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Extended abstract 

 

In this work we study the problem of traffic state estimation for large-scale urban networks. Given a 

network that is partitioned in a number of regions, the aggregated traffic dynamics describe the vehicle 

accumulations in each region, as well as the transferring flows among neighbouring regions. Considering 

the fact that many such models have been extensively used for control in the literature recently, this work 

tackles the real-time estimation problem when limited data are available. Recently, there has been a lot of 

development with respect to methodologies for perimeter control that utilize the Macroscopic 

Fundamental Diagram (MFD) for multi-region urban networks. All these controllers are based on 

aggregated state-space modelling for the dynamics of the system. Nevertheless, from the viewpoint of 

field implementations of such approaches, there is a missing part (i.e. online state estimation) that is 

crucial to fill the gap between available data and the controller input requirements in order to close the 

real-time control loop. 

 

As discussed above, traffic state estimation is a vital part of the online closed-loop traffic control system. 

It refers to estimating all traffic variables that are required by a controller as state feedback at the current 

time instant, given a set (e.g. output functions of a sub-vector of the state vector) of available real-time 

measurements. In most of online traffic control loop applications the whole state cannot be measured for 

different reasons, i.e., availability of sensors, communication issues, data dropouts, detector failures, and 

thus, an estimation engine that can reproduce the system state is deemed crucial for the controller 

performance. More precisely, for an urban network, the developed estimation algorithm should deliver the 

complete picture of the network (i.e. state vector) at the current time, given some incomplete information 

of available measurement data from loop detectors, GPS, and any other available sensor. It should be 

emphasized that the number of traffic variables to be estimated may be in general much greater than the 

number of variables that are directly measured. Moreover, the measurements may be noisy and this needs 

to be addressed within the estimation framework. The output of the “best state estimate” and the 

comparison with the real state (if available) is the essential contribution of the methodology. 

 

Kalman filter is an optimal state estimator applied to linear dynamic systems that involves random 

(Gaussian) noise and incorporates a limited amount of noisy real-time measurements. Although it was 

originally derived for linear systems, Kalman filter can be also extended and be applied to nonlinear 

systems via specific online Taylor expansions of the originally nonlinear systems (i.e. the Taylor 

expansion needs to be calculated in real-time at every discrete time instant). This extended version that is 

utilized in the current work, is the so called Extended Kalman Filter (EKF). This methodology can be also 

viewed as a fusion between the real-time available measurements from the plant and the predefined 

nonlinear dynamic model that is derived for the process. Here, EKF is used to estimate traffic state 
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variables (e.g. vehicle accumulations, flows), but also to estimate the exogenous signals of demands, and 

some states that are difficult to be measured and can be considered as time depended model parameters 

(i.e. regional turning ratios). More precisely, if some state variables are not measurable, we can 

reformulate the problem and denote them as model parameters (i.e. random walk processes) and then try 

to estimate their values in real-time. 

 

Consider the following nonlinear state-space model 
 

𝐱(𝑘) = 𝐟[𝐱(𝑘 − 1), 𝐮(𝑘 − 1), 𝛏(𝑘 − 1)] 

with the following output equation 

𝐲(𝑘) = 𝐡[𝐱(𝑘), 𝐮(𝑘), 𝛙(𝑘)] 

where 𝑘 = 1,2, … , 𝐾 is the discrete time index, 𝐱 corresponds to the complete traffic state, 𝐟 and 𝐡 are 

nonlinear differentiable vector functions that reflect the process and the output, respectively, and 𝛏, 𝛙 

correspond to zero-mean Gaussian random noises that reflect the modeling error and the error of the 

measurements respectively. At iteration 𝑘, given all the available measurements 𝐲(𝑘 − 1), 𝐲(𝑘 −

2), … , 𝐲(0) collected up to that point, the recursive equations that provide the prior �̂�(𝑘|𝑘 − 1) and 

posterior �̂�(𝑘 − 1|𝑘 − 1) estimates of the state vector according to EKF theory are as follows: 
 

�̂�(𝑘|𝑘 − 1) = 𝐟[�̂�(𝑘 − 1|𝑘 − 1), 𝐮(𝑘 − 1), 𝟎] 

�̂�(𝑘 − 1|𝑘 − 1) = �̂�(𝑘 − 1|𝑘 − 2) + 𝐊(𝑘 − 1)(𝐲(𝑘 − 1) − 𝐡[�̂�(𝑘 − 1|𝑘 − 2), 𝐮(𝑘 − 1), 𝟎]) 

where matrix 𝐊(𝑘 − 1) is the so called Kalman gain, which is calculated online based on the first-order 

linear Taylor-expansion of 𝐟 and 𝐡 at the current point �̂�(𝑘 − 1|𝑘 − 1) and for the expected value of all 

noises which is 𝟎, for each 𝑘. Note that as these calculations are recursive, 𝐊(𝑘 − 1) actually depends on 

traffic measurements of all previous time instants 𝑘 − 1, 𝑘 − 2, … , 0. Due to lack of space, the reader is 

referred to [1] for the analytical derivations of the EKF methodology. In [1] the authors have presented a 

generic estimation framework that is based on the seminal methodology of Kalman filtering [2] and its 

extensions for nonlinear systems (see, e.g. [3]), and can be used in practice for many different 

configurations of aggregated state vectors and real-time measurements. The presented EKF estimation 

scheme is based on a simple aggregated model of the system dynamics and some real-time measurements. 

The accuracy of the estimations is investigated through macrosimulation by studying a realistic 

configuration of real-time availability of measurements. The output of EKF are the resulting estimated 

traffic states (i.e., regional accumulations, demands, and distribution of outflows), which are compared to 

the real ones that are obtained from the stochastic plant. Note that the developed algorithm can be utilized 

by closed-loop online urban traffic management strategies (see e.g. [4]) to feed back to the controller the 

estimated traffic state. 

 

In this work we apply the estimation framework described above to microsimulation in order to evaluate 

its performance. For the plant of the traffic process we utilize the commercial software simulation 

Aimsun. Note that this software is based on a car-following microscopic model and a complicated lane-

changing model, and thus, this is essentially quite different than the aggregated model utilized by EKF for 

the urban multi-region traffic dynamics. By combining this model with measurements from the 

microsimulator we aim to test the performance of the estimation scheme. For our simulation experiments, 

we use as a case study network a replica of the CBD of Barcelona in Spain. For this network, we have a 

well calibrated microsimulation model in Aimsun (Figure 1(a)). Figure 1(b) presents the test network 

partitioned in 4 homogeneous regions. For the partitioning the algorithm presented in [5] has been used. 

The result of this algorithm is to get 4 clusters (zones) that are as homogeneous as possible and with 

compact shapes. 
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(a)                                                                            (b) 

Figure 1: (a) Aimsun microsimulation model for the CBD of Barcelona, (b) network partitioned in 4 

homogeneous regions. 

 

Consider now that we have available (noisy) measurements from an urban network. If traffic loop 

detectors are installed and perhaps also some real-time GPS data are available, it is reasonable to assume 

that we can get measurements for the total accumulation of any region ni, and also the aggregated transfer 

flows from any region i to any region j (but not detailed route choices, trip endings, and demand data). 

Given these real-time measurements every T=90sec, it is the purpose of EKF to try to estimate other state 

variables (needed by the controller), which are (a) the regional turning ratios αij (that correspond to the 

distribution of outflow to neighbouring regions), and (b) the aggregated demands di for every region. 

Moreover, EKF provides estimates for the complete state, i.e. even for the accumulations ni that are 

directly measured we get an estimate that will filter out the measurement noise. 

 

After applying the EKF methodology to microsimulation we are able to compare the estimated values to 

the real values of the state variables. Figure 2 presents the time-series of demands for the four regions of 

Barcelona. The estimated value (red) is compared to the real value (blue) that is obtained by the simulator. 

We can observe that the estimation scheme can follow quite well the signal of the unknown demand even 

though the plant and EKF aggregated model are quite different in nature. We are able to provide quite 

accurate online estimates that can be utilized for control purposes. Similarly, Figure 3 presents the 

estimated (red) and real (blue) trajectories for the regional turning ratios αij. The estimates are also 

reasonably accurate, following quite well the real trajectories. Note that in region 4 the estimation results 

are better than in regions 1, 2, and 3, and this is because the MFD model incorporated within EKF has 

more information about the dynamics of this region. Overall, the estimation results can be deemed 

satisfactory in order to be used for real-time control purposes (e.g. model predictive control). 
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Figure 2: Estimated and real trajectories for the exogenous demands (a) d1, (b) d2, (c) d3, and (d) d4. 
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Figure 3: Estimated and real trajectories for the regional turning ratios (a) α14, (b) α24, (c) α34, (d) α41,  

(e) α42, and (f) α43. 


