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Abstract 

Service disruptions are a common undesirable occurrence in urban public transport networks, in 
response to which passengers often take action. Tis may involve changing their route, altering 
their origin and/or destination, switching to other modes or even cancelling their trip altogether. 
The aim of this study is to provide an insight into the factors that influence this behaviour. Using 
the London Underground network as an example, passenger responses to incidents are inferred 
by analysing an eight-week dataset of the “Oyster” Automated Fare Collection system, while 
service disruptions are extracted from London Underground’s CuPID database of incidents during 
the same period. Binary logistic regression is used to fit models describing passenger responses 
to disruptions in terms of continuing their journey, changing origin or destination station, or 
leaving the network altogether. The results suggest that passengers are more likely to take action 
in response to a service disruption if this has a delay of less than 5 mins or more than 20 mins, but 
more likely to stick to their original route for delay durations in between. Also, passengers are 
more likely to change station or leave the network if the disruption occurs at the origin station of 
their journey.  
 
 
Introduction 

Public transport networks can be affected by service disruptions, ranging from platform closures 
on rail networks to diverted routes on bus networks, and it is broadly acknowledged that from an 
operational perspective these are undesirable and should be avoided as much as possible. From 
the point of view of the passengers, however, the impact of these service disruptions, whether 
minor or major, can be detrimental with respect to their travel experience [1-2]. As a result, 
passengers already en-route may decide to not take any action in response to a disruption and 
continue their journey as normal, in which case they will experience a considerably longer journey 
time. Alternatively, they may choose to re-route, re-mode or even delay or cancel their journey, in 
which case they may switch to a different station or stop, or they may leave the network 
altogether. All of these introduce great inconvenience. 
 
But while it is widely acknowledged that disruptions can severely impact the journey experience 
of customers, the prevailing data scarcity in the public transport field up until recently has meant 
that the exact nature of this impact, as well as the ways that it may manifest itself, have been 
mostly analysed at a theoretical level (e.g. stated-preference surveys). Past research has also 
concentrated on assessing and quantifying this impact (e.g. [3]), but more practical aspects (i.e. 
what do passengers actually do in the event of a service disruption), have received relatively little 
attention.  
 
The aim of this study is, therefore to address this gap and explore the “customer impact” of 
incidents (e.g. signal failures, temporary station closures, etc.) using the London Underground 
network as a case study. The objective is to develop quantitative models to describe the real 
relationship between service incident characteristics and customer experience, as expressed by 
revealed-preference data from records of Transport for London’s (TfL) “Oyster” Automated Fare 
Collection (AFC) system. Such analysis can be of value to public transport operators, as the results 
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could serve as input to the calibration and validation of models used to assess the effect of planned 
and unplanned disruptions. 
 
 
Study area and datasets 
The study uses the London Underground network (Figure 1) as a case study, which consists of 11 
lines covering 402 km and serving 270 stations across the Greater London area. The network 
facilitates up to 5 million passenger journeys per day, having carried a total of 1.36 billion 
passengers in the 2017-18 period [4-5].  
 
Data from two sources are obtained for the whole of the London Underground network over an 
eight-week period, and specifically between 15 January and 11 March 2019: 
 

 An anonymised log of all journeys carried out on the network, as recorded by the “Oyster” 
AFC system. For each journey, the log contains information on the origin and destination 
stations, as well as the times of entry and exit (i.e. the times of departure and arrival). As 
a result, the log consists of some 200 million entries.  

 A log of all service disruption incidents that occurred on the network, as recorded on 
London Underground’s CuPID database. Among 41 parameters, each record contains 
information on the location of the incident, the date and time, the duration, the 
corresponding initial delay to passengers, the type of the incident and a free text 
description of what happened. 5734 service disruption incidents have been entered in 
CuPID during the study period and are available here. 

 

 
Figure 1: The London Underground network, with the three selected station pairs [4] 

 
In order to simplify the analysis, only the journeys to and from three specific station pairs (i.e. six 
stations) are considered. These station pairs are selected across the network on the basis of their 
suitability to act as alternative origin or destination stations for re-routed passengers as a result 
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of a service disruption (Figure 2). For two stations to be selected, they must be served by different 
lines and the actual walking distance between them should be less than 300 m. The selected 
station pairs are: 
 

 Wood Lane (served by the Circle and the Hammersmith & City Lines) and White City 
(served by the Central Line), located 210 m apart. 

 Aldgate East (served by the District and the Hammersmith & City Lines) and Aldgate 
(served by the Circle and the Metropolitan Lines), located 270 m apart. 

 Queensway (served by the Central Line) and Bayswater (served by the District and the 
Circle Lines), located 215 m apart. 

 
The Oyster AFC records for all individual journeys on the London Underground network involving 
the six chosen stations are aggregated into 5-min intervals covering the entire study period. As 
such, for each 5-min period an average travel time and standard deviation value is obtained, along 
with the number of trips. Instances of invalid or insufficient data (e.g. unrealistically short or long 
travel times, or very small numbers of trips) are filtered out and are not considered. Moreover, 
the study period includes certain days when adverse weather (heavy snowfall) has been reported, 
and since this is associated with abnormal travel patterns, these days are also excluded.  
 
Considering the service disruption data, it is assumed that an incident at a certain station affects 
all passengers starting their trip from or being already en-route to the station in question during 
the time that the incident is in progress (i.e. start time plus duration). It is also recognised that 
incidents occurring at stations en-route other than the origin and destination may well have an 
impact on passengers travelling through them, and that spatial dependence effects may result in 
trips elsewhere on the network to also be affected; however, the consideration of these is much 
more complex and is beyond the scope of this study. Finally, it should be mentioned that incidents 
having a low frequency of occurrence or affecting a small number of passengers (e.g. early 
morning or late night) are not considered, and that only the five most common incident types are 
investigated, namely: train delay; train cancellation; train withdrawn from service; escalator 
downtime; and partial line suspension. 
 
 
Customer impact evaluation methodology 
In general, when faced with a service disruption incident in an urban metro network while en-
route, passengers will in most cases respond in one of the following three ways: 
 

1. Continue: the passenger continues his/her journey to his/her original destination 
station, either on the original route or by re-routing; 

2. Change station: the passenger continues his/her journey, but changes his/her origin 
and/or destination station; or 

3. Leave network: the passenger does not continue his/her journey and leaves the metro 
network, opting to either re-mode (e.g. to the bus network) or cancel his/her trip 
altogether.  

 
Nevertheless, the chosen response strongly depends on the location of the incident in relation to 
the entire journey, and this translates to different patterns in the AFC data for the passengers 
taking a specific journey between two stations in the network. For instance, if the incident occurs 
near the origin station, response 1 is likely to result in an increase in travel time, while responses 
2 and 3 will be associated with a decrease in the entry volume of the origin station for that specific 
journey. If that decrease is coupled with an increase in the entry volume of a paired station, then 
this shows that passengers opted to change their origin station for that specific journey; if not, 
then passengers have likely chosen to leave the network.  
 
On the other hand, if the incident occurs away from the origin station along the journey, 
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passengers are well under way and are therefore unlikely to leave the network, so only responses 
1 and 2 are likely. Again, response 1 will result in increased travel time for that specific journey, 
whereas response 2 will be associated with a decrease in the exit volume of the destination 
station, coupled with an increase in the exit volume of a paired station. It should be noted, 
however, that in some cases passengers have no choice but to stick to their original route (e.g. if 
there is no transfer station in the rest of their trip). 
 
The entire Oyster dataset for the selected stations during the study period is used in order to 
establish the “normal” conditions (number of passenger entries and exits) for each day and 5-min 
time period. Then, during a service disruption at, say, Station A, potentially different conditions 
may be exhibited, not just for the trips starting/ending at Station A itself, but possibly also at its 
paired Station B. Paired sample hypothesis tests are used in this case, whereby it is checked 
whether there are statistically significant differences (at the 5% level) between the recorded 
entry/exit volumes during the disruption and the corresponding values at normal conditions.  
 
Depending on the results of the tests, the relevant passenger response can be inferred, namely: 
 

1. If no statistically significant difference to normal conditions in the entry/exit volume is 
found for Station A, then the prevailing passenger response is inferred as “Continue”. 

2. If the entry/exit volume at Station A is found to be statistically significantly lower than 
normal conditions, and the entry/exit volume at Station B is statistically significantly 
higher, then it is inferred that the prevailing passenger response is “Change station”. 

3. If the entry/exit volume at Station A is found to be statistically significantly lower than 
normal conditions, but the entry/exit volume at Station B is not statistically significantly 
different, then it is inferred that the prevailing passenger response is “Leave network”. 

 
 
Analysis and results 
Two binary multinomial logistic regression models are derived from the data, each expressing the 
probability of changing the origin/destination station (“Change station”: Yes = 1, No = 0) and that 
of leaving the network (“Leave network”: Yes = 1, No = 0) respectively, in comparison with 
continuing the journey with no change (“Continue”). The results of the models are shown Table 1, 
where the effects of the various incident parameters (day of week, time of day, incident type, initial 
delay, incident location, and the need of transferring) can be found as the coefficients of relevant 
binary dummy variables. Effects with positive coefficients increase the probability of the 
dependent variable being 1 (i.e. of changing station or leaving the network), whereas negative 
ones decrease that probability and therefore reinforce the “Continue” response.  
 

Table 1: Multinomial logistic regression model coefficients for passenger choices 
 “Change station” “Leave network” 

Coeff. (β) Sig. Coeff. (β) Sig. 

Intercept -7.535 .991 -37.900 .947 

Day – Weekday -1.936 .894 -1.845 .197 

Time – AM  peak -.095 .384 .429 .193 

Time – Inter-peak -1.503 .091 .971 .085 

Time – PM peak -.702 .241 -.778 .132 

Time – Evening -.151 .097 1.092 .079 

Incident type – Escalator downtime -1.156 .999 .004 .993 

Incident type – Partial line suspension .198 .929 .258 .983 

Incident type – Train cancellation 1.672 .983 .301 .971 

Incident type – Train delay .346 .983 .560 .893 

Initial delay – Long -3.487 .000 -1.176 .000 

Initial delay - Medium -4.083 .040 -1.947 .001 

Incident location – Origin 1.511 .000 .825 .000 

Incident location - Destination -.277 .137 -2.604 .081 

Transfer needed to destination – No .253 .532 .528 .044 

More transfers needed to re-route - Yes .038 .250 -.741 .000 
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Looking at the results, it can be observed that a number of characteristics have no significant 
impact at the 5% level on the probability of a passenger changing origin/destination station or 
leaving the network altogether as a result of a service disruption. These are: the day of the week 
(weekday or weekend); the time of day (AM peak, inter-peak, PM peak, evening, other times); and 
the incident type (escalator downtime, partial line suspension, train cancellation, train delay and 
train withdrawal from service). It can also be seen that the intercept of both models is 
insignificant, which suggests that passengers are initially indifferent to the choice they will make. 
 
On the other hand, there appears to be a significant impact of the initial delay imposed by the 
disruption on the passenger choice. Specifically, it can be observed, perhaps paradoxically, that 
passengers are more likely to take action when the initial delay is short (i.e. less than 5 mins) 
compared to when it is medium (5-20 mins) or long (more than 20 mins). Also, interestingly, a 
medium delay is less likely to result in a passenger changing station or leaving the network 
compared to a long one. In other words, passengers are more likely to choose to take action in 
response to short and long delays, and less so for medium delays.  
 
This finding can be attributed to the fact that passengers are unlikely to know in advance how 
long the delay is going to be, and they can only assess it from clues based on the different types 
and locations of disruption that may have experienced in the past. As such, most passengers are 
very likely to either change station or leave the network immediately (not knowing that the delay 
may turn out to be short, which is the case for the majority of the disruption incidents). Those who 
stay, on the other hand, only take action after a long time, i.e. after they have established with 
certainty that the delay is long; if the delay turns out to be of medium duration, then they stick to 
their original route. 
 
A further significant effect is that of the incident location. As can be observed, passengers are more 
likely to take action and change station or leave the network if the disruption occurs at the origin 
station compared to midway. On the other hand, there is no significant impact on a passenger’s 
choice if the incident occurs at the destination station. This is sensible, as a disruption at the origin 
station often means that this becomes unusable, so passengers are forced to look for alternatives. 
 
Finally, the required transfers have significant effects on passenger choices. Specifically, a 
passenger is more likely to leave the network as a result of a disruption if his/her original route 
did not include a transfer, and more likely to continue his/her journey if re-routing would mean 
that an additional transfer would be required. 
 
 
Concluding remarks  
The initial results from this study provide an interesting insight into the customer impact of 
service disruptions on the London Underground and identify a number of relevant effects that 
could potentially be taken into account by public transport operators. However, passenger choices 
can be much more variable and irrational at times, and are also likely to be influenced by 
numerous other factors that have not been considered here, such as crowding levels at stations, 
availability of other modes, additional costs associated with re-routing and re-moding, as well as 
personal attributes, such as individual preferences and trip purpose. It is, hence, the objective of 
future work to explore these. 
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