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Extended Abstract1

The first ideas of an aggregated traffic modeling were introduced by Godfrey (1969)2

and later revisited by Daganzo (2007) and Geroliminis & Daganzo (2008). For3

this type of modeling, the city is divided into reservoirs (Fig. 1) where the traffic4

conditions are approximately homogeneous and are given by a well-defined low5

scatter Macroscopic Fundamental Diagram (MFD). The MFD is a relationship6

between the aggregated flow q and aggregated density k. The traffic dynamic7

inside a reservoir is governed by the evolution of the vehicles accumulation n at a8

given time instant t Daganzo (2007):9

dn

dt
= Qin −Qout, t > 0 (1)

where Qin and Qout are the inflow and outflow functions, respectively.10

Depending on the assumptions made on Qout, two MFD-based models can11

be distinguished in the literature: the accumulation-based (Daganzo, 2007); and12

the trip-based (Arnott, 2013, Lamotte & Geroliminis, 2016, Mariotte et al., 2017).13

In this work, we focus our attention on the trip-based model, where the MFD14

dynamics is entirely described by the vehicle trip length L:15

L =
∫ t

t−T (t)
V (n(s))ds (2)

where T (t) is the travel time of the vehicle exiting at t. Our numerical implemen-16

tation of this model is based on Mariotte et al. (2017).17

One key ingredient for a proper trip-based MFD simulation is a decent es-18

timation of trip lengths. In fact, different vehicles might travel different distances19

inside the same reservoir. In Fig. 1 (a), we show an example of a microscopic net-20

work where there are represented three microscopic trips. A microscopic trip is21

∗
� sergiofilipe.assuncaobatista@entpe.fr
†
� ludovic.leclercq@entpe.fr

1

mailto:sergiofilipe.assuncaobatista@entpe.fr
mailto:ludovic.leclercq@entpe.fr


defined by a sequence of links. Two microscopic trips are correlated if they share1

links in common. This is represented by the red links shown in Fig. 1 (a). But,2

when we scale from microscopic to the regional network, we no longer have access3

to the topology information of the real network (Fig. 1 (b)). We focus instead on4

the set of reservoirs that define the regional network as shown in Fig. 1 (b). In the5

regional network, microscopic origin-destination (od) pairs correspond to macro-6

scopic Origin-Destination (OD) reservoirs; and each microscopic trip corresponds7

to a regional path. A regional path is defined by the sequence of crossed reservoirs8

from O to D. In Fig. 1 (a), the green microscopic trips define the same regional9

path. But, they have different trip lengths inside each reservoir that is crossed. In10

Fig. 1 (b), the green and blue regional paths are correlated since they cross two11

reservoirs in common. In Fig. 1 (c), we show a zoom of the gray reservoir with a12

well-defined MFD function. We denote L1 and L2 as the trip lengths of the green13

and blue regional paths inside the gray reservoir, respectively. There are two main14

differences between the correlation on the microscopic network and the one on the15

regional network. First, the correlation between the green and blue regional paths16

inside the gray reservoir are captured by the homogeneous speed assumption of17

the MFD-based models. That is, a vehicle that enters the gray reservoir and is18

traveling on the blue regional path, will automatically affect the travel times of all19

vehicles inside this reservoir, independent of the regional path they are traveling.20

Second, a regional path is characterized by a distribution of trip lengths inside each21

reservoir that it crosses. This is because one regional path can be defined by several22

microscopic trips with distinct trip lengths.23

Fig. 1 – (a) Microscopic network with three microscopic routes. Two of these
microscopic routes are correlated as shown by the red links. The macroscopic
network is also represented. (b) Macroscopic network with the corresponding
macro-paths to the green and blue microscopic routes. (c) Gray reservoir
with a well-defined MFD function, that is crossed by the green and blue
macro-paths, each with a corresponding trip length L1 and L2.

Few attention has been paid to the dynamic traffic assignment on the MFD-24

based models context, i.e. the characterization of regional paths and the calcula-25

tion of the path flow distributions. Up to the authors best knowledge, the most26

advanced dynamic traffic assignment framework for the MFD-based models is dis-27

cussed by Yildirimoglu & Geroliminis (2014) (for the Stochastic User Equilibrium)28

and Yildirimoglu et al. (2015) (for the System Optimum). Yildirimoglu & Gerolim-29

inis (2014) discuss a regional dynamic traffic assignment framework that considers30
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trip lengths that are explicitly calculated in an iterative way. The stochastic net-1

work loading is based on the Multinomial Logit formulation.2

In this work, we discuss a methodology for a regional-based dynamic traffic3

assignment that accounts for explicitly calculated trip lengths, to solve the Deter-4

ministic and Stochastic User Equilibrium (DUE and SUE). For this, we consider5

the utility function defined as:6

UOD
p =

∑
r∈Y

(
Lrp

Vr(nr)

)
δrp

≈
∑
r∈Y

(
Lrp

Vr(nr)
+ εr(Lrp, Vr(nr))

)
δrp,∀p ∈ ΩOD ∧ ∀(O,D) ∈W

(3)

where Lrp is the set of trip lengths of regional path p inside reservoir r; Vr(nr) is7

the speed-MFD function of reservoir r; δrp is a dummy variable that equals 1 if8

regional path p crosses reservoir r; Y is the set of reservoirs that define the regional9

network; ΩOD is the macroscopic choice set for the macroscopic origin-destination10

(OD) pair; andW is the set of all macroscopic OD pairs of the regional network. In11

Eq. 3, the term Lrp

Vr(nr)
defines the deterministic part of the utility function. While,12

the term εr(Lrp, Vr(nr)) is the error term that depends on:13

• Lrp that defines the distribution of trip lengths of regional path p inside14

reservoir r. Batista et al. (2018) investigates four approaches to properly15

define Lrp based on a set Γ of microscopic trips. The authors propose to16

filter these microscopic trips based on different levels of information of the17

regional network. We follow one of the approaches discussed in Batista et al.18

(2018), that considers a level of filtering at the regional path level. That is,19

all microscopic routes that travel inside a given reservoir and that define the20

same regional path p are considered to define Lrp.21

• vr(n(t)) is the speed-MFD function and yields the users the different percep-22

tion of the traffic states inside reservoir r.23

Note that, for the DUE, εr(Lrp, Vr(nr)) is set to 0.24

To calculate the network equilibrium, accounting for these two uncertainty25

terms, we consider Monte Carlo simulations (Sheffi, 1985). Both the DUE and26

SUE are formulated as fixed-point problems and are solved based on the Method27

of Successive Averages. We choose a 1
k descent step to ensure the good algorithm28

convergence. The idea of the Monte Carlo simulations is to sample trip lengths29

directly from Lrp and mean speeds from vr(n(t)). We perform a large number (M)30

of samples. For each one, we solve deterministic problems where users minimize31

their perceived utility. The final choices, for each MSA descent loop, correspond32

to the averaging of all these local deterministic choices. As convergence criterion,33

we consider the Gap function and the number of violations (Sbayti et al., 2007). A34

maximum number of descent steps Nmax is also fixed.35

We discuss some preliminary results based on one implementation on a 136

reservoir network with entry queuing. The network is composed by 1 OD and37

two regional paths (Fig. 2). For the MFD-trip based simulation, we consider a38

parabolic MFD function with: critical jam njam = 1000 veh; critical production39
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Pcritical = 3000 veh.m/s; and free-flow speed u = 15 m/s. The demand level is:1

0.3 veh/s between 0 and 1000 s; 1.0 veh/s between 1000 and 6000 s; and 0.3 veh/s2

between 6000 and 10000 s. For the convergence, we fix 0 for the maximum number of3

violations, a Gap tolerance of 0.01 and Nmax = 100. For this test, we fix L2 = 15004

m and vary L1 ∈ [1300, 1700] as shown in Table 1. For the SUE calculations, the trip5

lengths are sampled for the two regional paths following a normal distribution. For6

the sampling of trip lengths for regional path 2, we consider a normal distribution7

with mean 1500 m and standard deviation σL. While, for the case of regional8

path 1, we consider a normal distribution with mean value as listed in Table 1 and9

standard deviation σL. We consider three different values for σL = 50, 100, 200 m.10

The calculated regional path flows for the DUE and three SUE cases are listed in11

Table 1.12

Fig. 2 – One reservoir test network with one OD and two regional paths.

We first analyze the DUE results, where εr(Lrp, Vr(nr)) is set to 0 (see Eq. 3).13

For L1 < L2, all users choose the minimum utility that corresponds to regional path14

1, since the trip length is smaller. Note that the MFD dynamics is the same for15

both regional paths and the only term that affects the utility function are the trip16

lengths. For L1 = L2 = 1500 m, users equally choose regional paths 1 and 2. For17

L1 > L2, all users choose regional path 2, as expected.18

We now analyze the SUE case, considering first σL = 50. Initially, for19

L1 = 1300 m, all users choose the regional path 1. Note that, the distribution of20

trip lengths for regional path 1 follows a N(1300, 50) and for regional path 2 follows21

a N(1500, 50). Since the standard deviation is small, the values that are sampled22

for the trip length distribution of regional path 1 are always inferior to the ones for23

regional path 2. Thus, all users choose regional path 1. But, as L1 increases, users24

start to also choose regional path 2. For L1 = L2 = 1500 m, users also equally25

choose regional paths 1 and 2, as expected. For L1 > 1500 m, the fraction of users26

that choose regional path 2 increases. This happens until L1 = 1650, when all users27

choose regional path 1. A similar trend for switching from regional path 1 to 2 as28

L1 increases is also observed.29

In the extended version of this work, we will consider this one reservoir MFD30

model with entry queuing to: (i) analyze the algorithm convergence for both DUE31

and SUE; (ii) compare the SUE results against the Multinomial Logit model; (iii)32

analyze the DUE and SUE results considering 2 OD pairs. We will also analyze33

the implementation of this framework for both DUE and SUE calculations on a34

real network and considering a re-assignment procedure per periods during the35
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L1
DUE SUE (σL = 50) SUE (σL = 100) SUE (σL = 200)

Q1 Q2 Q1 Q2 Q1 Q2 Q1 Q2
1300 1.00 0.00 1.00 0.00 1.00 0.00 0.92 0.08
1350 1.00 0.00 1.00 0.00 0.98 0.02 0.85 0.15
1400 1.00 0.00 0.98 0.02 0.91 0.09 0.76 0.24
1425 1.00 0.00 0.94 0.06 0.84 0.16 0.69 0.31
1450 1.00 0.00 0.87 0.13 0.74 0.26 0.64 0.36
1475 1.00 0.00 0.73 0.27 0.64 0.36 0.57 0.43
1500 0.50 0.50 0.51 0.49 0.50 0.50 0.50 0.50
1525 0.00 1.00 0.28 0.72 0.38 0.62 0.43 0.57
1550 0.00 1.00 0.14 0.86 0.24 0.76 0.36 0.64
1575 0.00 1.00 0.07 0.93 0.17 0.83 0.30 0.70
1600 0.00 1.00 0.03 0.97 0.10 0.90 0.25 0.75
1650 0.00 1.00 0.00 1.00 0.03 0.97 0.15 0.85
1700 0.00 1.00 0.00 1.00 0.00 1.00 0.08 0.92

Tab. 1 – Regional path flows for the DUE and SUE results and for the
one reservoir MFD model with entry queuing. Q1 and Q2 are the flows of
regional paths 1 and 2, respectively. Three values of σL are considered. The
trip length L2 = 1500 m is kept constant, while L1 is increased from 1300
to 1700 m.

simulation. For this test, we will simulate a morning peak.1
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