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Abstract

We consider the problem of integrated traffic control in the presence of con-
nected and automated vehicles, in particular by investigating the potential of
time-gap regulation. Based on car-following models for semi-automated vehicles,
we derive a macroscopic first-order traffic flow model that is employed to formu-
late a linearly constrained optimal control problem. Simulation results demon-
strate improvements in term of traffic efficiency that may be achieved implement-
ing the proposed strategy, also in comparison with conventional traffic control
strategies.

1 Introduction

Recent developments in vehicle connectivity and automation have speed up the ap-
pearance of Connected and Automated Vehicles (CAVs) in our roads. In spite of a
vast body of research that addressed technological developments for CAVs (Bishop,
2005), only a limited amount of studies investigated the impact of CAVs on traffic
flow (Diakaki et al., 2015). Most of such works aim at capturing the impact of CAVs
on traffic flow under different settings and penetration rates, using either microscopic
simulation or macroscopic approaches (Bose and Ioannou, 2003; van Arem et al., 2006;
Ntousakis et al., 2015; Mahmassani, 2016). Despite numerical results are sometimes
in disagreement, general conclusions that may be drawn from those studies are that:
(a) CAVs have the potential to improve or deteriorate, depending on their settings,
the traffic conditions compared with the case of conventional manually driven vehicles;
and (b) the level of the influence is closely related to the CAV penetration rate.

A recent stream of research investigated potential of traffic control strategies ap-
plied to CAVs, by employing conventional and new actuators (Schakel and van Arem,
2014; Papageorgiou et al., 2015; Roncoli et al., 2015; Khondaker and Kattan, 2015;
Roncoli et al., 2016, 2017; Piacentini et al., 2018). In particular, CAVs provide the
opportunity of having access to control actions that are otherwise not available with
conventionally driven cars (e.g., individual vehicle speed, gap, or lane-change advice).

We focus here on CAVs with speed and time-gap regulation capabilities, via systems
such as Adaptive Cruise Control (ACC) and Cooperative ACC (CACC). ACC systems
are already widely appearing on the market; however, they are mainly designed to
increase driving comfort and safety, which may imply conservative values for the ACC
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system settings (i.e., large time gaps and low accelerations). As an example, the
suggested time-gap for current existing vehicles is in the order of 2 ÷ 2.2 s, which
is considerably higher compared to conventional manual driving vehicle traffic (van
Arem et al., 2006; Milanés and Shladover, 2014). In case such settings are employed
by a large number of drivers, this will eventually lead to the degradation of the static
and dynamic road capacity, with more frequent and intense traffic congestion than
nowadays. On the other hand, such systems have also the capability of achieving
time-gaps that are lower than the ones appearing in conventional manual driving, e.g.,
up to 0.8 s in ACC systems and 0.6 s (and below) for CACC systems. Having the
possibility to affect in real-time such settings, for example by delivering recommended
time-gaps to an on-board console or by directly applying them to ACC/CACC systems
within CAVs, would allow to improve the flow efficiency when critical traffic states are
imminent or present. Few studies have advanced in this direction, by proposing the
adaptation of ACC settings based on prevailing conditions, determined at vehicle or
infrastructure level (Kesting et al., 2008; Schakel and van Arem, 2014; Goñi-Ros et al.,
2016). Finally, Spiliopoulou et al. (2018) proposed an ACC-based control strategy to
adapt in real time the driving behaviour of ACC-equipped vehicles to the prevailing
traffic conditions so that motorway traffic flow efficiency is improved. Despite the
proposed methods are shown to be efficient in improving or resolving local congestion,
there are no research works dealing with such problem from an integrated traffic control
perspective, accounting for the possibility of a combination of traffic control tasks (e.g.,
flow control via speed limits), as well as allowing for considering various infrastructure
characteristics (e.g., various on- and off-ramps).

This paper presents a modelling framework and an optimal control problem formu-
lation for integrated road traffic control, assuming the presence of CAVs with vehicle-
to-infrastructure (V2I) communication and speed-gap regulation capabilities. The
control strategy is designed so that it enables the regulation of CAV desired gaps, as
well as variable speed limit control and ramp metering (if available or necessary). The
approach is based on optimisation techniques applied to a dynamic traffic flow model
opportunely defined to include only linear constraints, which allows for consideration
of large-scale traffic networks with moderate computational effort.

2 Problem definition

The basic architecture considers a central Decision Maker (DM) that computes the
solution of an optimisation problem, disaggregates the results and assigns specific
vehicle control tasks that are sent for execution by the corresponding equipped vehicles.
It is assumed that the DM has the complete knowledge of the traffic state when neces-
sary; this may be achieved directly if all vehicles are CAVs and in communication with
the infrastructure (V2I), or via an appropriate state estimation algorithm (Herrera
and Bayen, 2010; Bekiaris-Liberis et al., 2016; Seo et al., 2017).

We proceed now by analysing the car-following behaviour of CAVs, in order to
derive a traffic flow model, which will be later employed for optimisation.
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2.1 Car following control law

This section details the relationship between semi-automated car-following models
and macroscopic traffic flow models, starting from a realistic ACC-type car following
control law and deriving a flow-density relationship. Let us start by considering car
following laws adopted for semi-automated traffic, currently already employed within
ACC vehicles (Milanés and Shladover, 2014). A controller for ACC is characterised
by two control modes: a speed regulation mode, applied when the distance from the
preceding vehicle is smaller than a given threshold (determined as function of the
on-board sensors’ detection range), and a gap regulation mode, applied otherwise.

The system dynamics for vehicles c = 0, . . . , operating an ACC system can be
described by

ṡc = vc − vc−1 (1)

v̇c = ac, (2)

where s is the bumper-to-bumper distance between vehicle c and the preceding vehicle
(c − 1), while vc and ac denote, respectively, the speed and acceleration of vehicle c.
Acceleration is computed as follows

ac =

{
k1

(
vd
c − vc

)
, if c is in speed regulation mode (3a)

k2

(
sc − hd

c vc
)

+ k3 (vc−1 − vc) , otherwise, (3b)

where vd
c and hd

c are the desired speed and time headway set by vehicle c, respect-
ively, and k1, k2, k3 are control gains appropriately specified. In order to obtain a
macroscopic flow-density relation, we first derive the steady-state equilibrium of the
car-following models above; we then proceed by deriving flow-density relations assum-
ing stationary traffic conditions around each vehicle.

2.2 Speed regulation mode

In speed regulation mode, the steady-state equilibrium is obtained by employing (1),
(2) and (3a), resulting in

vc = vc−1 = vd
c . (4)

Equation (4) implies that, assuming steady-state conditions, all vehicles travels at
their desired speed vd

c . If we further assume that the desired speed of all vehicles is
the maximum speed on the road vmax, dictated, e.g., by its speed limit, the resulting
flow in speed regulation mode is

q = vmaxρ (5)

where q and ρ denote traffic flow and density respectively.

2.3 Gap regulation mode

In gap regulation mode, the steady-state equilibrium is obtained by employing (1),
(2), (3b), resulting in

vc = vc−1 =
1

hd
c

sc. (6)
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Since (6) shows that the speed in gap regulation mode is constant for all vehicles, let
us denote the resulting speed v̄ = vc. We then introduce the average desired time
headway for ACC-equipped vehicles h̄d and, because of the constant speed, we can
write

v̄ =
1

h̄d
s̄, (7)

where s̄ is the average bumper-to-bumper distance. In order to obtain a micro–macro
relation between the distance gap s̄ and the density ρ, we directly apply the definition
of the density as number of vehicles per road length. Assuming a constant (or average)
vehicle length L, we have

s̄ =
1

ρ
− L, (8)

which, replacing (8) into (7), allows to obtain the resulting flow in gap regulation mode

q = −LHρ+H, (9)

where H = 1
h̄d .

Note that, in case of CACC systems, despite a different controller (3b), the resulting
steady state equilibrium (and, consequently, also the flow-density relation) is the same
as shown here.

2.4 Macroscopic flow-density relation for CAV traffic

The car-following relations (5) and (9) may be used to derive a macroscopic flow-
density relation for semi-automated traffic, which is shown in Figure 1. The resulting
shape is the one of a triangular fundamental diagram, which is well known and em-
ployed in several traffic studies (e.g., CTM, Daganzo, 1994). In conventional traffic,
which involve the consideration of only manual driven vehicles, the fundamental dia-
gram is a result of specific road configuration and drivers’ behaviour (Treiber and
Kesting, 2013). Differently, in the presence of CAVs, we observe that the choice of
desired time headway affects significantly the traffic characteristics, above all the max-
imum achievable flow, commonly known as capacity.

Note that we do not refer deliberately to free flow and congested regime since being
on a different point of the fundamental diagram is result of a specific set of controller
parameters and not necessary related to the appearance of congestion.

For optimal control design, we assume controllable the longitudinal flows, via cor-
responding adjustments of CAV speeds and time-gaps, as mentioned earlier. Hence,
the lines of the piecewise-linear FD of Figure 1 are simply used as upper bounds for the
controllable longitudinal flows, in a similar fashion as what employed by Ziliaskopoulos
(2000); Gomes and Horowitz (2006); Roncoli et al. (2015).

3 Problem formulation

We consider a road network that is subdivided into n = 0, . . . , N segments of length ∆i

and we formulate our model in discrete time, considering time-step T , by introducing
k = 0, 1, . . . , K, where the time is t = kT . Each segment is characterised by traffic
density ρn(k), i.e., the number of vehicles in segment n at time k divided by the
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Figure 1: The resulting fundamental diagram. The speed regulation part is obtained
for vmax = 100 km/h; while the gap regulation part is obtained for h̄d = 1.3 s (green
line) and h̄d = 0.8 s (orange line).

segment length ∆n; and the total outflow qn(k), i.e., the number of vehicles leaving
segment n during time interval (k, k + 1]. We denote the set of segments immediately
downstream of segment n as Φn and the set of segments immediately upstream of n
as Γn.

Density dynamically evolves according to the following conservation law equation

ρn(k + 1) = ρn(k) +
T

∆n

[∑
p∈Γn

qp,n(k)−
∑
m∈Φn

qn,m(k) + dn(k)

]
, (10)

where dn(k) is the flow entering the traffic network at segment n.
Depending on the network topology, we have different formulations for computing

flows at each segment, as follows.

3.1 Ordinary segment

We define ordinary segments as those that have only have a segment upstream and
a segment downstream: |Γn| = |Φn| = 1. Density evolves according to (10), while
dn(k) = 0. For an ordinary segment n, the following constraints are introduced

qn ≤ vmax
n ρn (11)

qn ≤
vmax
n Hn

vmax
n + LHn

(12)

qm ≤ −LHnρn +Hn (13)

qm ≤
vmax
n Hn

vmax
n + LHn

, (14)

where m ∈ Γn.
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3.2 Source segment

We define source segments as those that have only a segment downstream: |Γn| = 0,
|Φn| = 1, while flow can enter from outside the traffic network. Density evolves
according to (10). In addition, we consider the possibility of controlling the external
inflow (e.g., via ramp metering) and we introduce dynamics of queue length wn(k),
defined as

wn(k + 1) = wn(k) + T [Dn(k)− dn(k)] , (15)

where Dn(k) is the external inflow expected to enter the traffic network. Queues are
upper bounded by corresponding maximum queue length wmax

n . Constraints defined
for a source segment n are therefore (11), (12), and

dn ≤ −LHnρn +Hn (16)

dn ≤
vmax
n Hn

vmax
n + LHn

(17)

wn ≤ wmax
n . (18)

3.3 Sink segment

We define sink segments as those that have only a segment upstream: |Γn| = 1,
|Φn| = 0, while the corresponding outflow is expected to exit the network. Density
evolves according to (10), where dn(k) = 0, and related constraints are (13) and (14).

3.4 Merging segment

We define merging segments as those that have one segment downstream and more
than a segment upstream: |Γn| > 1, |Φn| = 1. Density evolves according to (10), while
dn(k) = 0. In order to account for the capacity drop phenomenon, i.e. the reduction of
discharge flow once queues start forming at a bottleneck location (Cassidy and Bertini,
1999), we consider a linearly decreasing function that affects the merging segment in
case at least one of the upstream segments is congested, in a similar way as proposed
by Kontorinaki et al. (2017). Constraints defined for a merging segment n are therefore
(11), (12), and∑

m∈Γn

qm ≤ −LHnρn +Hn (19)

∑
m∈Γn

qm ≤
vmax
n Hn

vmax
n + LHn

(20)

∑
m∈Γn

qm ≤ −
(1− β) vmax

n LHn (vmax
` + LH`)

vmax
` (vmax

n + LHn)
ρn`(k)

+
β vmax

n Hn

vmax
n + LHn

+
(1− β) vmax

n Hn (vmax
` + LH`)

vmax
` (vmax

n + LHn)
, ∀` ∈ Γn, (21)

where β ≤ 1 is a capacity drop-related parameter.
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Figure 2: The network used in the simulation scenarios.

3.5 Cost function

The resulting optimisation problem reads as follows

min
K∑
k=1

N∑
n=0

[
T [∆nρn(k) + wn(k)] +

1

2
α [qn(k)− qn(k − 1)]2

]
(22)

subject to linear equalities (10), (15) and linear inequalities (11)–(14), (16)–(21).
The cost function (22) is composed of two terms:

• A linear term corresponding to Total Time Spent (TTS), which accounts both
for the time travelled and the time spent queuing at on-ramps; this is the most
important term that is used to evaluate the goodness of the solution in terms of
traffic flow efficiency.

• A quadratic penalty term, weighted by parameter α, aiming at penalising the
variation of control variables (i.e., flow) from a time step to the next one, which
is introduced in order to reduce, or even suppress, space–time fluctuations of
the control variables that have a minor contribution to the resulting traffic flow
efficiency.

The formulated discrete-time optimal control problem is in the form of a (linearly
constrained) quadratic optimization problem, which can be solved very efficiently using
available numerical solution codes, even for large-scale infrastructures.

4 Results

We introduce a simple road network, composed of N = 7 segments, which are connec-
ted as illustrated in Figure 2. All segments in the network are characterised by the
same length ∆n = 0.5 km and the same maximum speed vmax

n = 90 km/h; moreover,
we assume that, without intervention of specific control, vehicles travel with a time-
gap hd

n = 1.3 s, which is a reasonable value observed for conventional traffic (Treiber
and Kesting, 2013). Average vehicle length is set as L = 4 m, while parameter for
capacity drop is set as β = 0.9. We feed the network with a constant demand D0

and a trapezoidal-like demand D4, as shown in Figure 3(a). Density is initialised as
ρn(0) = 10 veh/km. In this network, we can observe a potential bottleneck at merging
segment 5, which would be activated in case the entering demand exceeds its capacity.
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Figure 3: (a) The traffic demand used in the simulation scenarios. (b) Queues created
in the conventional control scenario. (c) Time-gaps resulting in the time-gap regulation
scenario.
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Figure 4: Simulation results for (a) no-control case; (b) control via ramp metering and
variable speed limits, without gap regulation; via gap regulation.

4.1 No-control scenario

The first scenario is the so-called no-control case, which is used as a basic case for
performance evaluation of the proposed control strategy. In this scenario, we assume
that vehicles’ behaviour is not influenced by external control decision, i.e., vehicles
move at the maximum speed vmax

n , unless a developing congestion constraints their
movement. This is implemented by a CTM-like model with capacity drop, which
basically implements the model described in Section 3. The formulation is not included
here due to space limitations. Note that, in this scenario, no optimisation is performed.

The resulting speed profiles in all segments of the mainstream are shown in Fig-
ure 4 (a), where we can observe that a congestion develops upstream of the merging
segment (as expected in a first-order model, see Kontorinaki et al. 2017). The reason
for congestion is that, around t = 20 min, i.e., when the demand at D4 reaches its
maximum, the overall demand at segment 5, which is a merging segment accepting
flow from both segments 3 and 4, is higher than its corresponding capacity, causing
the activation of the bottleneck. Because of the high density in segments 3 and 4,
capacity drop is triggered, causing a reduction of the flow allowed in segment 5. The
congestion spills back until segment 1 and lasts until the demand at D4 decreases. The
resulting TTS for the no-control scenario is TTS = 107.14 veh·h.
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4.2 Conventional control scenario

This scenario investigates the traffic condition mitigation that are achievable via em-
ploying “conventional” actuators, i.e., ramp metering and mainstream flow control,
where the latter may be implemented, e.g., via variable speed limits. We implement
the scenario by solving the optimisation problem (22), (10)–(21), using the following
parameters: wmax

0 = 0, wmax
4 = 20 veh, α = 10−8.

The resulting speed profiles in all segments of the mainstream are shown in Fig-
ure 4 (b), where we can observe that a controlled congestion (i.e., not due to bottleneck
activation, but to decisions of the optimisation problem) develops far upstream of the
merging segment, namely in segments 0, 1, and 2. In addition, ramp metering actions
take place at the entrance of segment 4, causing a queue to develop (see Figure 3 (b)).
It is interesting noting that the controlled congestion has a higher internal speed
than the one observed in the no-control case. The resulting TTS for this scenario is
TTS = 94.19 veh·h, which corresponds to an improvement of 12.1% with respect to
the no-control case.

4.3 Time-gap regulation scenario

The last scenario investigates the case when, besides conventional traffic control meas-
ures, we assume that the DM is capable of influencing the time gap implemented
by semi-automated vehicles. We implement this scenario by solving the optimisation
problem (22), (10)–(21), allowing the optimiser to assign a lower time-gap to traffic;
in this scenario, we employ hd

n = 0.8 s. All the remaining parameters are maintained
as in the previous scenario.

The resulting speed profiles in all segments of the mainstream are shown in Fig-
ure 4 (c), where we can observe that no congestion is appearing in the network; in
addition, no queue at ramp is created. As can be observed by inspecting Figure 3 (c),
these results are achieved by a decrease of the time-gap of vehicles travelling in seg-
ment 5 and 6 during the period characterised by high demand. A reduced time-gap
in such segments produce a higher capacity, which allows to accommodate all the
demand, without triggering any congestion. The minimum time-gap in segment 5
and 6 is, for this scenario, in the order of 1 s, which would be the desired time gap
ordered/recommended to CAVs travelling on these segments. In case the penetration
rate of CAVs is lower than 100%, the same outcome can be achieved, e.g., by assigning
40% of vehicles (CAVs) to employ a time-gap of 0.8 s (assuming other vehicles drive
at an average time-gap of 1.3 s). The resulting TTS is TTS = 64.81 veh ·h, which
corresponds to an improvement of 39.5% with respect to the no-control case.

5 Conclusions

The paper presents an optimisation-based approach for traffic control in presence of
CAVs, exploiting the possibility of regulating desired time-gaps and communication
capabilities. The optimal control has generated important and useful results, showing
that the use of such strategy could enable strong benefits in term of traffic efficiency.
Ongoing work include the validation of the developed model and optimal control prob-
lem using microscopic simulation.
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