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Abstract 29 
 30 

Objective and methodology 31 
This paper presents a direct modelling approach for origin-destination public transportation commuting 32 
flows with possible endogenous regressors for the case of Switzerland. Its purpose is to improve the 33 
gravity modelling approach for OD flows by applying a spatial autoregressive regression model and 34 
testing different spatial weighting schemes. To the best of our knowledge, there has been no prior 35 
application of such advanced models in the context of transport demand modelling for public transport. 36 
Methodologically, in the first step a gravity model is developed and tested for the presence of spatial 37 
autocorrelation in its residuals. Subsequently, variants of a spatial lag model with different spatial 38 
weighting schemes are developed. Furthermore, we test a variable based on mean income 39 
differences on its ability to describe interregional demand patterns. In addition, we treat for the 40 
endogenous nature of the newly constructed variable. We are also testing its ability to serve as the 41 
basis for the construction of the spatial weight matrix, thus replacing the commonly used travel time / 42 
distance metric. On the modelling front, we use an Ordinary least squares (OLS) estimator for the 43 
gravity model, while a Generalized Method of Moments and Instrumental Variable (GMM/IV) (IV) 44 
estimator for the spatial models is employed in order to obtain unbiased and consistent parameter 45 
estimates. Last, we evaluate various models’ goodness-of-fit measures and in-sample predictive 46 
accuracies by comparing among each other as well as to those of a state-of-the practice transport 47 
model (as provided by national spatial planning bureau (NPVM)). This comparison can allow us to 48 
draw solid conclusion with respect to the suitability of the presented method for predicting commuting 49 
flows. 50 
 51 

Case study 52 
In brief, a case study for public transport commuting flows in Switzerland is designed to illustrate the 53 
concept of OD flow modelling, based on travel-to-work trips data from the Federal Census of 2000. 54 
The data cover 2896 Swiss municipalities and contains over 250’000 observations on their initial form. 55 
However, it does not fill the whole flow matrix that contains 28962 = 8,386,816 flows. For the remaining 56 
OD pairs we assume zero-valued travel flows. An important aspect is the issue with how to deal with 57 
zero flows. A large fraction of zero-valued OD flows would definitely point towards a Poisson or a 58 
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(zero-inflated) negative Binomial interaction model. However, neither a Poisson nor a negative 59 
Binomial spatial autoregressive regression model for OD flows has been developed so far. We include 60 
income differences between Swiss communes as an explanatory variable in our models, since a 61 
higher income gives incentives to commute. In conclusion, we filter the initial flow matrix for inter-62 
communal travel trips, income data available only in 1595 communes and all zero flows, which gives a 63 
final sample size of 46,659 OD flows. Clearly, this is a limitation of our modelling approach but 64 
nevertheless the findings can be of apparent value for pointing directions.  65 
Modelling commuting behaviour requires a set of relevant explanatory variables that capture 66 
the characteristics of origins and destinations, along with the mechanisms that generate the trips 67 
among them. The dependent variable, inter-communal travel flows, is regressed on several 68 
independent variables obtained or derived from the 2000 Federal Census, the Swiss national transport 69 
model ARE (2005), and the Institute for Transport Planning and Systems (IVT) of ETH Zurich. We use 70 
the following variables in our framework, which are also common in explaining public transport 71 
demand in the literature (e.g. LeSage and Thomas-Agnan, 2015; Farmer, 2011; Axhausen et al., 72 
2015). 73 
 74 
Table 1: Model variables 75 
 76 

Statistic Definition 

Flow Av. daily flows 

Network dist. minutes 

Income diff. rel CHF (in 1,000) 

Population (o) # inhabitants 

Jobs (d) # jobs 

Pop. density (d) # pop. / area (in km2) 

Job density (o) # jobs / area (in km2) 

Pop. accessibility (d) # accessible pop. 

Job accessibility (o) # accessible jobs 

Car (o) # cars / pop. 

Car (d) # cars / pop. 

Jobs3rd (o) # jobs in 3rd sector / # jobs 

Jobs3rd (d) # jobs in 3rd sector / # jobs 

Workers (o) # workers3 / pop. 

Workers (d) # workers3 / pop. 

  

Note: (o),(d) = at origin, at destination municipalities 

 77 
The starting point is a log form  least-squares gravity model for OD flows in the form of 78 
 79 

log(𝑦) =  𝛼 log(𝑙𝑁) +  𝛽𝑜 log(𝑋𝑜) +  𝛽𝑑 log(𝑋𝑑) +  𝛿 (
𝑖𝑛𝑐𝑑 − 𝑖𝑛𝑐𝑜

𝑖𝑛𝑐𝑜

) +  𝛾 log(𝑔) +  𝜖, 80 

 81 
where Xo and Xd are characteristics of origins and destinations, g denotes the network distance and 82 
((𝑖𝑛𝑐𝑑 − 𝑖𝑛𝑐𝑜) 𝑖𝑛𝑐𝑜)⁄  reflects the relative difference of income between destination and origin 83 
municipalities. Estimation results of the gravity model are showed in Table 2. All parameters are highly 84 
significant except those of the share of 3rd sector jobs at origins and the share of cars per origin 85 
municipality having p-values lower than 5% and 1% respectively. The network distance decay 86 
parameter (-1.537) is within the expected range for commuting patterns, in accordance with previous 87 
studies. All other explanatory variables have a much weaker impact on the dependent variable, but 88 
this finding is in line with the expectations of existing literature (LeSage and Thomas-Agnan, 2015; 89 
Farmer, 2011). Income differences between destinations and origins have a significant and positive 90 
effect on travel-to-work trips and should be interpreted as an elasticity, since relative differences are 91 
used. This intuitively makes sense. By applying Moran’s I tests we find that the residuals of the 92 
aspatial model indeed exhibit remaining spatial dependence and thus justify the need for spatial 93 
models. Spatial autoregressive models (SAR) are typically written as 94 
 95 

𝑦 =  𝛼 𝑙𝑁 + 𝜌𝑖  𝑊𝑖  𝑦 + 𝛽𝑜𝑋𝑜 +  𝛽𝑑𝑋𝑑 + 𝜖,     𝑤𝑖𝑡ℎ 𝑖 = 𝑜, 𝑑. 96 
 97 
where the weights for W i are defined as: 98 



 99 

𝑁𝑒𝑡𝑤. 𝑑𝑖𝑠𝑡. 𝑤𝑒𝑖𝑔ℎ𝑡𝑠:    𝑤𝑖𝑗 =  
1

𝑡𝑟𝑎𝑣𝑒𝑙𝑡𝑖𝑚𝑒𝑖𝑗

,   𝐸𝑐𝑜𝑛. 𝑑𝑖𝑠𝑡. 𝑤𝑒𝑖𝑔ℎ𝑡𝑠:    𝑤𝑖𝑗 =  (
𝑡𝑟𝑎𝑣𝑒𝑙𝑡𝑖𝑚𝑒𝑖𝑗

exp (((𝑖𝑛𝑐𝑑 − 𝑖𝑛𝑐𝑜) 𝑖𝑛𝑐𝑜)⁄ )
)

−1

 100 

 101 
As it can be seen in Table 2, SAR models relying on origin- and destination-centric network and 102 
economic distance weights show positive influence of neighbouring communes on travel-to-work trips. 103 
Rho is higher than 1, which is an artefact of using the min-max approach for the spatial weights when 104 
building W i, i = (o,d) instead of classic row-normalization (Kelejian and Prucha, 2010). In the transition 105 
from the gravity model to the SAR models, variables Car (o), Car (d), and Jobs3rd (o) are not 106 
statistically significant anymore and the impact of network distancebecomes smaller. Interestingly, rho 107 
for the SAR model relying on economic distance weights has a bigger impact compared to the network 108 
distance weighted SAR. It has to be emphasized that parameter estimates of spatial autoregressive 109 
regression models can not be interpreted as simple elasticities as in the gravity model, since spatial 110 
spillovers complicate the task of interpreting estimates from these models in a direct way. 111 
Furthermore, the spatial models yield a higher goodness-of-fit measure than the gravity model. Finally, 112 
we employ an IV regression framework to test the endogeneity of income and using a set of valid 113 
instruments (in line with Sarlas and Axhausen,2017). Note that pseudo R2 values must be treated with 114 
caution, as they are not equivalent to OLS-based R2 measures. 115 
 116 
Table 2: Gravity model and spatial autoregressive models estimates 117 
 118 

  Dependent variable: log(commuting flows) 

 Gravity model (OLS) SAR (GMM / 2IV) SAR (GMM / 2IV) 

   Network distance weights Econ. distance weights 

  Estimate Sign. Estimate Sign. Estimate Sign. 

(Intercept) 4.443 *** 5.765 *** 5.788 *** 

log(Netw. distance) -1.537 *** -1.250 *** -1.254 *** 

Rel. Income diff. 0.085 *** 0.047 ** 0.041 ** 

log(Jobs) (d) 0.473 *** 0.307 *** 0.308 *** 

log(Pop. density) (d) 0.030 *** 0.036 *** 0.036 *** 

log(Pop. access.) (d) -0.176 *** -0.207 *** -0.206 *** 

log(Jobs3rd) (d) 0.102 *** 0.082 *** 0.082 *** 

log(Car) (d) -0.071 *** -0.007  -0.006  
log(Workers) (d) 0.665 *** 0.409 *** 0.417 *** 

log(Population) (o) 0.440 *** 0.359 *** 0.358 *** 

log(Job density) (o) -0.043 *** -0.042 *** -0.042 *** 

log(Job access.) (o) -0.180 *** -0.239 *** -0.239 *** 

log(Jobs3rd) (o) -0.027 ** -0.019  -0.018  
log(Car) (o) -0.023 * -0.003  -0.002  
log(Workers) (o) 0.365 *** 0.249 *** 0.254 *** 

rho     2.387 *** 2.704 *** 

R2 0.5177      
Pseudo adj. R2   0.5898  0.5893  

HC robust std. errors yes  yes  yes  

Note:        

 119 
The resulting in-sample predictive accuracies outperform those from the current NPVM for different 120 
accuracy measures, as can be seen in Table 3.  121 
 122 
Table 3: In-sample predictive accuracy measures 123 
 124 

  RMSPE RMdSPE MAPE MdAPE SMAPE SMdAPE 

NPVM 87.50 6.49 271.76 64.92 74.12 64.24 

Gravity model (OLS) 131.20 68.76 913.60 687.62 143.36 154.94 

SAR (GMM / 2IV); Netw. dist. weigths 6.81 4.75 51.53 47.52 62.59 55.22 

SAR (GMM / 2IV); Econ. dist. weigths 6.40 5.13 51.99 51.34 68.96 63.03 

 125 


