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ABSTRACT

Collective transport has been seen for long as a proper solution to fight congestion. While
collectivity has been successful with respect to subways, it is not the norm in road traffic. Dedi-
cated Bus Lanes (DBL) have been proposed as a measure to reduce the impact of traffic congestion
in the travel time and accuracy of buses, by providing them with exclusive road space. However,
DBL presence decreases road capacity, which may induce local congestion. Balancing this inher-
ent trade-off of a DBL network, by carefully selecting the location of DBLs while considering the
dynamics of congestion propagation is challenging. This work aims at finding a reliable modeling
and optimization methodology to address this problem. An adjusted version of Store-and-Forward
queuing model and microscopic simulation are used to simulate the traffic dynamics in presence
of DBLs and assess the global network performance, while a local search algorithm is used to
improve some state-of-practice solutions.
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INTRODUCTION

As traffic congestion increases in large cities, designing and maintaining a high-quality
mass transit service becomes crucial in achieving lower congestion and acceptable travel times in
areas of high demand. Rail or light-rail systems (e.g. metro) can usually guarantee low travel time
and high accuracy in departure and arrival times since vehicles do not interact with regular traffic
as they travel in exclusive space. The element of dedicated space can be transferred to regular bus
systems by introducing Dedicated Bus Lanes (DBL) in certain roads and arterials. In this way,
travel time is reduced for public transit without the extreme cost of a rail system construction that
many cities, especially in developing countries, cannot afford. Shorter travel time for buses means
that more commuters are likely to take the bus for their daily commute, therefore decreasing the
number of circulating vehicles in areas of high demand.

Creating the DBL plan for a specific urban network, i.e. deciding in which roads and for
what distances DBLs will be introduced, as also the days and time intervals during which they
will be active, is not trivial. Many different factors influence the performance of the network in
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presence of DBLs; among others, the prevailing demand pattern inside the network during the day,
the number, frequency and occupancy of all buses travelling in the candidate roads, the available
physical space and the correlation of queue lengths over time between connected roads. Although
DBLs offer an advantage to transit vehicles, they reduce the space that is available to regular
cars, which may lead to faster queue growing. In congested traffic states, where the system is
unstable, several roads may become gridlocked and cause neighbouring roads to reach the same
state due to spillback effect. Therefore, poorly allocated DBLs may aggravate congestion and
create long vehicle queues in several neighbourhoods. Moreover, in presence of DBLs that alter
travel time both for buses and cars, passengers and drivers are likely to adapt their travel behaviour,
by switching mode (from cars to buses and vice versa) or by changing their regular routes. Even
though a shift from cars to buses is highly desired in this case, how to quantify and control this
shift in relation to the DBL network configuration is difficult to define.

While numerous studies have addressed this problem (see [/], [2], [3] and others) in most
cases static conditions are assumed, which fail to capture the effects of backwards propagation of
congestion and the forming of queues; the latter can significantly affect the system performance
in cases of congested networks. Microsimulation is often used for scenario evaluations in what-if
studies (e.g. [4]) but cannot be used in an optimization framework due to very high computational
cost. A dynamic macroscopic approach on this problem can be found in [5], but the exact locations
of DBLs are not determined. The objective of this work is to propose a reliable methodology to
find the optimal DBL allocation in a given network by considering the dynamic characteristics and
the physics of traffic congestion. In this work, a mesoscopic traffic model based on queueing the-
ory principles is used as a computationally low-cost simulation model that can quantify the queue
forming and estimate the total travel time for a specific network geometry and DBL allocation.
The DBL allocation problem is formulated in an optimization framework and a local search al-
gorithm is applied to provide improved solutions based on initial state-of-practice solutions. An
aggregated mode choice model is used to capture the changes in mode choice that are expected
from commuters, due to DBL presence.

PROBLEM DEFINITION

The traffic network of a specific city center is given. The geometry, topology and traffic
signal settings are considered known and fixed. Two modes of transport are present in this network:
buses and private cars. Without loss of generality, the operational characteristics of the existing
bus system (routes and frequencies) as well as the average passenger occupancy in buses during
their trips in the various links of the network are considered known for the period of interest (e.g.
the morning peak). A time-dependent Origin-Destination demand matrix feeds the network with
private car flow while buses run based on their fixed schedule. Assuming that, for the purpose
of improving mobility in the network, a specific fraction of road space - considered known from
separate study -is to be given to DBLs, our goal is to identify the best set of roads (out of a broader
set of candidate roads) where one DBL should be introduced, in order to achieve a system optimum
traffic performance.

The DBL plan that we seek to identify is assumed to be active during the whole period of
interest of this study. It is also assumed that in every selected road, one DBL will be placed on
the rightmost lane, so that buses can easily stop at bus stops to board and alight passengers. The
introduction of a DBL on the road means that the available space for regular vehicles is decreased.
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METHODOLOGY

In this study, we use a modified form of a queueing-based mesoscopic traffic model called
”Store-and-Forward” in order to simulate the flow of vehicles in the network. As the interest
is focused on the global performance of the bi-modal network from a passenger perspective, a
suitable objective function is constructed based on the system state provided by the simulation
model and as a function of the location of the DBLs. Then an optimization method is used to
provide improved solutions based on initial state-of-practice solutions.

The adjusted Store-and-Forward model

The Store-and-Forward (SaF) modeling paradigm (see [6]), is composed of a mathematical
structure which simulates the evolution of queues inside the network, given the demand generation
rates and the split ratios at the intersections. In its initial form, SaF simulates the evolution of
queues based on a discrete-time form of a flow conservation equation. It allows to replicate the
spill-back effect by dictating that the outflow of an upstream to a downstream link at every time
step is zero if the downstream link is full (the queue has reached the link’s capacity). A drawback
of the simple version of this model is that vehicles move from one queue (intersection) to the next
one in one time step. This does not allow for an accurate calculation of the total travel time -that
is necessary for decision making- in cases of low congestion. This is because links have different
lengths which may be much larger than the distance travelled by car in one time step. To address
this issue, a more detailed form of this model is proposed, following the structure of a similar
model as seen in [7].
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The mathematical structure of the model is given by Eq. 1 to 11. In this work the number of
vehicles inside a link is composed by a number of moving and a number of queueing vehicles (Eq.
1). Each batch of vehicles that is considered to move in the interval between two time steps from
an upstream to a downstream link firstly joins the moving part of the link. At every time step, the
position of the end of the queue that is formed by all waiting vehicles is calculated. Then the flow
of vehicles that is transferred from the moving group to the waiting group is found based on the
current distance between the entrance of the link (starting point) and the end of the queue. The
number of time steps p, (k) needed for a vehicle to cover this distance is calculated. Then, all
vehicles that have entered the link p, (k) time steps before the current time are considered that have
already moved to the waiting group. In this part of the road, cars are supposed to travel with a pre-
specified flow speed. Building on this principle, the traffic state of the network is depicted in terms
of the total number of vehicles inside each link (the sum of moving and waiting) at every time step
of the simulation. Detailed explanation of the notations is omitted due to space constraints.

Optimization problem

Our objective is to identify the optimal road set, in terms of total passenger delay, for
the installation of DBLs in the network. In order to mathematically formulate the optimization
problem, we define a set of binary decision variables Y = {y.|Vz € Z}, where y, indicates the
setting or not of an EBL in link z, as follows:

1, EBL inlink z
. — { 0 o . YzeZ (12)

The dedication of space to buses leads to a decrease in the storage capacity and the satu-
ration flow of the link. This change is modelled by representing the number of lanes available for
the regular traffic as [, — y., where [, is the total number of lanes of link z. In order to estimate the
total passenger hours travelled based on the model presented in the previous subsection, we use
the following equation to estimate the total Passenger Hours Travelled (PHT) during the simulation
time:

PHT =3 % w(RET+Y > > [(1 — )Pz, k) (1 + xj’%) Pz k)] T (13)
z k z k 1 z

In Eq. 13, the first term refers to the total travel time of passengers in private cars. The
second term refers to the total travel time of passengers travelling by bus. This bus passenger
flow rate is calculated based on the historical transport demand provided by the bus company on

the assumption that buses travel in free flow conditions (as inside DBLs). In order to capture the

influence of congestion over the travel time of the buses, the term (1 + xz—(k)D) serves as a scaling

Cz
factor that linearly “increases” the bus time that the model will consider in link z as a function of
the link occupancy at the specific time step. This means that in a gridlocked link z, i.e. x,(k) = ¢,
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the model will count that buses in mixed traffic lanes will spend (1 + D) times the time that they
would spend if they were travelling in DBLs inside link z. The value of parameter DD can be
user-defined after trial-and-error simulation experiments and depends on the value of 7.
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FIGURE 1 Flow chart of the iterative optimization process. The generation of new solution
can be done via various techniques.

Solution Process

The optimization problem that we formulated is non-linear in its current form. Although
our ultimate objective is to transform it to a Mixed-Integer Linear Programming problem (MILP),
in this preliminary stage we perform scenario evaluation and utilize a local search algorithm to
identify better solutions by starting form initial ones. The process that we followed can be seen
in Fig. 1.The necessary inputs in order to perform one simulation test based on the SaF model
are the network topology and dimensions, the fixed traffic signal plan, the dynamic O-D demand
matrix and the turning ratios of every link towards all downstream links over time. In order to
have realistic values of these ratios, we perform an initial microscopic simulation by using an
appropriate software (Aimsun) where the initial case (no DBL) is considered.

In the context of this work, a set of practice-oriented DBL allocation scenarios, based
on civil engineering principles are defined, evaluated and improved by a local search algorithm.
The algorithm improves an initial solution based on the following idea: for every road which is
assigned with a DBL in the initial scenario, we evaluate the case where the DBL is removed by
running a simulation experiment. Then the removed DBL is added back to the solution and another
one is removed. The same process is repeated for every link with a DBL in the initial solution.
By evaluating all the possible scenarios where one DBL is removed, we locate the most efficient
removal, i.e. the one that leads to minimum PHT. We follow the same process for all roads of
the initial solution where no DBL exist, by adding one to each of them. In this way we identify
the location of the most efficient DBL addition. Then the initial solution is updated by moving
one DBL from the position found for ”most efficient removal” to the one found for “most efficient
addition”. We repeat the whole process for every update of the initial solution until no further



Tsitsokas, Kouvelas and Geroliminis 6

improvement is achieved.
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FIGURE 2 Adjustment process of OD demand matrix for a specific DBL allocation plan

Regarding the mode selection (car or bus), it is assumed that the initial passenger share of
cars and buses (case of no DBL) represents an equilibrium state. Based on this assumption, an
aggregated simplified logit model is used to re-define the mode selection by taking into account
the specific DBL plan that is being evaluated. Given the average travel time per passenger for each
mode, which is computed based on total travel time per mode that a microscopic simulation pro-
vides for a specific DBL allocation scenario, the logit model calculates the respective share of bus
and car passengers. If the newly calculated demand is significantly different from the one that the
microsimulator used in order to provide the values of the total travel time, the bus and car demands
are adjusted and a new microscopic simulation is performed. This process is repeated several times
until the initial and final demand for car and bus trips converge. As this process is computationally
expensive, it is not performed for every different DBL scenario (solutiuon update) that is tested
during the optimization process, but only for a fraction of them. A schematic representation of this
process can be found in Fig. 2.

PRELIMINARY RESULTS

The case study where the proposed methodology is applied is a part of Downtown San
Francisco, in California, USA. The network is composed of 426 links with lengths varying between
40 and 400 metres and 156 intersections, out of which 92 are signalized. There is a bus service
in this area consisting of 29 bus lines running in regular frequencies (e.g. every 10 minutes). A
well-calibrated microsimulation model in Aimsun software is used to extract turning ratios and
detailed performance indicators for comparison reasons.

A set of scenarios are evaluated by simulation tests. We present here the results of the best
scenario among them. In Fig. 3 the step-by-step improvement of the initial solution by the local
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FIGURE 4 DBL plans: (a) No DBL (b) Initial DBL plan (c) Final DBL plan. In blue: links
without DBL. In red: links with DBL. In grey: links non-candidate for DBL.

search algorithm is shown. It is noted that mode choice adjustment is performed for the initial
and final scenarios only. During the local search process, the mode shares in the network remain
constant. In Fig. 4 we can see: 1) the DBL plan for the current state (no DBL), ii) an initial scenario
that assigns DBLs in 33 out of 95 candidate roads (roads with high bus frequencies are selected),
and the final DBL plan that is the output of the local search algorithm after 15 iterations, starting
from the initial scenario. In Fig 4, non-candidate links for DBLs are in grey, candidate links that
are not selected for DBL are in blue and links with DBL are in red. Due to space restrictions,
analytical results will be provided in a later publication.
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FIGURE 3 Improvement of initial solution by local search algorithm
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