
A MILP formulation for the maximum likelihood estimation of
continuous and discrete parameters in choice models

Virginie Lurkin, Anna Fernández Antoĺın, Michel Bierlaire
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1 Motivation and contributions

The state-of-the-art for the mathematical modeling of disaggregate demand relies on choice theory.

In the estimation of discrete choice models, in general, only continuous parameters are considered,

although advanced models include also discrete ones. The most typical example of a discrete parameter

that is usually disregarded from the estimation process is the nest allocation parameter in nested logit

models. Nesting structures are used in discrete choice models when correlation between alternatives

is suspected. They are used in a very broad range of transportation contexts such as airline itinerary

choice, car-type choice, route choice, and in mode choice among others. In many contexts, the partition

of alternatives into different nests is not obvious and there are several nesting structures that make

intuitive sense. In practice, to determine the most appropriate nesting structure, the analyst has

two options: (i) to enumerate all the possible values, and estimate the continuous parameters for

each combination, and (ii) to make the problem continuous by relaxing the integrality of the discrete

parameters. For instance, a membership indicator becomes a continuous variable between 0 and

1 (like in the cross-nested logit model), or by making the membership probabilistic (like in latent

class models). In both cases, however, the likelihood function features several local optima, so that

classical nonlinear optimization methods may not find the (global) maximum likelihood estimates.

Other discrete parameters can be introduced in choice models to replace the discrete decisions that

are currently taken on a trial-and-error basis by the modeler, such as the choice of variables that enter

the utility specification.

In this work, we propose a new mathematical model designed to find the global maximum likelihood

estimates of a choice model involving both discrete and continuous parameters. This is a first attempt

towards a MILP formulation of the maximum log likelihood, which results in a problem with high

computational complexity. The goal of this presentation is to show under which circumstances our

approach is computationally feasible, and to study its strengths and limitations. Our contributions are

multiple. First, to the best of our knowledge, we are the first to include discrete parameters estimation

in the maximum likelihood framework in the context of discrete choice models. Second, our model is

formulated as an MILP. We use simulations and piecewise linear function approximation to dispose of

the non-linearity of the log likelihood. We believe that it is the first time that the log likelihood is

linearized. Finally, the proposed model is general and can be used with multiple choice models. Our

framework is illustrated on the nested logit model in the next section1.

1The mathematical model presented in the next section is for the nested logit model, but the framework remains valid

1



2 Mathematical model

Following Ben-Akiva and Lerman (1985), the utility associated with each alternative i that belongs to

nest m is expressed for individual n as

Uin = Vin + εmn + εimn, (1)

where

- εmn is such that ε̃mn = εmn + ε′mn, with ε̃mn
iid∼ EV (0, 1), and ε′mn

iid∼ EV (0, µm),

- εimn
iid∼ EV (0, µm), with µm ≥ 1.

The utility of Equation (1) can therefore be rewritten as

Uin = Vin + ε̃mn + (εimn − ε′mn), (2)

or equivalently as

Uin = Vin + ε̃mn +
1

µm
(ξimn − ξ′mn), (3)

where ξimn
iid∼ EV (0, 1), and ξ′mn

iid∼ EV (0, 1).

As we don’t know a priori if alternative i belongs to nest m, we introduce the indicator parameters

bim, that is equal to 1 if alternative i belongs to nest m, and 0 otherwise. Then, the utility becomes

Uin = Vin +

M∑
m=1

bim

(
ε̃mn +

1

µm
(ξimn − ξ′mn)

)
, (4)

= Vin +

M∑
m=1

bimε̃mn +

M∑
m=1

(
bim
µm

(ξimn − ξ′mn)

)
(5)

Equation (5) is then easily linearized with traditional linearization techniques.

We use maximum likelihood estimation to find the values of our discrete and continuous parameters.

However, in order to have a linear formulation, we approximate the choice probability with simulation.

That is we maximize
N∑

n=1

I∑
i=1

din log
(
P̂n(i)

)
, (6)

where

- din is observed and takes value 1 if individual n chooses alternative i, and 0 otherwise,

- P̂n(i) is the approximate probability that individual n chooses alternative i.

for any DCM for which draws can be generated.
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To obtain the approximate probability, P̂n(i), we follow the framework developed by Pacheco et al.

(2017) and we generate R draws for ξimn and ξ′mn in Equation (5). Then, the choice of an individual n in

a particular scenario r2 is characterized by the binary parameter winr, that is equal to 1 if Uinr > Ujnr,

and 0 otherwise. We then use additional constraints, together with linearization techniques to ensure

that winr is fixed to one for the alternative with the highest utility and to zero otherwise.

This formulation allows to approximate the probability of individual n to choose alternative i as

P̂n(i) =
1

R

R∑
r=1

winr, (7)

and the objective function becomes

N∑
n=1

I∑
i=1

din

log

 R∑
r=1

winr

− log(R)

 . (8)

The remaining non-linearity is the logarithm and we use a piecewise linear function to evaluate it. In

order to do so, we define sin =
∑R

r=1winr and zin = log(sin). We denote by PLp(sin) the line that

passes through points (p− 1, log(p− 1)) and (p, log(p)), ∀p = 1, ..., R, then

PLp(sin) = log(p)(sin − (p− 1)) + log(p− 1)(p− sin),∀p = 1, ..., R. (9)

Since log(0) is not defined, and limx→0 log(x) = −∞, we approximate −∞ by a negative enough

number and denote it L0
3.

Therefore, the maximization of Equation (8) is equivalent to

max
N∑

n=1

I∑
i=1

din (zin − logR) (10)

s.t. sin =

R∑
r=1

winr (11)

zin ≤ PLp(sin) (12)

Finally, our model contains additional constraints that we only define informally: (1) each customer

chooses one alternative, (2) an alternative can only be chosen by an individual if it is available to her,

(3) the chosen alternative is the one with highest utility, (4) the scale parameter µ̄m is normalized, (5)

each alternative belongs to exactly one nest, (6) symmetry is breaking for the nest allocation.

2We use the term scenario to describe the realization of a draw.
3In practice we consider L0 = -100.
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3 Results

In order to determine the minimum number of draws needed to obtain reliable values of the final log

likelihood, we evaluate Equation (10) at the values of the parameters obtained by a continuous esti-

mation software (Biogeme). We do so for the logit model, and for three possible nested logit models

(N1,N2 and N3). The results are shown in Table 1, together with the value of the final log likeli-

hood (FLL) obtained with the continuous estimation. The table also shows the relative error between

the real FLL and the value obtained with the MILP (using R draws). The relative error is computed as

eRFLL = FLL−F̂LLR
FLL .

N1 N2 N3 Logit

R FLL eFLL [%] FLL eFLL [%] FLL eFLL [%] FLL eFLL [%]

M
IL

P

5 -1648 958 -1560 866 -1558 860 -1344 729
10 -358.1 130 -678.2 320 -369.8 128 -657.9 306
20 -152.8 1.93 -180.9 12.1 -172.4 6.28 -160.1 1.29
50 -153.7 1.32 -169.1 4.78 -171.2 5.54 -159.3 1.79
100 -154.0 1.12 -168.6 4.46 -170.8 5.31 -161.0 0.757

Continuous estimation - -155.8 - -161.4 - -162.2 - -162.2 -

Table 1: Investigating the simulation error

As expected, we see that the relative error decreases with the number of draws. In Table 2, we report

the values of the estimated continuous parameters, the FLL, its relative error, the optimal nesting

structure, the solution time and the solution gap (in the cases in which a time limit of 48 hours is

reached). The last row also shows the values obtained with Biogeme. We can see that thanks to our

MILP framework, we can find the values of parameters, together with the best nesting structure (N1),

independently of the number of draws used.

R βTIME βCOST µ̄ FLL eFLL [%] NS time [s] gap [%]

M
IL

P 5 -0.315 -0.405 0.150 -1053 536 N1 3682 0
10 -0.375 -0.359 0.229 -165.3 0.165 N1 14188 0
20 -0.291 -0.265 0.135 -155.9 5.84 N1 172808 17

Continuous estimation - -0.301 -0.119 0.14 -165.5 - N1 - -

Table 2: Finding the best nesting structure

More advanced results and analysis will be presented as part of the presentation.
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