 monotonically increases with from a minimum valued (buffer time), which is the same
assumptionrmade inSeo et al(2017)

(c) o keeps constant until a critical passenger numbes reached. Ithen sarts increasingThis idea is
inspired by the empirical work on passenger boartinariyazaki et al. (2015).

We also assume that all of the waiting passengers can always board the next approaching train, which means
0 ® JO, wherew isthe passenger arrival rate at stations’@nsl thetime headway of successive trains
Now, thethree assumptions of can be expressed as Eq. {2Z}), respectively. here can be interpreted as
the dwelling time growth rate witimcrease in theaumber of boarding passenger.

tb :tbcon (2)
t, =t, 4ga,H (3)
&to if @O 0
i =F I (4)
tto+tg(a,H N,) if ©@O 0
On the other hand, the cruising behavior of a train is modeledNsngze | | 6 s sfollowpngmaddel e d ¢ a
(2002). More specifically, the positian 0 of trainmat timet is expressed as:
(1) =min{x (t ) w %, (t }r } (5)

wherem-1 indicates the preceding traihjs the minimum time headway of successive trains; aisdthe

minimum spacing. Théirst term represents the frélew regime where the train cruises with desired speed

U . The second term indicates the congested regime where the train decreases its speed to maintain the
minimum headway and spacing. Forritig hereinafter, we refeéo each model, based on assumptions (a), (b)

and (c), as model A, B, and C, respectively.

(2) Derivation

To derivea train FQ we consider railway operation under the steady state (also known as equilibrium state).
Specifically, the followingconditionsare considered
M parameter® ,0 ,[,®,0 ,t, aretimeindependent

M headwayOand desired cruising spegdare also timéndependent

Also, for simplicity, we assume a homogeneous railway system, wididates:



M trains stop at each station
M @ for each station is the same
M distance betweeany twoadjacent stabns is the same, referred @s

Now, the train FD as expressed in Eq. (6) can be separately derived-ilodresnd congested regime by
combining the abovenentioned assumptions.

q:Q(k, q,) =k\v (6)

wherer) is the steady state train flow (tr/n) afnd p7'Q, ‘Q(tr/km) is the average density of the railway line,
andul[is the average traveling spedidadrain (or system), which can be described by Eq. (7).

I
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whereu is the average cruising speed of a train. In theffryeregime,0 U sothat the explicit expression
of j for model A, B and C can be easily derived by substituting Eg.(@)and Eqg. (7) into Eq. (6).
In the congested regime, the headvi@aghould satisfy:

H2y TV (8)

By taking the equal boundary condition of Eq. (8) and employingpZ'Q Eg. @) - (4) can be substituted
into Eq. (8) so tha can be described as a functioniadnd® :

q=f,(va)- (9)
Then, by inserting Eq. (7) and Eg. (9) into Eq. (6), we can also ob&sra function ofv ando :
k=f,(va,) (10)

By using Eq. (9) and Eq. (10), the slope of the FD in the congested régife@an be derived since
QFQQ QFQULIQTQQFinally, employing the critical state train flaib :
. 1
4L+ div, +1
as a boundary condition, the FDs of model A, B and C can be formulated in Eq. (12) (seece¢s@| 2017,
for the details of the derivation of the FD).
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Model A is expressed by Eq. (12c) by taking 1, 0 mando 0 .Model B is also expressed by
Eqg. (12c) by taking) 1. For model C, the equation has to be separately writgrending on the relation
betweerw 70 andn” .

Egs. (12a) and (12b) actually describe the situation whes not large enough to force a condition
which the dwelling time is always larger than. More specifically, whefQ Q Q, the dwelling time
0 0 , which implies that operation under this condition can guarantee the dwelling time is not extended
due to passemyg influence. While out ohis range, dwelling time would be extended either because trains in
operation are insufficient or abundant (train bunching). On the contrary, Eq. (12c) describes the situation when
® is large enough so that dwelling tingedlways larger thad .

For a better understanding of passenger influence on train flow, we present two numerical examples of the
FDs for model B and C, as shown in Figure 3, based on the parameters in Table 1. From the comparison of
Figures 3(a) ad (b), it can be observed thatdem the same , model C can achieve higher train flow due to
a relatively short dwelling time.

o

Table 1 Parameters used thenumerical example

Parameter Value
o ho hr 30/3600°Q 5001 ¢,08.1/36® ") & &
¢hu [ ht 1.5"Q4 40°Q&rQ 0.4Q4 1/60Q
%) [0, 30000]R KR
@ (b)

Figure 3 Numerical exanples of the FDs, (a) model Band(b) model C

4. Model Calibration and Evaluation
In this section, we dibrate and evaluate the proposed models employing data from the Boston Redline.
(1) Calibration based on enumeration method

The three models are dalated using the enumeration method. Specifically, we begin by preselecting the
variation range for each parameter, and we then buihrameter set by accounting for all possible



