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Abstract

The introduction of the concept of a fleet of shared autonomous vehi-
cle (SAVs) which function as a centralized taxi service system presents an
innovative way in transport modes. A fleet of SAVs can provide tailored
on-demand services via a centralized operation to serve travel demand over
time. In our study, An agent-based model (ABM) is developed to simu-
late tailored time-varying service (TVS) provided by a fleet of SAVs in a
demand-responsive fashion. The proposed system can switch the service
scheme between the door-to-door service (DDS) and station-to-station
service (SSS) automatically based on the time of day; In peak hours, the
SAV system aims to serve as many trips as possible with predesignated
stations as a SSS by providing an on-demand service. In off-peak hours,
a DDS in a demand-responsive fashion is provided by a fleet of SAVs
which can benefit the travelers with great convenience. Also, DDS and
SSS provided by SAVs in a demand responsive fashion are simulated sep-
arately. The potential benefits of TVS provided by SAVs are investigated
and then compare it with DDS and SSS. The simulation results indicate
that the tailored TVS can increase the utilization of SAVs by 2.5% and
number of passengers transported per days by 2.9%. Compared with DDS
in peak hours, there are reductions of averaging waiting time and energy
consumption up to 25.5 % and 3.7% respectively. In off-peak hour, the
TVS can be easily employed to eliminate the avearge 9-minute walking
time of the SSS. In addition, we find out that there is a significant increase
of trips by empty SAVs at around 82% for all service schemes. It is an
important issue for further investigation.

Keywords : Shared autonomous vehicles; on-demand service; quality of service;
agent-based model
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1 Introduction and Background

We are now at the dawn of the next revolution with the introduction of auto-
mated driving vehicles. There are aspects of the automated cars that still need
to be refined, and there are many legal, regulatory and technical problem that
delay the deployment of autonomous vehicles (AVs). The real potential of AVs
is that it makes possible the implementation of an entirely new transportation
system. In other words, AVs will have the power to fundamentally transform
transportation mobility and revolutionize the transport system (Krueger et al.,
2016; Zakharenko, 2016). Since AVs seems to improve road safety, reduce the fa-
tal accidents, improve the operational efficiency of roads with higher speeds and
increased capacity, and reduce the local emission of pollutant and the parking
demand (Correia and van Arem, 2016; van den Berg and Verhoef, 2016).

Several studies have explored the impact of shared autonomous vehicle as a
alternative mode in a demand-responsive fashion to serve travelers. The most
related works are that a fleet of SAVs replace the conventional taxis or buses
service. Earlier works (Fagnant and Kockelman (2014),Fagnant et al. (2015))
investigate benefits and environmental implications of shared autonomous ve-
hicles(SAV) using agent-based simulation. Spieser et al. (2014) examines the
problem of fleet sizing and financial benefits of Automated Mobility-on-Demand
Systems (AMoD) using the actual transportation data in Singapore. Several
study focus on investigate how an SAV system perform and how much bene-
fits when considering the dynamic ride-sharing (Fagnant and Kockelman, 2016;
Zhang et al., 2015). Other works concern multi-mode of transport in analysis of
SAVs system. Martinez and Viegas (2017) investigates the new shared mobility
alternative in the city of Lisbon, Portugal for both all private mobility and bus
services. Zachariah et al. (2014) investigates a fleet of autonomous taxi (aTaxi)
that provide on-demand service among taxi stands in conjunction with the ser-
vice of New Jersey Transit Train in New Jersey. The autonomous vehicles as
a feeder service have been explored (Liang et al., 2016; Scheltes and Correia,
2017).

AV prototype released by Google with its cute and compact shape resembling
the podcars in PRT system. AVs as conceptual cousins with podcars in personal
rapid transit (PRT) systems, are capable of roaming on the open roads instead
of being confined to dedicated tracks. A fleet of SAVs can function as PRT
system to provide the direct service in a demand-responsive fashion to serve the
travel demand in the similar scenarios, such as airport, business and industrial
parks, downtown districts, campuses or theme parks.

One of ideal implementations is that a fleet of shared autonomous vehicles
(SAVs) via a centralized operation functions both as rail-less PRT system and
a taxi system to provide demand-responsive service to serve the time-varying
travel demand during the course of a day. That is to say, SAVs system would
function much like a PRT systems providing station-to-station service (SSS)
during peak hours, but it will operate on the public road rather than on dedi-
cated guide-ways. For the rest of the day, especially when the demand is light,
SAVs provide the convenience of the door-to-door service (DDS)in a demand-
responsive fashion.

little was known about the impact of time-varying service (TVS) scheme on
demand provided by a fleet of SAVs. Note that the two service modes do not
operate in parallel. In simple terms, the on-demand service modes provided by
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SAVs can switch between peak hours and off-peak hours in order to maximize
the usage of SAVs to serve travel demand. To fulfill the research gap, exploration
of the potential benefits of this SAVs system is implemented by developing an
agent-based model (ABM) in Anylogic software to simulate the time-varying
service scheme provided by SAVs, and then compare it with door-to-door service
provided by SAVs system.

The assessment of operations and strategies in this work will be done through
ABM. ABM is a relatively new paradigm that describes a system from the
perspective of its constituent units. Unlike to ”top-down” modeling approach,
ABM is an efficient method to simulate complex adaptive systems in a bottom-
up manner. In other words, ABM is a simulation approach to modeling systems
comprised of individual, autonomous, and decision-making entities called agents.
The main characteristics of ABM are that agents can individually assess its
situation and make decisions on the basis of a set of rules. Agents may execute
various behaviors appropriate for the system they represent (Bonabeau, 2002).

2 Model Specification and Operations

Our model simulates the operation and interactions of SAVs and traveler’s re-
quests within a hypothetical city area and a synthetic population of trips. We
need to estimate the average demand by O-D pairs. The aggregate O-D matrix
is hypothetical. Demand matrix involves the probability of daily trip triggered
between traffic analysis zones, and the distribution of occurrence time of trips
is also customized. O-D matrix (travelers’ requests in each zones) is a square
array in which the i-th row and j-th column indicates the probability that the
passenger at the zone i selects the j-th zone as a trip destination. The main
diagonal of the matrix is composed of zeros, and the sum of the values in each
row must be 1. We define the intensity of demand in each hour to mimic the
morning and afternoon peak hours and off-peak hours.

Services provided by SAVs are on demand. we considered three service
schemes. Specially, in the tailored TVS simulation model, we formulate the
operation in peak hours and offpeak hours respectively. In the peak hours,
travelers who send a request ahead of time need walk to the nearest pickup
station to wait for a SAV, and then the system will assign a idle SAV to serve the
traveler. The SAVs will find the shortest path by means of Dijkstra algorithm
without considering the traffic delays in the networks. After that, travelers
are dropped off at predesignated station where is closet to their destinations.
The passengers may give up and disappears from the network for a time-out
period in term of the cancellation of the on-demand service. In off-peak hours,
travelers who request the on-demand service can be picked up at their origins,
and dropped off at their destinations directly.

We use the first come first serve (FCFS) principle to assign idle SAVs to
serve the travelers. When a vehicle send a request, the matching algorithms
will check the request lists. Then, the traveler who waiting for a long time will
have a priority to be assigned a SAV. A key to the design of SAVs system is
how to designate precise location of SAVs’ service stations to serve as many
trips as possible in peak hours. It is acceptable by examining trip densities in
each traffic analysis zones. It is reasonable to assume that people will accept a
five or ten minute walk to and from fixed stations equivalent to a distance of
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about a quarter mile or a half mile. Compared with the optimal design, fixed
stations are uniformly distributed among the traffic analysis zones in our study.

The vehicle speed is predetermined in baseline scenarios in peak hours and
off-peak hours respectively. Based on the research conducted by Wang et al.
(2016) in terms of speeds during the different time periods, the reduction of the
speed in peak hours ranges approximately from 10% to 30%. So we assume that
the speed of SAVs is 20% less than that of SAVs in off-peak hours. The speed in
off-peak hours is constrained by the free flow speed and maximum safe speed of
SAVs. In our model, we assume the vehicle speed in off-peak hours is 10 meters
per second (36 kilometer per hour).

Figure 1: City topology

3 Experiment

The simulation model coded in Java language was developed in Anylogic pro-
prietary ABM platform. The city scale is 5 Km* 5 Km. The city landscape
topology consists 6 traffic analysis zone, 78 links and 77 nodes (see in figure 1).
For the station-to-station service, SAVs operate among 6 zone station providing
an on-demand service. For energy consumption, we adopt the distance-based
relation. The manufacturer has announced an electricity consumption of 1 kWh
per 7 km (https://www.tesla.com/efficiency/well_to_wheel.php).

The system capacity refers to the total number of trips the SAVs served for
one simulated day. we specify that the SAS can provide an door-to-door service
on demand in off-peak hours, and fixed station service are implemented in a
demand-responsive fashion at the rest of the day.

Table1 shows basic input parameters for SAVs system via a centralized op-
eration, and Table2 is the simulated result for the operation of SAVs in three
scenarios.
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Table 1: Input parameters

Category Value

City scale 5km*5km
Road link 78
Road nodes 77
Traffic zones 6
Demand size 1250
Vehicle maximum speed 40 kph
Vehicle peak-hour speed factor 0.8
Vehicle off-peak speed 36 kph
Vehicle capacity 2 person
Operating hours Around the Clock
Fleet size 70
Timeout for PT 20 minute
Walking speed 1.4 meters per second
AM peak 7 AM-9 AM
PM peak 4 PM-6 PM

4 Results and Discussion

We have analyzed SAV’s service schemes. Three scenarios are simulated: door-
to-door service, station-to-station service, and time-varying service. Simulated
results for three scenarios are stated in table 2. Simulated results indicate that
door-to-door service increases the travelers’ average waiting time by 25.5% in
off-peak hours. Compared with DDS, the average waiting is reduced by 25%
and 11.5% respectively in SSS and TVS. This is because that the SAVs only
provide services between stations on demand. SAVs spatial service length are
shortened, thereby improving the utilization of SAVs. The average vehicle trip
lengths are 11.2 km, 9.5 km, and 10.5 km for DDS, FSS and TVS respectively,
which confirm the fact that vehicle trip lengths can be saved when the SAVs
operate within stations.

The remarkable difference among three scenarios is the waiting time in peak
hours. Both the SSS and TVS reduce the average waiting time in peak hour
by 10.8%. That is, the SSS and TVS could improve the quality service. At the
same time, they can increase the system capacity by 2.4% and 2.9% respectively.
What’s more, the SSS and TVS can reduce energy consumption and VKT by
13.3%, 3.7% respectively. But inconvenience resulting from the walking in a
full-day SSS and peak-hour TVS is a obvious side effect which will impede the
adoption of SAVs.

Compared to the average travel time, the average waiting time is larger in
the simulated results. One of reasons is that fleet size of SAVs is too small to
serve the whole travel demand. We still need to investigate the impact of the
fleet sizes on people’s traveling in SAVs system, and obtain the near optimum
fleet size.

Also, we assume that travelers can give the on-demand service up with a
given time out(20 minutes) to choose other Public transportation (PT)(See Fig-
ure 2). This time limitation will make more travelers choose this on-demand
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Figure 2: Person state chart

service. If we change the specific time interval with a smaller value, more travel-
ers will leave. Consequently, the value of the average waiting time may diminish.

The simulated results indicate that the travelers’ walking time in peak hours
is around 9 minutes that is relatively long. This is because we only designate
one fixed station in each zone in our model. In our model, we assume the
vehicle speed in peak hours and off-peak hours. we did not take into account
the realistic traffic condition. In fact, the empty SAVs reposition for pickup
appears to generate more trips which have the potential to cause traffic delay.
There is a significant increase of trips by empty SAVs at around 82% for all
service schemes in our simulation. So it is necessary to take into the realistic
traffic condition into account to explore the impact of SAV’s operation in the
future study.

A system which encompass all the benefits does not exist. The tailored TVS
which can maximize the usage of SAV in heavy demand profile with acceptable
quality of service and convenience in light demand profile is full of promise. We
promote the tailored TVS scheme as an alternative to taxi service. However,
there are many aspects need to be further considered. We did not simulate
the scenario that the two service scheme operate in parallel. In other words, a
door-to-door service or a station-to-station service are available for travelers at
the same time. Also, the price variations for respective service scheme are need
to be investigated. Travelers can choose different service scheme based the price
they can afford.
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Table 2: Simulation results

Category DDS SSS TVS

Average waiting time 10.4 min 7.8 min 9.2 min
Average waiting time in peak hour 11.6 min 8.6 min 8.8 min
Average waiting time in off-peak hour 9.8 min 7.3 min 9.2 min
Average traveling time 11.8 min 9.8 min 10.7 min
Maximum traveling time 21.8 min 15.7 min 18.7 min
Average vehicle trips length 11.2 km 9.5 km 10.5 km
Average walking time before pickup 0 9.3 min 9.4 min(peakhours)
Average walking time after drop-off 0 9.4 min 9.3 min(peakhours)
Energy consumption 2974 Kwh 2579 Kwh 2862 Kwh
System capacity(time-out 20) 1854 trips 1899 trips 1908 trips
Passengers transported in peak hours 757 persons 788 persons 776 persons
Additional trips due to empty SAVs 1538 trips per day 1574 trips per day 1581 trips per day
Total VMT 20821 km 18055 km 20040 km
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