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INTRODUCTION 

In recent years, increasing attention has focused on the detailed analysis of the spatio-temporal 

patterns of traffic with the objective of identifying the occurrence and nature of traffic 

congestion (Zhang et al., 2016). Such work has focused on both modelling congestion 

formation and propagation (Saeedmanesh and Geroliminis, 2017), as well as clustering traffic 

congestion with emerging traffic data in urban networks (Anbaroglu et al., 2014). Nevertheless, 

to the best of our knowledge, little research has been conducted in the early detection of the 

onset of congestion and how the capability for such early detection might be most effectively 

used to prevent or mitigate the growth of congestion.  

Recurrent Congestion (RC) which usually occurs at peak hours typically with a daily 

pattern and is caused by excess travel demand relative to the network capacity (Anbaroglu et 

al., 2014). Reliable early detection of incipient RC can improve the network management 

response by enabling drivers to divert at an earlier stage in their journey and y giving traffic 

managers extra time to develop appropriate traffic signal plans and other control measures 

(Zhang et al., 2014).  

One of the main characteristic of urban traffic is that congestion is spatially correlated 

among adjacent roads and it can spread or dissipate with variable propagation and dissolution 

rates in both time and space (Saeedmanesh and Geroliminis, 2017). The explicit recognition of 

this spatiotemporal correlation structure adds complexity to the problem. In this paper, we 

argue that if properly understood it also enables us to better understand how to (a) diagnose the 

onset of congestion (b) characterise the temporal evolution of congestion patterns and (c) 

proactively develop strategies to mitigate urban traffic congestion problems.  

The aim of this paper is therefore to develop a hybrid deep learning-based detection 

methodology that can provide a spatiotemporal understanding of urban congestion and accurate 

early detection of RC in urban networks. The contributions of this paper are: (1) it presents a 

novel hybrid deep learning based early detection method that exploits the spatio-temporal 

structure of urban traffic; (2) the methods developed are capable to detecting multiple levels or 

severities of congestion with reasonable accuracy in the early stage; (3) the performance of a 

number of RC early detection methods are compared and evaluated with respect to the size of 

time windows (i.e., how many prior time steps should be used as inputs) and number of time 

steps ahead (how early can it detect).  

BACKGROUND 

The existing literature provides various RC prediction methods and techniques that have been 

employed to examine traffic data in urban networks. These RC methods consist of two 

categories, i.e., statistical methods and machine learning methods. Over the last few years, most 

research studies have attempted to statistically estimate or predict traffic congestion by using 

traffic flow theory, including car-following model (Gazis et al., 1959) and cell transmission 

model (Daganzo, 1994) which are quite difficult to be applied to real-case scenarios without 

optimised environment on a large scale. In addition, researchers have conducted substantial 
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studies on motorways or highways (Yildirimoglu and Geroliminis, 2013), while the application 

of RC detection in the context of urban networks has been more limited, because of their greater 

topological and control complexity and their vulnerability to a wider range of sources of 

interruption (Anbaroglu et al., 2014).  

On the other hand, machine learning based RC prediction methods aim to estimate or 

predict traffic variables, such as traffic flow, travel time and speed in a short-time window as 

these variables are adopted as important factors of Level of Service (LoS) (Botzow, 1974). For 

instance, Yu et al. (2016) used Back Propagation Neural Networks (BPNN) to detect traffic 

congestion based on occupancy rate variables and proved that the BPNN was capable of 

detecting traffic congestion with stable performance. An et al. (2016) proposed a three-step RC 

detection procedure with traffic speed input from GPS-equipped taxi. However, most studies 

related to RC tend to focus on analysis and prediction of traffic recurrent congestion once it 

has occurred and over relatively limited prediction horizons, typically a 5-minute or 15-minute 

time window. This short-term perspective provides little time for traffic operators to 

proactively formulate and deploy management plans and also can fail to accommodate the 

communications latency of various traffic sensor devices.  

Little attention has been paid to the development of methods that can provide a 

significant early warning of the formation of congestion and the characteristics of its spatio-

temporal evolution. Such a system would substantially reduce the time-constraints affecting 

traffic operators and provide them with an RC index for proactive reaction. Given the limitation 

of existing literature mentioned above, new techniques are required to investigate the detection 

of RC on a large scale network by considering both spatial and temporal correlations.  

Convolutional Neural Networks (CNN), initially introduced in 1980 as a derivative of 

conventional multilayer neural networks, are fundamentally supported by neuron science 

(Fukushima, 1980). In addition to the fully connected layers found in conventional multilayers, 

a CNN includes convolutional layers and pooling layers where the convoluted layers are locally 

connected, and parameters are significantly reduced in the pooling process. The locally-

connected convoluted layers enable a CNN to capture complex spatial correlation problems 

(Krizhevsky et al., 2012), while reducing parameters in the pooling layer which makes a CNN 

potentially applicable to large-scale traffic network problems (Karpathy et al., 2014). Recently, 

CNN was used to directly capture spatial traffic features and correlations in the urban traffic 

network as a whole on a large scale network because of its capability to learn spatial 

correlations (Ma et al., 2017). However, a common issue of CNN is inefficient to learn the 

temporal information with time series inputs. The Long Short-Term Memory (LSTM), firstly 

proposed with the concept of gated recurrent units by Hochreiter and Schmidhuber (1997), has 

become an effective choice for analysing the sequential data. Intuitively, more information is 

needed to decide how to integrate the previous information into current decision, so the closely 

recent information before decision time step t may be not enough and information further back 

is necessary. The LSTM introduces to connect previous relative information between data 

points with a large lag and handle long-term dependencies, thus exhibits superior capability for 

time series analysis (Wu and Tan, 2016). Traditional Recurrent Neural Networks (RNNs) 

mainly have two issues when dealing with short-term prediction: 1) poor performance with 

long time spans 2) difficult to find optimal time window size or lags (Ma et al., 2015). LSTM 

is one of the more practical ways to address these limitations of RNNs, thus LSTM is proposed 

to capture the temporal information in traffic data. The combination of CNN and LSTM has 

advantages of extracting spatial information and temporal correlations by using CNN and 

LSTM respectively. Therefore, in this paper, we propose a novel deep neural network 

combined CNN and LSTM to address the gaps mentioned above. 
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METHODOLOGY 

This paper proposes a novel method for the automated early detection and alerting of road 

network congestion, operating over time windows ranging from half an hour to three hours and 

early detect the congestion states before 1 to 8 time steps ahead. The whole methodology 

procedure consists of two steps, namely label generation and early detection, where the label 

is generated using Expectation Maximisation algorithm (Dempster et al., 1977) into congested 

traffic state and uncongested state, and early detection model consists of a CNN, an LSTM and 

two fully-connected layers. The methodology framework is shown in Figure 1. 

 

 

 

 

 

 

 

 

 

 

 
Figure 1. Methodology Framework 

EM Label Generation 

In the first step, an unsupervised learning method, the Expectation Maximisation (EM) 

algorithm, is used to classify (“generate labels” in the parlance of the machine learning 

community) the traffic state according to different levels of severity of congestion. With the 

assumption that traffic states can be clustered into two regimes by uncongested  (𝑍𝑖 = 0) and 

congested (𝑍𝑖 = 1)  which follow a Gaussian distribution with 𝑝(𝜶)|𝒛=0~𝒩(𝜇0, 𝜎0
2)  and 

𝑝(𝜶)|𝒛=1~𝒩(𝜇1, 𝜎1
2)  respectively. Then, Gaussian mixture model can be defined by 

𝑝(𝜶|𝚯) = ∑ 𝛾𝑘𝑝𝑘𝑘 (𝜶|𝜃𝑘) where each 𝑝𝑘  is a Gaussian distribution function parameterised 

by 𝜃𝑘 , where 𝜃𝑘 = ( μ𝑘 , σ𝑘
2) and 𝑘 = {0,1}. Then by using Bayesian theory and Maximum 

Likelihood estimation theory, the unknown parameter set 𝚯 can be estimated with an iteration 

of log-likelihood expectation step and maximisation step. The EM algorithm has been proved 

to be an effective and transferable probabilistic traffic state classifier which can capture the 

latent features of the underlying distribution (Han et al., 2010). It can be viewed as a form of 

unsupervised learning method in which this context is used to generate labels that can in turn 

be used to drive a more sophisticated CNN-LSTM-based supervised deep learning method, 

which is used to detect the early onset of congestion.  

Matrix Transformation 

In the second step, these labels are used as the input to a CNN-LSTM-based hybrid deep 

learning early detection model, including a CNN, an LSTM and two fully-connected layers 

which are designed to capture spatial features and temporal features, and early RC detect 

respectively. In order to implement the CNN, the time-series traffic flow data have been 

converted into a 3D time-space feature space where x-axis, y-axis and z-axis represent time, 

space and time windows, i.e., the number of time lags,  respectively as matrix inputs for a CNN 

network.  

CNN-LSTM Modelling 

After converting into a 3D time-space feature space, we define the architecture of the CNN 

model to extract spatial features 3D time-space matrix. The convolutional layer serves as a 

detection filter to scan an input with a weighting function w. The convolutional operation can 

be defined as: 

Evaluation 

(FPR, DR, MTTD) 

 +  

Sensitivity analysis 
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  ( , ) ( )( , ) ( , ) ( , )
m n

S i j I K i j I m n K i m j n                                      (1) 

where ( , )I m n  defines the input, and ( , )K m n is the convolutional layer kernel or feature map to 

measure the similarities among input and output a heatmap ( , )S i j which represents the region 

of interest. The following layers gradually detect the more abstracted features and reduce the 

size of inputs. CNN is capable of capturing patterns in local regions and these abstracted 

patterns is then fed into an LSTM model.  

In addition to RNNs, the key idea of LSTM is the memory cell in hidden layers where 

errors can flow back forever and make error flow tend to decay exponentially in the whole 

process from an input gate 
ti  , a self-recurrent connection neuron 

tc , a forget gate 
tf  to an 

output gate 
to  (Gers, 2001). The mathematical equation detailed this whole LSTM process 

 , , ,t t t ti c f o  with activation function   will not be covered in this extended abstract due to the 

extensive derivatives and readers may refer to Gers’s research (2001) for more details. The 

final set of layers is composed of dropout (Srivastava et al., 2014) and fully-connected hidden 

layers which make a specific classification based on all features detected by previous layers.  

Other Competitors and Performance Evaluation 

Other conventional machine learning methods, such as Multilayer Perceptron (MLP) and 

Random Forest (RF) are used to compare with the proposed CNN-LSTM method in the early 

detection part. In order to comprehensively evaluate the performance of the proposed models, 

three evaluation indexes from machine learning classification problems are used. They are 

False Positive Rate (FPR), Detection Rate (DR) and Mean Time to Detect (MTTD).  

RESULTS AND DISCUSSION 

The proposed detection methods are tested using traffic flow and occupancy data from the City 

of Bath. The case study consists of two main corridors with 18 detectors and 15 detectors 

respectively. The traffic data which has been pre-processed using the DSA algorithm (Chen, 

2003) before feeding into the model covers two years from June 2015 to June 2017 in 15-

minute time intervals. The experiment will start with binary labels and find the accuracy 

corresponding to different size of time windows and number of time steps ahead, and then 

expand to multiple labels in the future studies.  

The preliminary results based on binary labels are as follows. After classifying the 

traffic states into two regimes based on traffic occupancy and traffic flow by using the EM 

algorithm, time series data are transformed into matrix data using the transformation method 

introduced in methodology section. Stochastic gradient methods are used to minimise the loss 

function and update the weights and bias step by step for MLP and RF. As a result, the MLP is 

set up with a hidden layers size of (10, 2) and regularisation parameter of 0.00001, while RF is 

configured to generate 10 decision tree with the depth of 3. The settings of CNN-LSTM net 

consist of 5 learned layers including 3 convolutional layers with kernel size of 3×3, each 

followed by a max polling layers with kernel size of 2×2, single layer LSTM as cell with 256 

units of the hidden state and two 2 fully-connected layers with 64 and 48 units respectively. 

The detailed example of a comparison of CNN, MLP and RF with binary labels, time 

window size of 3 and 2 time steps ahead on Lower Bristol Road is shown in Table 1. As shown 

in Table 1, both proposed CNN-LSTM model and conventional machine learning techniques 

perform well in the early detection method, with low FPR and high DR and Precision. Among 

three methods, CNN-LSTM slightly outperforms than the other two methods in terms of FPR 

and DR but suffers from long time for early detection. 
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Table 1. Performance of Early Detection (No. time window = 3 and No. time steps ahead =2)  
 

Detection Rate (DR)  False Positive Rate (FPR)   MTTD  

CNN-LSTM 97.04% 2.08% 0.383 sec 

MLP 94.01% 2.20% 0.001 sec 

RF 63.64% 10.52% 0.009 sec 

 

After analysing performance indexes, sensitivity analysis in terms of the number of 

detection horizons ahead and size of time windows is conducted to study the impact of these 

factors to the performance. The result shows CNN-LSTM are quite insensitive to detection 

horizons but the performance increase with larger size of time windows, which means that 

CNN-LSTM may result most reliable early detection providing that at least half an hour time 

window is given. In the next step, more experiments with multiple labels will be conducted to 

examine the performance of the proposed methods. 

  

  

  
 

  
(a)                                                                            (b) 

Figure 2. Sensitivity Analysis in terms of (a) number of detection horizons ahead (b) size of time windows 
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CONCLUSION 

In this paper, an early detection model based on the combination of unsupervised learning and 

supervised learning is presented. The proposed model can be used for prediction problems in 

large urban networks where spatial and temporal correlations are significant factors for the 

prediction. In order to evaluate the performance of the new approach, we tested it to the 

prediction of traffic congestion with real traffic data collected in the City of Bath, and compared 

it with benchmarks, i.e., MLP and RF, in terms of detection rate, false positive rate and mean 

time to detection. Preliminary results are promising and have demonstrated that CNN-LSTM-

based early detection model may be superior to conventional machine learning methods 

especially with larger size of time window. The longer time window can be practically 

extracted from the historical dataset and improve detection accuracy of real time applications 

with different levels of latency. The sensitivity of size of time windows and time steps is varied 

among three methods, while MLP is insensitive to the number of time steps ahead, which 

indicates that MLP may accurately detect recurrent congestion even with long time gaps. More 

experiments with multiple labels will be conducted to examine the performance in the future 

study. 
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