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Abstract 
 

Traffic control policies aim at reducing the negative externalities that ever-growing demand is causing 

on transportation networks, such as congestion and pollutant emissions. To achieve these goals, policies 

coordinating and aligning the effects of several individual traffic controllers have received increasing 

attention in research and development in the past decades. Notwithstanding the considerable efforts, 

peak-hour congestion is still a global problematic, with commuters spending up to 100 hours per year 

in traffic jams in major cities like Los Angeles (INRIX’s Global Traffic Scorecard, 2017). 

In this work we try to assess whether the gap between desired and experienced performance in advanced 

control policies might indeed be tied to inefficient network design, rather than algorithmic prowess. 

Based upon our earlier work, we investigate whether a trend can be found between determining 

locations of controllers in a network following control theoretical insights, and try to confirm our earlier 

intuitions when dealing with dynamic traffic management, featuring accurate propagation and spillback 

dynamics. Results comparing the performance of optimal control based on 50 randomly chosen 

locations and a deterministically chosen set of controllers are shown, highlighting how indeed a strong 

link exists between controller locations and reachable performance in optimisation based control 

strategies. 

Introduction & Literature review 
 

Dynamic traffic management applications have witnessed a considerable rise of interest in the last 

decades, in reaction to the exponential rise in transportation demand worldwide. This has been 

accompanied by considerable efforts in research, both in developing transport models able to properly 

account for traffic flow and congestion dynamics (Daganzo, 1995; Geroliminis and Daganzo, 2008; 

Yperman, 2007) and in developing efficient control schemes (Haddad et al., 2013; Hegyi et al., 2005; 

Papageorgiou et al., 2003). 

Considering the scale of application, control techniques and schemes developed in transport can be 

roughly subdivided in three categories: 

- Local control policies, (Smith, 1979; Varaiya, 2013; Webster, 1958), which deal with 

optimising the performance of a single intersection based on locally sourced data and individual 

control actions; 

- Coordinated control policies, (Hunt et al., 1981; Lowrie, 1990; Mauro and Taranto, 1990), 

where separate controllers are aligned in order to achieve some common goal, e.g. triggering 

green wave effects on arterial corridors, or creating a pricing cordon around a protected network 

area; 

- Centralised control policies, (Li et al., 2015; Rinaldi et al., 2016; Van De Weg et al., 2016), 

which instead consider the effect of each individual controller on the whole network, seeking 

to achieve some global objective, such as minimal total travel time. 



In recent years, thanks to technological advancements enabling faster, more powerful computation, 

model-based approaches have been introduced and applied successfully in all the above categories. 

Compared to their rule-based counterparts, model-based approaches exhibit the advantageous property 

of empowering predictive control schemes, due to their innate ability to assess the system- or network-

wide impact of a given control action, including its consequences in the immediate future (e.g. the 

eventual build-up of queued vehicles at an intersection receiving extra red time). When considering the 

specific instance of model-based approaches, a further subcategorization can be carried out considering 

the underlying traffic model’s granularity (microscopic vs mesoscopic vs macroscopic), the degree to 

which user behaviour is captured by the chosen model (departure time choice, route choice, …), the 

specific objective function being optimised (minimal total travel time, maximal throughput, minimal 

pollution, …), etc.  

Model-based approaches often employ optimisation algorithms to generate control actions, determining 

the given objective function’s sensitivity to changes in control and therefore identifying an appropriate 

action that directly results in a descent direction in the objective function’s value. This represents a 

considerable theoretical advantage in comparison with rule-based heuristics, which instead react to 

current measurements through predefined actions, hence only exploring a limited set of points in the 

objective function’s solution space.  

However, especially when considering oversaturated networks, objective functions can exhibit severe 

non-convexity and discontinuities (Patriksson, 2004; Rinaldi et al., 2018), due to both i) congestion 

propagation and spillback dynamics and ii) the effect of increased travel times on user behaviour, e.g. 

route choice. This represents a major obstacle to optimisation algorithms: non-convexity implies that 

global minima might be far - if not unreachable - from the given initial guess. 

Another key factor determining whether or not the globally minimal value for a given objective function 

is reachable, so far largely disregarded in literature, is whether or not the equipped control infrastructure 

is sufficient to trigger the desired behaviour. Depending on the amount, location and type of controllers 

installed on a network, specific configurations of the network’s state (in terms of flows, buffered 

vehicles’ locations and quantities, split fractions, chosen routes, …) might simply be impossible to 

trigger through control actions. In our previous study (Rinaldi, 2018) we have shown that placing 

controllers in order to achieve full controllability is a sufficient condition to ensure that the true global 

minimum of a given objective function (specifically, Total Cost) can be reached in the static assignment 

domain. 

In this work we aim to extend these results to dynamic traffic management applications, through 

simulation based empirical experiments. Specifically, we minimize the Total Time Spent dynamic 

objective function, subject to full Dynamic Traffic Assignment, considering different locations of 

controllers in a network bearing an adequate degree of complexity. The preliminary results presented 

in this work showcase that, indeed, placing controllers according to our previously developed approach 

yields major advantages for dynamic traffic management applications, far outperforming the vast 

majority of randomly selected locations. 

The rest of this short paper is structured as follows: in the next section we detail the full experimental 

setup employed in this work, and we quickly recap our controllability based methodology. We then 

present our preliminary results for the chosen network, showcasing different simulation results in terms 

of Total Time Spent and its evolution, as well as providing simulation snapshots showcasing how best-

case and worst-case random locations exhibit profound differences in terms of resulting network 

conditions. Finally, some conclusions are drawn. 



Methodology 
 

This work’s objective is that of assessing the extent to which locating controllers on a given 

transportation network affects the performance of model-based control strategies. The sole design 

variable under consideration is therefore the set of controllers, 
1{ ,..., }MM m m= .  

Given a transportation network described by a directed graph ( , )D N L , with 
o d tN NN N  =  the 

set of nodes, where 
oN  is the subset of origin nodes, 

dN  the subset of destination origins and tN  the 

set of standard traversal nodes, and, finally, L  the set of links, we consider two possible strategies to 

generate viable sets of controllers:  

- a random strategy, through which a quantity M  of (non-identical) controllers is extracted from 

the uniform distribution ),s(i upnf( ))(t tU N N , that is, target control nodes are uniformly 

selected from the set of traversal nodes alone; 

- a controllability strategy, based upon our earlier work, for which target control nodes are 

selected from the set of traversal nodes alone based on algebraic properties of the node 

adjacency matrix. 

Specifically, for the latter approach node to node adjacency information is extracted from the graph D  

and compiled in an adjacency matrix 
| | | |t tN N

A


 , and successively enriched by extracting additional 

indirect node-node relationships from the network’s route set (we refer the interested reader to (Rinaldi, 

2018) for further details on this subject). Following the work of (Yuan et al., 2013), by performing 

opportune algebraic operations on matrix A  we extract the minimum set of nodes that must be 

controlled in order to ensure that the full set tN  is controllable. 

For each obtained controller set, we simulate the effect of model-based dynamic traffic management by 

minimising the Total Time Spent metric on the network, subject to Dynamic User Equilibrium 

constraints: 
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that is, for each simulation time step sk  (considering a time discretisation interval sT ) and for each 

controller m M  we seek to determine the corresponding control signal ( )m sg k  that minimises the 

total number of vehicles ln  traversing each link l L , and hence total time spent in the system per 

each individual vehicle. Dynamic User Equilibrium is computed through a Dynamic Traffic 

Assignment model, featuring first order compliant vehicle propagation and dissipation based on the 

Link Transmission Model (Himpe et al., 2016), and turning fractions at nodes computed through the 

projected gradient approach of (Gentile, 2016). Although facing considerable computational hardships, 

we adopt a fully centralised approach (all control variables are minimised in a single shot optimisation) 

in order to exclude any bias possibly introduced by more advanced optimisation heuristics (Rinaldi et 

al., 2016).  



Following our two controller set generation policies, we equip the network with individual node 

controllers in the form of mainstream meters, which reduce the given node’s maximum outgoing flow 

per each outgoing link separately, as a function of the desired outflow ratios 
mg  multiplied by the links’ 

individual capacities. A minimum service rate of 5% of capacity is guaranteed by the constraint set in 

(1). 

We compare the results of solving problem (1) on 50 random controller set instances and our proposed 

one-shot controllability approach. All tests are performed considering the network shown in Figure 1. 

 
Figure 1: Test network 

The network is composed of five OD pairs (O1-D1, O2-D2, O3-D3, O4-D4, O5-D5). All links have a 

capacity of 1800veh/h, except the four thicker links serving the two external OD couples, which have a 

capacity of 3600veh/h. Additionally, a bottleneck is active on the highlighted link for the central OD 

couple, whose capacity is reduced from 1600veh/h to 1500veh/h. Finally, as represented by the dotted 

lines, the links serving the central OD couple have a free flow speed of 80 km/h, whereas the speed is 

limited to 60 km/h for the rest of the network. These design choices trigger a specific property: when 

operating in undersaturated conditions, flows from all OD couples will try to traverse the central links 

of the network, since they provide faster travel times. However, as demand increases to peak conditions, 

the bottleneck will activate, triggering spillback and congestion in the central portion of the network, 

possibly spilling back to adjacent OD couples. A well-devised control solution should anticipate this 

behaviour, and correctly steer vehicles away from the central OD during peak hour. 

We simulate a total of 10 hours of operations in this network, considering a time discretisation interval 

5minsT = , with on-peak conditions starting from 1h and lasting until 4h.  

OD demands in veh/h are shown in Table 1. 

 

 

 



Table 1: OD demands for the simulated network (offpeak/onpeak) 

 D1 D2 D3 D4 D5 

O1 500/1600     

O2  500/1600    

O3   500/1700   

O4    500/1600  

O5     500/1600 

 

To ensure consistency in results, all tests consider the same initial guess for the optimisation of (1): 
0 ( ) 0.5 ,m s skg k m= . All models and codes are implemented in MathWorks® MATLAB™, 

optimisation was performed natively through the fmincon function, configured to seek minima through 

the quasi-newton BFGS approach. The gradient of the Total Time Spent objective function was 

approximated numerically through a central differences scheme. While no strict time limits where set 

to the optimisation procedure, a computational limit of 100000 function evaluations was set. This limit 

was however not met by any of the performed simulations, who instead all converged to significant 

(albeit local) minima.  

Results 
 

In this section we showcase our simulation results. As mentioned earlier, we compare a total of 51 

different controller sets placed on the network of Figure 1, 50 of which have been obtained by randomly 

selecting nodes from a uniform distribution. Figure 2 showcases how the Total Time Spent function 

evolves throughout the 10h simulation for all different simulations. 

 
Figure 2: Total Time Spent evolution over simulation time. 

The network is empty as the simulation is initialised, and vehicles gradually load it until reaching 

equilibrium conditions after roughly 30m. Peak demand begins entering the network at the 1h mark, 

and lasts until the 4h mark. As can clearly be seen by considering the green lines in Figure 2, randomly 

located controllers exhibit severe variability in performance, with the punctual value of Total Time 



Spent at the height of peak hour (i.e. when simulation time is exactly 4h) ranging from 200 veh*h to 

almost 800 veh*h, a worst-case increase of about 400%. Selecting instead the controller locations 

according to our proposed controllability approach yields the black line, when considering the initial 

guess vector, and the red line post-optimisation. As can clearly be seen, these results are in line with the 

“lucky” guesses produced by the random approach. 

To better highlight this effect, in Figure 3(a-c) we show snapshots of the simulations for, respectively, 

best-case random set, worst-case random set and controllability set, once again at the height of peak 

hour. Colours represent the vehicle density ) /( [ ]l

s vehk km  at each link, expressed as percental value 

with respect to critical density 
l

c  , ranging from green ( ( )l l

s ck   ) through red ( ( )l l

s ck =  ) 

and further towards black ( ( )l l l

s jam ck  = ). Controller locations for each control set are also 

highlighted by black ellipses, placed on the corresponding links. 



   

(a) Best-Case Random Locations (b) Worst-case Random Locations (c) Controllability-based Locations 

Figure 3: Snapshot of simulations at peak hour [4h] for different controller locations.



As can clearly be seen, the effects of misplaced locations on the performance of model-based control 

strategies can be profound: the controller set of Figure 3(b) cannot successfully steer the excess demand 

entering the network, failing to reduce congestion altogether. Furthermore, it can clearly be seen that a 

few controllers have been placed on entirely ineffective locations, see e.g. the bottom right controller, 

where flow is too low to be of any effect, or on the bottleneck itself, where no-control is by definition 

the only desirable action (unless second-order effects such as capacity drop are modelled). 

 

Conclusions 
 

The initial results presented in this short paper indeed appear to confirm the intuition built in the static 

assignment context, i.e. that selecting appropriate locations (and quantity) for controllers in 

transportation networks is key to the success of advanced control strategies.  

Further empirical validation on networks with larger heterogeneity in both demand and supply 

characteristics is naturally required, although the computational burden of fully centralised optimisation 

subject to DUE will quickly become a major constraint. Decomposed control strategies will therefore 

be applied. 

Another research direction worth exploring, whose results will possibly be presented at the symposium, 

is whether controller locations also play a major role for rule-based, local approaches, such as the 

Maxpressure policy (Varaiya, 2013). 

References 
Daganzo, C.F., 1995. The cell transmission model, part II: Network traffic. Transp. Res. Part B 

Methodol. 29, 79–93. https://doi.org/10.1016/0191-2615(94)00022-R 

Gentile, G., 2016. Solving a Dynamic User Equilibrium model based on splitting rates with Gradient 

Projection algorithms. Transp. Res. Part B Methodol., Within-day Dynamics in Transportation 

Networks 92, 120–147. https://doi.org/10.1016/j.trb.2016.02.005 

Geroliminis, N., Daganzo, C.F., 2008. Existence of urban-scale macroscopic fundamental diagrams: 

Some experimental findings. Transp. Res. Part B Methodol. 42, 759–770. 

https://doi.org/10.1016/j.trb.2008.02.002 

Haddad, J., Ramezani, M., Geroliminis, N., 2013. Cooperative traffic control of a mixed network with 

two urban regions and a freeway. Transp. Res. Part B Methodol. 54, 17–36. 

https://doi.org/10.1016/j.trb.2013.03.007 

Hegyi, A., De Schutter, B., Hellendoorn, H., 2005. Model predictive control for optimal coordination 

of ramp metering and variable speed limits. Transp. Res. Part C Emerg. Technol. 13, 185–209. 

https://doi.org/10.1016/j.trc.2004.08.001 

Himpe, W., Corthout, R., Tampère, M.J.C., 2016. An efficient iterative link transmission model. 

Transp. Res. Part B Methodol., Within-day Dynamics in Transportation Networks 92, 170–

190. https://doi.org/10.1016/j.trb.2015.12.013 

Hunt, P.B., Robertson, D.I., Bretherton, R.D., Winton, R.I., 1981. SCOOT - A TRAFFIC 

RESPONSIVE METHOD OF COORDINATING SIGNALS. Publ. Transp. Road Res. Lab. 

Li, P., Mirchandani, P., Zhou, X., 2015. Solving simultaneous route guidance and traffic signal 

optimization problem using space-phase-time hypernetwork. Transp. Res. Part B Methodol. 81, 

Part 1, 103–130. https://doi.org/10.1016/j.trb.2015.08.011 

Lowrie, P.R., 1990. SCATS, SYDNEY CO-ORDINATED ADAPTIVE TRAFFIC SYSTEM : A 

TRAFFIC RESPONSIVE METHOD OF CONTROLLING URBAN TRAFFIC. 

Mauro, V., Taranto, C. di, 1990. UTOPIA. Control Comput. Commun. Transp. 

Papageorgiou, M., Diakaki, C., Dinopoulou, V., Kotsialos, A., Wang, Y., 2003. Review of road traffic 

control strategies. Proc. IEEE 91, 2043–2067. https://doi.org/10.1109/JPROC.2003.819610 



Patriksson, M., 2004. Sensitivity Analysis of Traffic Equilibria. Transp. Sci. 38, 258–281. 

https://doi.org/10.1287/trsc.1030.0043 

Rinaldi, M., 2018. Controllability of transportation networks. Transp. Res. Part B Methodol. 118, 381–

406. https://doi.org/10.1016/j.trb.2018.11.005 

Rinaldi, M., Himpe, W., Tampère, C., 2016. A sensitivity based approach for adaptive decomposition 

of anticipatory network traffic control. Transp. Res. C Emerg. Technol. 

https://doi.org/10.1016/j.trc.2016.01.005 

Rinaldi, M., Tampère, C.M.J., Viti, F., 2018. On characterizing the relationship between route choice 

behaviour and optimal traffic control solution space. Transp. Res. Part B Methodol., 

TRB:ISTTT-22 117, 892–906. https://doi.org/10.1016/j.trb.2017.08.014 

Smith, M.J., 1979. Traffic control and route-choice; a simple example. Transp. Res. Part B Methodol. 

13, 289–294. 

Van De Weg, S.G., Keyvan-Ekbatani, M., Hegyi, A., Hoogendoorn, S.P., 2016. Urban Network 

Throughput Optimization via Model Predictive Control Using the Link Transmission Model. 

Presented at the Transportation Research Board 95th Annual MeetingTransportation Research 

Board. 

Varaiya, P., 2013. Max pressure control of a network of signalized intersections. Transp. Res. Part C 

Emerg. Technol. 36, 177–195. https://doi.org/10.1016/j.trc.2013.08.014 

Webster, F.V., 1958. TRAFFIC SIGNAL SETTINGS. Road Res. Lab Tech Pap. UK. 

Yperman, I., 2007. The Link Transmission Model for dynamic network loading. 

Yuan, Z., Zhao, C., Di, Z., Wang, W.-X., Lai, Y.-C., 2013. Exact controllability of complex networks. 

Nat. Commun. 4, 2447. https://doi.org/10.1038/ncomms3447 

 

 


