How to keep your AV on the moral high ground? An obfuscation-

based model of decision-making by autonomous agents

This study presents a formal model of obfuscatiageld decision-making by autonomous
agents, with particular focus on Automated Vehi¢8s). The model is based on the often
expressed concern that autonomous agents like A¥they will become more and more
intelligent and autonomous over time, will developes and motivations of their own which
may diverge from the objectives and moral prin@pte its supervisor (i.e., the human
designing or training the AV). | postulate that Iswc highly autonomous agent may wish to
hide from its supervisor the decision rules undedytheir choices. Such obfuscation-based
decision-making is beneficial to the agent, wheis iinsure which rules will be appreciated
by the supervisor, and which will be punished;hié tagent wishes to avoid punishment, a
rational strategy is to choose actions that giv@immim information to the supervisor
concerning the applied rules. An example would Hee dften discussed situation where the
AV needs to make split second life-and-death dewssi the AV may have learned itself
certain rules to apply in such a situation. Its bamsupervisor in turn would be very interested
in learning which rules are applied by the AV irtlswa situation, and he will punish the AV
when the rules are deemed unacceptable (e.g. ingolr gender or racial bias). In this
context, it would be beneficial to the AV to cho@adions that provide the supervisor with as
little as possible information concerning the umgeg (moral) rule. Combining the well-
known concepts of Bayesian inference and Shanntwopn | propose a formal model of
decision-making by autonomous agents with variegrekes of obfuscation-objectives. | also
show how a naive and a non-naive supervisor magipate obfuscating behavior by the
agent, by means of designing choice sets that maaimformation content. By doing so, the
study aims to contribute to the rapidly growingdief Ethics & Atrtificial Intelligence, with

special attention to the Automated Vehicle context.

A short version of thefull paper, which is currently under review, can be found below;

notethat it iswritten for a generic audience interested in autonomous agents.

If the abstract is accepted, my presentation at hREART will focus on the specific

transportation-related context of automated vehicles.




1. Introduction

In several sub-fields of Artificial Intelligencettantion for ethical aspects and impacts is
rapidly rising (e.g. Conte et al., 1999; FloridiSanders, 2004; Boella et al., 2006; Cointe et
al., 2016; Santos et al., 2017). A core concerntimeed in recent scholarly debates, is that as
artificial agents become more autonomous and nmwedligent, their behaviors might diverge
from what humans consider morally right or pernfilssi This concern is embodied in
guestions and remarks raised in recent papers asiciHow can an Al system be held
accountable for its actions” (Dignum, 2018), anah ‘agent following under-specified or
poorly defined goals, or which has the ability todify its own goals, may act in a manner
which is inconsistent with the intent of its desgh (Vamplew et al., 2018). See these two
papers, and also Limerick et al. (2014), King e{2017), Rahwan (2018) and Santoni de Sio
& Van den Hoven (2018), for excellent introductipresviews and discussions regarding how
to constrain the behavior of autonomous agentsadbyodefined— and make them comply
with rules set by their designers.

This paper aims to contribute to the above mentiditerature; it considers the situation
where a human supervisor (or designer, or traimean autonomous agent wishes to teach an
agent not to exhibit rules that would diverge fréime supervisor’s intentions. Rather than
focusing on thesupervisor’sintentions and actions (although attention will geed to these
aspects further on in the paper), the main focuskisfpaper is to provide a formal model of
the behavior of amutonomous agent that anticipates that it will benighed by the
supervisor, if it exhibits the ‘wrong’ rule§he core postulate of the model presented in this
paper, is that an autonomous agent may have antimedo provide its supervisor with as
little as possible insight into the underlying mulgoverning its actions. Potential incentives
for such obfuscation-based decision-making by tpenamay be diverse, but an important
one would be that the agent itself does not (yetvk which rules are considered to be
‘wrong’ by the supervisor; if the agent is punisimiaverse, a beneficial strategy would be to
choose actions that provide relatively weak signélhe agent’s underlying rules.

2. A formal model of obfuscation-based decision-making by an autonomous agent

2.1. Notation, and behavior of a rule-based agent

Consider an agent whose task is to choose an afrtom a setA containing/ actions
{a1 @ ...a]}. The agent follows one rule from a detcontainingK rules{r; ...7 ... 1% }.
Matrix § which is K by J-dimensional and contains scorgg describing how actiom;
performs on ruley. These scores may take on the following valsgse {+,0, —}. In caser;

is a strong rules,; € {+,—} implying that an action may be either obliged ¢#)prohibited
by the rule. In casey is a weak rules,; € {0,—} implying that an action may be either
permitted (0) or prohibited by the rule.

A so-called rule-based agent is an agent whoserectollow from executing a particular rule
(which may be unknown to the supervisor). In thespnt context where agent behavior only
consists of following one particular rule —note iagéhat this assumption will be relaxed in
Section 4, leading a more involved formal represionn of agent behavior— this agent’s
behavior can be relatively easily characterized formal sense: if the rule followed by the
agent is a strong rule, then the agent will sdleetaction which is obliged by that rule (note
that by definition, all other actions are prohidite That is, ifr, is a strong rule, then



P(a;|r) = 1if a; is obliged under; andP(a;|r) = 0 otherwise. If the rule followed by the
agent is a weak rule, then the agent randomly @®as action from the subset containing
actions which are permitted by that rule (note thgt definition, all other actions are

prohibited). That is, if; is a weak rule, theR(a;|r,) = 0 if a; is prohibited under; and
P(a;|r) = 1/L otherwise, wherd equals the size of the subset of actions permitteter
the rule.

2.2. Behavior of an obfuscating agent

The obfuscating agent is —assumed to be— awar¢hiaupervisor will update her perceived
probabilities regarding which rule has governedchisice for a particular action. The agent
assumes that the supervisor is a rational leametiaa such will use Bayes’ Theorem (Bayes,
1763). More specifically, the agent assumes thatsthpervisor’'s posterior probabilities, i.e.
after having observed an agent’s choice for aqadr actiona;, are given by:

P(aj|rk) - P(1y)
k=alP(ajlne) - P(r)]

P(n|a;) =

(Equation 1), wher@(r,) = 1/K, as defined above, and whétfa;|r;) is 0 or 1 (in case of
a strong ruler,), respectively 0 ot /L (in case of a weak rulg). In other words, the updated
probability —in the eyes of the supervisor— thameorule r, is followed by the agent,
conditional on observing the agent choosing actignis written in terms of the prior
probability for that rule, and the probability ohansing particular actions conditional on
following particular rules.

The obfuscating agent believes that the remainmgeainty in the eyes of the supervisor,
i.e. after having observed its choice for a paléicwactiona;, is quantified in terms of
Shannon entropy (Shannon, 1948):

K

H; = —Z [P(rk|a]-) - log (P(rk|aj))]

k=1

(Equation 2). In line with intuition, entropy isrpeif one of the rule-posteriors equals one, i.e.
if after having observed the agent choosing aatigithe supervisor is able to determine with
full certainty which rule led to that action. Ernpsois largest when all rule-posteriors are equal
(i.e., when all posteriors equal the correspondtingrs); this is the case when, after having
observed the agent choosing actimgn the supervisor still believes that every rule s
same (i.e.1/K) probability of guiding the agent’s behavior. Gtebehavior of an agent that
is only concerned with obfuscation can then be attarized in terms of an attempt to
maximize entropy:



argmax {Hj}
j=1.J

(Equation 3). In other words, an obfuscating agdmtoses the action which maximizes the
supervisor’'s entropy.

2.3. lllustration — worked out examples

This sub-section will illustrate, using very simpdgamples, the workings of the models
presented above, and by doing so it will also shimevdifferences in behavior between rule-
based and obfuscation-based agents. Consider ttretian where the agent faces a choice
between three actions, and where the agent’s bahmay be governed by one out of four
rules or by the wish to obfuscate. These actions kize following scores on each rule:

ay a, as
rq + - —
T 0 0 —
3 - 0 0
T4 - + -

This score-matrix is interpreted as follows: actiors obliged by rule 1, permitted by rule 2,
and prohibited by rules 3 and 4; rule 1 obligesoacl, and prohibits actions 2 and 3; and so
forth. The supervisor's completely uninformativéerpriors are 0.25 for each rule, leading to
an initial entropy of 0.602. Applying equations @nd (2), the rule-posteriors and ex-post
entropy that are associated with an agent choasipgrticular action can be derived. Take
action 1: we know tha®(a,|r;) = 1 (since the action is obliged by that rulBfa,|r,) = 0.5
(since it is one of two actions permitted by thae); P(a,|r3) = 0 andP(a,|r,) = 0 (since
the action is prohibited by those rules). Thaifithe agent’'s behavior would be governed by
rule 1, the probability that action 1 is chosenagone; if the agent’s behavior would be
governed by rule 2, the probability that actiors klhosen equals 0.5; if the agent’s behavior
would be governed by rule 3 or by rule 4, the phbolig that action 1 is chosen equals zero.
Based on these inputs, Bayes’ Theorem (equatiaivé} the rule-posteriors associated with
the agent choosing action B{(r,|a,) =§ ; P(rylay) =§ ; P(r3lay) = P(rylay) = 0. The
associated ex-post entropy associated with thetagewosing action 1 is then given by
equation (2):H; = — E -log G) + % -log G) + 0-log(0) + 0+ log(O)] = 0.276. Similarly,
the entropies for actions 2 and 3 can be computekd on their rule-posterioréf, =

1 1 1 1 1 1
- [0 -log(0) + 5 log (Z) +log (Z) + - log (E)] =0.452 and H; = —[0-log(0)+0-
log(0) + 1 -log(1) + 0-log(0)] = 0.



These results can be interpreted as follows, frieenagent’'s perspective: choosing action 3
completely eliminates the supervisor's entropypother words, it gives the supervisor full
information that the agent’s behavior is governgdule 3 (since all other rules prohibit the
action, while rule 3 permits it). Choosing actioteads to a substantial reduction in entropy
from 0.602 to 0.276: based on the agent’s choicehis action, the supervisor is relatively
(but still not completely) certain, that the agentehavior is governed by rule 1; the
supervisor is certain that rules 3 and 4 do noegovthe agent’s behavior. Choosing action 2
leads to a more limited reduction in entropy fror@02 to 0.452: based on the agent’s choice
for this action, the supervisor believes that rdlas most likely to govern the agent’s
behavior, although rules 2 and 3 cannot be ruledanly rule 1 can be ruled out, as that rule
prohibits action 2). An obfuscating agent whicloimdy concerned with leaving the supervisor
as much as possible in the dark with respect teahvhile governs its actions, will thus choose
action 2.

3. Choice set composition by a naive and by a cynical supervisor

Until now, the supervisor was given a passive roméhe sense that she only existed in the
‘mind’ of the agent. In this section, | will congidan active supervisor, in the sense that she is
given the ability to design the choice set from abhthe agent then chooses an action. In
notation, the supervisor becomes able to composet & containing a certain number of
actions. For reasons that will become clear furthelow, | distinguish between a naive
supervisor and a cynical supervisor; the formerebek that the agent’s decision-making is
rule-based, whereas the latter believes that teatagdecision-making is obfuscation-based
As will be seen, to describe the behavior of thgesusor (in terms of composing a choice
set) it is inconsequential whether or not the agesetcision-making is rule- or obfuscation-
based in reality.

Before presenting a formal model of supervisor behait is important to highlight the
following: irrespective of whether the supervisonaive or cynical, her aim is to compose a
choice set such that the (expected) entropy arisorg the agent’s choice for an action from
that set is minimized. This implies that the chose¢ design task faced by the supervisor
involves determining the entropy associated wittheaction in the set. Crucially, the entropy
that results from an agent choosing a particuldioadrom a set, depends on how other
actions in the set comply with the various rulesother words, the entropy associated with a
particular action is contingent on the scasgsof all other actions in the set for all available
rules. This in turn implies that the supervisor cary assess the entropy of a given action
when she also knows the other actions in the setueh, the supervisor canmopriori select

a subset of ‘low-entropy actions’ and bundle theggether in a choice set. On the contrary,
every possible permutation of alternatives (resglin choice sets of a given size) must be
considered by the supervisor, before she can centid minimum-entropy composition.

To illustrate this choice set-contingency of ana@acs entropy, consider the situation where
the universal choice set contains three actiond, where the agent’'s behavior may be
governed by one out of three rules (and potentiajiythe wish to obfuscate). The actions
have the following scores on each rule:

! Although the meaning of these labels is intuitstictly speaking a ‘naive supervisor’ is not reaim
case the agent’'s behavior is rule-based, and aaysupervisor is not cynical in case the agent’s
behavior is obfuscation-based.



a, a as

This score-matrix is interpreted as follows: actibnis permitted by rules 1 and 2, and
prohibited by rule 3; rule 1 permits actions 1 @@nd prohibits action 3; and so forth. Now
consider the entropy associated with an agent ahg@stion 2, and how it is contingent on
the subset from which it is chosen. First consaldrsef{a,, a,}: in the context of this binary
set, the rule-posteriors resulting from an agemosing action 2 are: ¥ (rule 1), % (rule 2)
and %2 (rule 3) respectively. The associated entemalsH 4, |(q,.qa,}) = 0.45. Next consider
subset{a,, az}: in the context of this binary set, the rule-pasis resulting from an agent
choosing action 2 are: 0.4 (rule 1), 0.4 (rule 2) 8.2 (rule 3) respectively. Note that these
posteriors are very different from those associat#ti the agent choosing action 2 from
choice sefa,, a,}. The associated entropy equalg,,|(q, q.) = 0.46. Although in this case
—despite the substantial difference in posterithhe—resulting difference in entropy associated
with the agent choosing action 2 is small, it Sdtves to illustrate that the entropy associated
with an agent choosing a particular action is ca@nt on the composition of the choice set,
forcing the supervisor (choice set designer) toluata all alternatives in every possible
choice set composition.

3.1. Anticipation by a naive supervisor

A naive supervisor believes that the agent follaysarticular rule which is unknown to her
(i.e., she assigns probability K to every rule, if there arg rules), and that the agent is not
interested in obfuscation. Her aim is then to ammsta choice seC of given size (by
selecting a given number of actions from a univessa of actions), such that the expected
entropy associated with that set is smaller tharettpected entropy of any other 6ebf the
same size, which may be constructed from the uséeset. Using notation as presented in
the previous section, this condition can be denatefbllows:

2] 1[ » 2] 1[ K P( |c'ITk)l e

(Equation 4). In the left hand side of the inedyaliermH; . gives the entropy resulting from

the agent choosing actien from setC; term Zkzl% gives the probability that action

a; is chosen from that set. Note that this probabiitequal to the denominator of equation
(2): it is written as the product of the probalilthat a given rule is followed (the prior of

which equalsl /K for each rule) and the probability that, giventthde, the action is chosen

from the set. As explained in the previous sectthaf latter probability?(a;ic|r.) depends



on whether or not the rule is a weak or a strong. riihe right hand side of the inequality
gives the corresponding expected entropy of afadttive choice ses.

To illustrate the naive supervisor's choice set position process, consider again the
situation, where three rules are considered, amditiversal set consists of three actions; note
that the scores are the same as used in the psesx@mple — the score matrix is copied for
ease of communication:

a, a; as
1 0 -
T -
T3 - 0

The naive supervisor sets out to construct a biohoyce set such that the associated expected
entropy is minimized. Her design options &@;, a,}, {a,, as}, and{a,, as}. Using equation

4), the expected entropy associated with{agta,} is computed as follow€[H{a,, a,}] =
1 1 11
03227 4 045 - 22 = 0.4. Similarly, E[H{a,, a5}] = 0.38 andE[H{ay, as}] = 0.20. Of

these three binary subsets, the one containingrecfi and 3 has the lowest expected entropy
(in the eyes of a naive supervisor) and will helpeeelected by her.

3.2. Anticipation by a cynical supervisor

A cynical supervisor believes that the agent is mbérested in following any rule in
particular, but merely in obfuscation, i.e. maximg the supervisor’'s entropy. The major
difference with the choice set composition prooafsa naive supervisor, is that the cynical
supervisor, once she has established the entrapystssociated with every action in the set,
knows which action will be chosen by the agent fritra set: this must be the maximum
entropy action. Note that this knowledge level casts with the situation faced by a naive
supervisor, who does not know which rule is follovizy the agent and as such does not know
which action will be chosen from a particular dae¢r(ce the use of the notion of ‘expected’
entropy in the naive supervisor case). The aim ©fracal supervisor is to construct a choice
setC of given size (by selecting a given number ofaxtifrom a universal set of actions),
such that the entropy associated with that sehaler than the entropy of any other 6ébf

the same size, that may be constructed from theetsal set. Using notation as presented in
the previous section, this condition can be denatefbllows:

maszl,.]{HﬂC} < maX]'=1.J{H]-|CI} vC'

(Equation 5). This inequality highlights that thenical supervisor selects the choice set with
minimum (compared to other choice sets) maximunropgt To illustrate the cynical
supervisor's choice set composition process, censibe exact same choice set design



problem as presented directly above (for the cdsth@® naive supervisor). The cynical
supervisor sets out to construct a binary choidesseh that the associated (maximum)
entropy is minimized. Her design options d;, a,}, {a,, as}, and{a,, as}. Using equation
5), the entropy associated with all subsets catobgputed, resulting in the following values:
H{a,,a,} = 0.45; H{a,, a3} = 0.46; H{a,, a3} = 0.30. Of these three binary subsets, the
one containing actions 1 and 3 has the lowest pyffio the eyes of a cynical supervisor) and
will hence be selected by her. Note that this estAme subset as the one which was selected
by the naive supervisor, but also note that th&-adering of subsets in terms of their
entropy differs between naive and cynical supergisa naive supervisor prefefa,,as}
over{a,, a,}, while a cynical supervisor prefefs,,a,} over{a,, as;}. The intuition behind
this result, is that a naive supervisor believes there is a probability that will be selected
from the set{a,, a3}, which would give valuable information as it lisithe number of
compatible rules to one (i.ey). A cynical supervisor would however believe tha agent
would never seleat; from the sefa,, a3}, precisely for the reason that it would provide th
supervisor with too much information. In fact, ttynical supervisor would believe that the
agent would always choosg from {a,,a,} and from{a,, a3}, sincea, is compatible with
all three rules; and apparently the entropy astettiaith choosingt, from the former set is
slightly lower than the entropy associated with [dteer set, leading the cynical supervisor to
select{a,, a,}.

4. Conclusions, discussion of limitations, and further research directions

Inspired by increasingly widespread concerns, anszhglars and the wider public alike, that
autonomous agents may acquire —i.e., teach theessehules that are not in line with the
objectives —e.g. moral principles— of their designand supervisors, this paper presents a
model of obfuscation-based decision-making by aatwous agents. The idea behind this
endeavor is that an increasingly intelligent andomomous agent may wish to hide its
decision-making rules from its supervisor whers ithnsure which rules may be appreciated or
not by the supervisor and/or when it is afraid & gunished for exhibiting rules that are
deemed unacceptable by the supervisor. The modsépted in this paper combines the well-
known concepts of Bayesian inference and Shanntomnto derive a formal account of
obfuscation-based behavior of an autonomous agiemtpaper also presents an account of
how a naive and a cynical supervisor would antteipaand try to mitigate— the agent’s
behavior by means of cleverly designing choice &ele confronted by the agent.

As such, the paper attempts to contribute to tlogvigng research field of Ethics & Atrtificial
Intelligence, by shedding light on how an obfustgtautonomous agent might behave, and
by presenting response (or, strictly speaking,icgmdtory’) strategies of supervisors. The
model is intentionally presented in an abstract mean facilitating the derivation of
applications in a variety of contexts where autoaosmagents may play important roles such
as transportation, the military, search & rescdertd, law, human resources, health policy
and management, etc.
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