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ABSTRACT
This paper studies the signal timing estimation problem for intersections

using sparse GPS data. Judging the signal status by the GPS points after the
stop line, we first apply Fast Fourier Transform to obtain the cycle length in
the frequency domain. Then, we put all GPS data in one cycle length to deal
with the shortage of GPS data. Considering the conflicts of signal phases, we
jointly minimize the total error to get the actual signal timing of the intersection.
This problem is formulated as a Binary-Mix-Integer-Linear-Program, which can
be solved efficiently by the standard branch-and-bound method. Finally, the
effectiveness and the robustness of our approach are validated by the numerical
experiments.
Keywords: cycle length, signal timing, GPS, BMILP

INTRODUCTION
Accurate signal timing information, that is, the length of the cycle and the

start and duration of green times for the different traffic movements through the
intersection, can significantly improve the efficiency of the transportation system.
Such information can be used to develop speed advisory algorithms that guide
drivers or autonomous vehicles through traffic signals without unnecessary braking
and acceleration, therefore improve fuel efficiency (Koonce et al. 2008, Osorio and
Nanduri 2015). Moreover, this kind of information also serves as crucial input to
the calculation of steady-state signal performance measures such as intersection
delay and queue lengths (TRB 2010). However, as is pointed out by Hao et al.
(2012), it is not only challenging but also costly to collect signal timing information
from traffic signal controllers managed by multiple agencies in a wide area such
as a region or nationwide.

Recently, researchers have started to tap into GPS data reported by probe
vehicles, such as taxicabs or buses, to estimate signal timings at an intersection.
When the reporting frequency of the GPS data is high, for example, 1 Hz, the tra-
jectories of probe vehicles can be fully constructed. Cheng et al. (2010) leverage
such information to detect critical points in vehicle trajectories and apply shock-
wave analysis to recover signal timings. Kerper et al. (2012) extract the green
and red states of the traffic light from vehicle trajectories and develop a nonlinear
optimization model involving modulo operations to estimate signal timing param-
eters. Hao et al. (2012) calculate intersection travel times between upstream and
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downstream Virtual Trip Line locations using vehicle trajectories. They then ap-
ply the Support Vector Machine (SVM) technique to estimate the cycle start and
end times and use methods developed in Ban et al. (2009) and Ban, Hao, and
Sun (2011) to estimate the effective red (or green) times. When the reporting
frequency of GPS data is low, for example, about 30 seconds per record), Fayazi
et al. (2015) consider the case the influence of queue is negligible and estimate
signal timing parameters by reconstructing vehicle kinematics. Fayazi and Vahidi
(2016) extend this method to the case when the influence of queue is explicitly
accounted for.

One of the major limitation of existing studies is that they only estimate
signal timings for a specific traffic direction of the intersection. As a result, those
independently estimated start and duration of green times from different directions
may conflict with each other. To address the above challenge, we propose to
jointly estimate the signal timings on all directions of an intersection. We develop
a binary mixed integer linear programming (BMILP) model that exploits the
incompatibility among the different traffic movements at the intersection. This
not only ensures the feasibility of the estimated signal timings but also allows us
to utilize GPS data from directions with heavy traffic (that is, more GPS data)
to improve the estimation accuracy for directions with light traffic (that is, little
GPS data). In our approach, we first estimate the instants when the traffic light
is green. We then estimate the cycle length using Fast Fourier Transform, which
is more straight-forward and computationally efficient than methods proposed in
existing literature. We proceed to develop a folding technique to collapse events
over multiple cycles to a single cycle to virtually increase the number of green
instants in a cycle. These green instants serve as input to our BMILP model,
which outputs the signal timings for all directions simultaneously. We validate our
model using real taxi GPS data from Beijing. We choose three cross-intersections
to estimate their cycle lengths and signal timings. All the results of cycle lengths
are accurate to seconds, and all the errors of signal phase are above 97%.

The remainder of this paper is organized as follows. Section 2 presents how
we figure out the cycle of intersections. We build up model to obtain the duration
of green lights and formulate problems as Binary-Mix-Integer-Linear-Programs
(BMILP) to figure out signal timing information, respectively. Numerical experi-
ments are conducted in Section 3 to verify the effectiveness of our method. Finally,
we make the conclusion and come up with future research directions in Section 4.

MODELING APPROACH
The input to our model is the GPS data reported by probe vehicles, or

taxicabs, that originate from all the inbound arms and head toward all the out-
bound arms in the same period of time. Our main objective is to figure out signal
timing information of an intersection, which includes its cycle length, starts and
durations of green lights, etc. The data we use is collected from in-car GPS.
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Model Input
Each probe vehicle reports at regular intervals, for example, every 30 sec-

onds. Its GPS data includes vehicle ID, the current time, its location in terms of
longitude and latitude, travel speed, and direction of travel. Consider the four-
way intersection shown in Figure 1, where the signal operates with a fixed signal
timing plan. Three trajectories are shown in this Figure. They are labeled as
vehicles 1, 2, and 3 respectively. The dots on the trajectories corresponding to
the locations where they report their GPS data. Note that these three vehicles
may traverse the intersection at different times.

Arm 1

Arm 2

Arm 3

Arm 4

Veh. 1

Veh. 2

stop line

Locations where GPS
data are reported

Veh. 3

Figure 1: GPS data reported by probe vehicles traversing an intersection.

Determining Instants When The Traffic Light Is In Green
If we consider a series of GPS points reported by the same vehicle one by

one, each observation point is associated with a velocity and a set of longitude and
latitude. According to this information, we can calculate the distances between
locations of the vehicle and the stop-line and further reconstructing the trajectory
of a car passing the intersection. Considering the performance of vehicles when
approaching the intersection, we define two types. The first kind of cars (denoted
as Type-A) crosses the stop line without delay or stop cause the signal is green
and there are no left vehicles in the queue from the last cycle. It’s with high
probability that this type of vehicles will keep a relatively stable velocity or even
accelerate from a high speed during the time when they pass the intersection. The
other type of vehicles (denoted as Type-B) are those who delay either due to the
red light or remaining queue. Their time-velocity graphs tend to follow a pattern
of an acceleration after a deceleration to stop or a small velocity. Within Type-
B vehicles, there are 3 subtypes we need to consider. Cars who stopped before
the stop-line from a relative long distance may have completed acceleration when
they are passing the stop-line, so they behave just like those Type-A vehilces.
The other kind of vehicle is in acceleration state when passing the stop-line and
arrives free flow speed before its first GPS is recorded after the stop-line. There
is another kind of abnormal cars who is still in very low speed even after passing
the stop-line. We abandon the third type with a filter.

Based on the above classification, we detect the time instant for passing
the stop-line of each vehicle using the velocity and distance information. For the
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reason that a vehicle can only pass the stop-line when the intersection signal state
is green, we can get the estimated green time in other words. In Figure 2, we use
a time-space diagram to analyze the behavior of one vehicle at the intersection.
(t2, v2) is the first GPS point recorded after the stop-line. Denote the acceleration
rate as a and the distance between the stop-line and the first GPS point after the
stop-line as d. If v2

2 − 2ad >= 0, that is the distance a vehicle can go if it starts
acceleration from 0 to v2 with acceleration rate a is larger than d, then we think
the car is Type-B car. By solving a function of time and velocity we get the time
when the car passing the stop-line: tpass = t2 −

v2−
√
v2

2−2ad
a

. Otherwise, the car
is treated as Type-A who has achieved acceleration before the stop-line. In this
case, the green instant can be calculated from tpass = t2 − d/v2 as tA in Figure 2.
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Figure 2: Time-space diagram of two kinds of vehicles at the intersection.

However, the actual data of a single date do not have sufficient vehicles
to get so many observations of the green instants, so we need to combine data of
parallel days. According to Time-of-Day rule in normal signal timing plan, parallel
days have the same signal timing, so we can regard the vehicle data points as in
the same day. In our practice, data of about 30 days is enough to achieve the
rest of processing. After this processing, we can get a series of ti, where ti is an
estimated green instant of vehicle i.

An FFT-based Technique To Estimate Cycle Length
In this subsection, we will process the estimated green time instant data.

In Figure 3, each bar is the number of vehicles passing the stop line every 5
seconds from 9:00 to 11:00 in the morning. We can see from the graph that the
occurrence of green intervals is periodic. Moreover, the data can be transformed
into a sequence of uniformly sampled square wave by applying indicator function
whose output is 1 if the input count of vehicles is greater than 0. What Fourier
transform does is decomposing a function of time (a signal) into frequencies that
make the signal up. In this way, the transformation result from our green light
instants is supposed to have apparent high amplitudes in frequencies composing
the signal. In light of the discreteness of our data as well as the fact that only
locations of peak amplitudes need to be known, Discrete Fourier Transform is the
justified method. In this paper, we follow the notation in Mitra and Kuo (2006).
Suppose the discrete signal is like x[n], n ∈ [0, N−1], where N is the total number
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of discretized seconds in a specific range we care about. x[t] = 1 if there is at
least one car passing the stop line at time t and x[t] = 0 otherwise. DFT can be
written as:

X[k] =
N−1∑
n=0

x[n]e−j 2πkn
N

, where k = 0, 1, ..., N − 1. X[k] is the power or the amplitude of frequency
component k. It’s worth noting that the index k corresponds to angular frequency
ωk = 2πk

N
or frequency fk = k

N
and j =

√
−1.

In practice, DFT is calculated by a method called Fast Fourier Transform.
FFT is just a set of quicker implementation of DFT computation. It exploits the
symmetry in DFT equation, and achieves a computation complexity of O(NlogN)
by divide and conquer compared with that of O(N2) in direct DFT. By applying
FFT, the estimated green time instant signal in a finite time period is transformed
into a function of frequency with several peaks in certain points, which is shown
in Figure 3 and 4. Those peak values, also called sinusoidal components, in Figure
4 come in multiples and are descending in amplitude as frequency increases. This
phenomenon is called harmonic and is also a property inherent in our signal. By
knowledge from signal processing, the first fundamental frequency, which frequen-
cies of other sinusoidal components are integral multiples of, corresponds to the
cycle length of the original signal in time domain. Other peak values with smaller
power in Figure 4 are harmonic to the first one.
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Figure 3: Sampled green time instants between 9:00 and 11:00.
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Figure 4: FFT result of sampled green light time between 9:00 and 11:00.
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In reality, the signal timing scheme is not always the same among different
period, because it needs to be adjusted according to traffic demand which varies
through time. Using FFT method introduced earlier, the issue of detecting cycle-
length-change can be solved. This is further discussed in Case Studies.

The BMILP Model
We now estimate the duration of the green lights based on the estimated cy-

cle length in this subsection. Unlike traditional method (like Fayazi et al. (2015))
which estimate the signal timing plan of single direction, we formulate a Binary-
Mix-Integer-Linear-Program to characterize the duration of the green lights for all
directions in the intersection at the same time considering the possible conflicts
among all directions.

Let I be the set of all possible directions in the intersection, C be the
cycle length measured in seconds. We discrete the entire cycle into C intervals
with a duration of 1 second. For a given direction i, let θi ∈ {1, 2, · · · , C} be
the start of green and φi ∈ {1, 2, · · · , C} be the duration of green. Since the
signal operates cyclically, depending on whether θi +φi exceeds C, the green time
for direction i can take two possible types as are illustrated in Figure 5. Figure
5(a) shows the first type, where θi + φi ≤ C. This means that the signal is
green in interval k ∈ [θi, θi + φi), or k ∈ [θi, θi + φi − 1]. Figure 5(b) shows the
second type, where θi + φi > C. This means that the signal is green in interval
k ∈ [1, θi + φi − C) ∪ [θi, C], or [1, θi + φi − C − 1] ∪ [θi, C].

Cθi1 θi + φi

green redred

(a) Type 1: θi + φi ≤ C, which
means that the signal is green in
interval [θi, θi + φi).

Cθi + φi − C1 θi

greenredgreen

(b) Type 2: θi + φi > C, which
means that the signal is green in
interval [0, θi + φi − C) ∪ [θi, C).

Figure 5: Two possible types of signal timing for direction i. The entire cycle is
descritized into C intervals and the values on the x−axis indicate the start of the
corresponding intervals.

For a given direction i ∈ I, let Ni be the number of green instants observed
for direction i and Nik be the number of green instants observed during time
interval k. That is, ∑C

k=1 Nik = Ni. Let binary variable sik be 1 if the signal for
direction i is green at instant k; and 0, otherwise.

Our objective is to maximize the fraction of vehicles that traverse the
intersection when the traffic light is green:

max
∑
i∈I

C∑
k=1

Nik

Ni

· sik (1)
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Status of the signal at given time instant
We now develop constraints that ensure sik = 1 if the signal for direction i

is green during interval k; and sik = 0, otherwise. This is achieved by Constraints
(2) through (11) as follows, where xi, yik, zik are binary variables, and M is a
sufficiently large positive integer:

θi + φi ≤ C +Mxi, ∀i ∈ I (2)
k ≥ −xiM + θi − (1− sik)M, ∀i ∈ I, k ∈ {1, 2, · · · , C} (3)
k ≤ θi + φi − 1 + (1− sik)M + xiM, ∀i ∈ I, k ∈ {1, 2, · · · , C} (4)
k ≤ θi − 1 + sikM + yikM + xiM, ∀i ∈ I, k ∈ {1, 2, · · · , C} (5)
k ≥ θi + φi − sikM − (1− yik)M − xiM, ∀i ∈ I, k ∈ {1, 2, · · · , C} (6)
θi + φi ≥ C − (1− xi)M, ∀i ∈ I (7)
k ≥ θi + φi − C − (1− xi)M − sikM, ∀i ∈ I, k ∈ {1, 2, · · · , C} (8)
k ≤ θi − 1 + sikM + (1− xi)M, ∀i ∈ I, k ∈ {1, 2, · · · , C} (9)
k ≤ θi + φi − C − 1 + (1− sik)M + zikM + (1− xi)M, ∀i ∈ I, k ∈ {1, 2, · · · , C}

(10)
k ≥ θi − (1− sik)M − (1− zik)M − (1− xi)M, ∀i ∈ I, k ∈ {1, 2, · · · , C}

(11)

Order of signal displays for incompatible movements
When two movements are incompatible of each other, that is, if the vehicle

trajectories of these two movements intersect at the intersection, we need to ensure
that their green times do not overlap for safety purposes. Let Ψ be the set of incom-
patible movements, that is, Ψ = {(i, j)|movements i and j are incompatible; i <
j; i, j ∈ I}. We introduce binary variable Ωij to indicate the order of signal dis-
plays for movement (i, j) ∈ Ψ . Ωij = 0 if the start of green for movement i
precedes that of movement j, that is, θi ≤ θj; and Ωij = 1 if the opposite is
true. The order of signal displays for incompatible movements is enforced by the
following constraints:

θi + φi ≤ θj + ΩijM, ∀(i, j) ∈ Ψ (12)
θj + φj − C ≤ θi + ΩijM, ∀(i, j) ∈ Ψ (13)
θj + φj ≤ θi + (1− Ωij)M, ∀(i, j) ∈ Ψ (14)
θi + φi − C ≤ θj + (1− Ωij)M, ∀(i, j) ∈ Ψ (15)

Note that when Ωij = 0, Constraints (14) and (15) are redundant; and when
Ωij = 1, Constraints (12) and (13) are redundant.
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Other constraints on the variables
The following constraints are for the decision variables:

θi, φi ∈ {1, 2, · · · , C}, ∀i ∈ I (16)
sik ∈ {0, 1}, ∀i ∈ I, k ∈ {1, 2, · · · , C} (17)
Ωij ∈ {0, 1}, ∀(i, j) ∈ Ψ (18)
xi, yi, zi ∈ {0, 1}, ∀i ∈ I (19)

CASE STUDIES
In this section, we conduct a series of numerical experiments on three real

intersections based on GPS data collected in September 2012, Beijing, China. The
numerical experiments can be divided into three parts. First, we give our data
source a brief description in Section , and then green intervals of each direction
is estimated using FFT in Section . Lastly, we solve the corresponding BMILP
model based on obtained cycle lengths, and report final results.

Input
GPS data we use in this paper is provided by AutoNavi and is gathered

from float vehicles mounted with GPS devices. Covered area and time are re-
stricted within Zhongguancun Area from in the morning. Three four-arm in-
tersections we choose are crossings between Zhichun Road and Zhongguancun
Street, Chengfu Road and Zhongguancun East Road, as well as Zhongguancun
South Road and Zhongguancun Street. Later in the passage, we refer them as In-
tersection 1, 2 and 3 in sequence. We compare our experimental results with true
values, which are gathered through field investigation in those specific locations.

We aggregate the input in any intersection monthly and divide traffic flows
into eight movements. We only use data in weekdays in case that signal schedule
is different from that of weekends. In grasping an understanding of traffic flow in
those three intersections, we select a typical non-peak hour, 10:00 to 11:00, and
count the number of unique vehicle ID in separate movements during this time in
Table 1. We can tell from the percentage of cars in each direction that there is
variance in both traffic demand and flow capacity in directions. Take Intersection
1 as an example, the number of cars moving from North to East is significantly less
than that of cars moving from South to North. This imbalance among movements
is a characteristic of our data feed, and it’s still true even put into most other
intersections within the city. It has to be stated that applying methods brought
up by published papers can be especially difficult in those directions with sparse
flow, and this is exactly where direction-joint comes into play.

Estimation Results Of Cycle Lengths
We set the acceleration rate of a car accelerating from the stop as a stable

value 1.44 m/s, which is widely applied in existing literature like (Long 2000).
After calculating the time that each vehicle passing the stopp-line, given the first
GPS point reported after the stop line, we get a bunch of those passing times which
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Mvt. Intersection 1 Intersection 2 Intersection 3
No. of Car Pct.(%) No. of Car Pct.(%) No. of Car Pct.(%)

EW 247 17.66 123 12.68 16 1.84
ES 88 6.29 126 12.99 93 10.69
NS 340 24.30 119 12.27 408 46.90
NE 148 10.58 51 5.26 50 5.75
SN 189 13.51 157 16.19 229 26.32
SW 161 11.51 197 20.31 56 6.44
WE 183 13.08 150 15.46 10 1.15
WN 43 3.07 47 4.85 8 0.92
Total 1399 100.00 970 100.00 870 100.00

Table 1: Counts of Unique ID in 3 intersections of all directions in 10:00-11:00.

are discrete samples of green intervals. Here for example, the length of sampled
time series during 9:00 and 11:00 is 7200s and our signal is a discrete function of
time. According to basics of FFT and the necessary accuracy of our problem, we
divide our sample length that is 1 second into 2N (here we use N = 18) samples
of equal interval, and then conduct FFT. The transformation results of sampled
green interval of Intersection 2 during 9:00 and 11:00 are shown in Figure 4 in the
previous section. Here, in this case, the frequency with the most power is 1750Hz
and the corresponding cycle length of this signal is 150s, by formula T = 2N/f .
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Figure 6: Results of cycle length estimation in Intersection 1, results from FFT
during 7:00-11:00.
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(a) Results from FFT during 9:00-11:00.
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(b) Results from FFT during 7:00-9:00.

Figure 7: Results of cycle length estimation in Intersection 1.

In Figure 7, we reported three pictures as a result of transformed sampled
passing times from time domain to frequency domain by FFT in Intersection 1.
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No. Period Observed (s) Raw Output Rounded Output
FFT (s) Error (%) Rounded (s) Error (%)

Intersection 1 7:00- 9:00 240 240.28 0.12 240 0.00
9:00-11:00 210 209.88 0.06 210 0.00

Intersection 2 7:00- 9:00 180 179.80 0.11 180 0.00
9:00-11:00 150 149.71 0.19 150 0.00

Intersection 3 7:00- 9:00 180 179.67 0.18 180 0.00
9:00-11:00 150 150.05 0.04 150 0.00

Average 0.12 0.00

Table 2: Estimated and observed cycle lengths in three intersections during 7:00-
9:00 and 9:00-11:00.

To better relate the result of FFT with the estimation of cycle length, we have
transformed the horizontal axis to the time corresponds to the frequency. Figure 6
shows two cycle lengths T1 = 210s, T2 = 240s at the same time cause it’s generated
from data in whole morning. The cycle length estimation method proposed can
easily detect the schedule change of cycle length from peak hour to non-peak hour
by dichotomy. And we find the change of cycle length happens around 9 a.m.
Figure 7(a) and 7(b) separately shows the power of a specific cycle length in those
two periods, normally referred as peak hour and non-peak hour. Choosing first
the cycle length with the most power can give us the cycle length during this
time period. Complete results of cycle length estimation are gathered in Table
2. Comparing the raw output with observed truth, the error is lower than 0.2%.
While we rounded the raw output into integers, the final estimation towards cycle
lengths matches exactly to the observed cycle lengths.

Estimation Results Of Signal Timing
In this subsection, we will demonstrate our results of signal timing estima-

tion based on the estimated cycle lengths of Intersection 1, 2 and 3. Because of the
change of the signal schedule, we divide the data associated with each intersection
into two parts, that is, data integrated during 7:00-9:00 and 9:00-11:00. By mod
all those passing times in the set by the cycle length (T ) we fold all reappearing
cycles during this period in a single cycle. Then we get eight histograms, as shown
in Figure 8, whose vertical axis telling the number of vehicles who passing the stop
line in each second in a cycle. It shows our estimation of green intervals in eight
movements of Intersection 1 during 9:00 and 11:00 by integrating data during a
month. In a cycle, the signal state at a time slot when there are more vehicles
passing the stop line is more likely to to be green. Looking at those histograms,
one can not only get the schedule of traffic signals transformation, as shown up to
down, but also movements in the same phase. Histograms of two directions in the
same row, like (NS, SN) or (NE, SW), are green periods belong to the same phase
and are discharged together. That’s why their graphs look in the same pattern,
have similar peak position and span of bars. It’s easily noticed that directions
in the same phase may have different height of bars, dramatically shown in Fig-
ures 8(e) and 8(f). This is caused by variation and imbalance in traffic demand
from directions, and it further supports our direction-joint mixed-integer model
by compensating the absence of vehicle flows in some movements. There are also
some outliers whose heights are one or two and lies out the main green period.
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This results from irrational driving behaviors like violation of traffic regulation or
error stem from the time-velocity model.

In order to compare the estimation results to the observed truth, some
evaluate indices have been introduced. We adopt a criteria called the Percentage
of Correct State (PSC) from Kerper et al. (2012). By signal state, it means if we
think the signal of each second in a cycle as a state, which is either green or red,
then there are T signal states in a cycle, where T is cycle length in seconds. Hence,
the percentage of correct states is defined as the percentage of the number of
correctly estimated states in a cycle. Besides, we also calculated the absolute error
between true values and estimated green light start time (θe), green time duration
(φe) and the time green light ends (ηe). The estimation of those parameters in
eight directions can recover the whole signal timing plan in this direction.

As shown in Figure 1, a typical crossroad intersection has 4 arms and 8
phases and some phases may conflict with each other. We use the case of 4 arms
here, and other sorts of pre-timed signal timing cases are certainly suitable. The
result can be easily ported to other kinds of intersections. For notational brevity,
we use N, S, E, W to represent Arm north, south, east, and west respectively.
Then the direction characterized by two arms can be denoted as an acronym of
two characters. For example, NE means the direction from north to east. Let I be
the set of all possible directions in the typical 4-arm intersection, that is, I={NE,
NS, EW, ES, SN, SW, WE, WN}. So for this case, we have Sc={[SW, NS], [SW,
WN], [SW, EW], [SW, ES], [SW, WE], [NS, WN], [NS,EW], [NS, ES], [NS, WE],
[WN, EW], [WN, NE], [WN, SN], [EW, NE], [EW, SN], [NE, SN], [NE, ES], [NE,
WE], [SN, ES], [SN, WE], [ES, WE]}. Note that each direction has exactly 5
conflicting directions. Each straight line direction does not conflict with the left
turn direction of the same upstream and the opposite straight line direction.

The optimization model we developed in Section 2.3 is used to minimize
the overlapped green periods of all conflict phase pair. In other words, it gives a
signal plan of eight directions which maximize the number of cars passing the stop
line during the green period of this plan. We have reported our final results in six
tables from Table 3 to Table 8. For example, Columns 2 to 4 in Table 3 presented
the observed parameters including θo, φo, ηo in eight moving directions. Columns
5 to 7 give our estimation results regards these three parameters, while Columns
8 to 10 is the absolute error between observed truth and our estimation. The last
Column is the index the Percentage of Correct State that we have introduced. In
the last row of each table, we calculated the averaged absolute start time error,
duration error, end time error, and percentage of correct state of eight directions.

In all our estimation results, even the intersection with the worst percent-
age of correct states is 97.33%. It has improved a lot compared to an average of
90% generated by simulation data in Kerper et al. (2012). In average, the differ-
ence between our estimation of the start of green and the true green start time
is smaller than 2.5s. It’s the same for the difference between the estimated and
observed time when green ends. In summary, our model has a fairly high accuracy
for all the testing intersections in both peak hours and non-peak hours and the
obtained signal timing has no conflicts.
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(a) NS (b) SN

(c) NE (d) SW

(e) WE (f) WN

(g) ES (h) EW

Figure 8: Estimated green intervals of eight directions in Intersection 1.
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CONCLUSIONS
In this paper, we develop a model that estimates signal cycle length and

jointly estimate phase timing using GPS data with low transmission frequency.
The input is GPS data which has low penetration rate and low transmission
frequency. The output is the entire signal timing plan of one intersection, including
cycle length, start time and duration of each signal phase for every period of a
day. Since the data of a single date is not enough, we implement a data fusion
step for parallel days as data preprocessing.

In the estimation of cycle length, we use Fourier Transform to transform
the ”signal” in our data (observed GPS points) from time domain to frequency
domain. Due to the periodicity of signal timing, we can get ”peaks” in the fre-
quency domain. These peaks correspond to the periods of our data, and we can
find cycle length in these peaks. When there is more than one peak that could
be the signal cycle, we decompose the time domain to analyze changes of these
peaks. In this way, we can detect the change in cycle length between different
periods, such as peak and non-peak hours.

In the estimation of signal timing, we use an optimization model to jointly
estimate signal timing for all the phases. We put the conflicts of phases into
consideration, and add these constraints in our optimization model. Therefore, the
obtained signal timing plan is always feasible. We model this problem as a Binary-
Mix-Integer-Linear-Programming and solve it by branch-and-bound. Results show
that the degree of accuracy is fairly high. PCS for all the test intersections is above
97%.
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Mvt.
Observed Estimated Error Analysis

PCS
θo φo ηo θe φe ηe ‖θo − θe‖ ‖φo − φe‖ ‖ηo − ηe‖

EW 230 50 280 226 51 277 4 1 3 97.08%
ES 230 50 280 230 47 277 0 3 3 98.75%
NS 40 75 115 41 80 121 1 5 6 97.08%
NE 115 55 170 114 56 170 1 1 0 99.58%
SN 40 75 115 37 77 114 3 2 1 98.33%
SW 115 55 170 121 49 170 6 6 0 97.50%
WE 170 60 230 170 60 230 0 0 0 100.00%
WN 170 60 230 170 56 226 0 4 4 98.33%

Average 1.875 2.75 2.125 98.33%

Table 3: Observed signal timing, estimated signal timing and the error analysis
for data during 7:00-9:00 in Intersection 1 (aacc = 1.44m/s), T = 240s.

Mvt.
Observed Estimated Error Analysis

PCS
θo φo ηo θe φe ηe ‖θo − θe‖ ‖φo − φe‖ ‖ηo − ηe‖

EW 160 50 210 161 49 210 1 1 0 99.52%
ES 160 50 210 163 47 210 3 3 0 98.57%
NS 0 70 70 0 69 69 0 1 1 99.52%
NE 70 40 110 65 46 111 5 6 1 97.14%
SN 0 70 70 0 65 165 0 5 5 97.62%
SW 70 40 110 69 42 111 1 2 1 99.05%
WE 110 50 160 111 52 163 1 2 3 98.10%
WN 110 50 160 111 50 161 1 0 1 99.57%

Average 1.5 2.5 1.5 98.57%

Table 4: Observed signal timing, estimated signal timing and the error analysis
for data during 9:00-11:00 in Intersection 1 (aacc = 1.44m/s), T = 210s.

Mvt.
Observed Estimated Error Analysis

PCS
θo φo ηo θe φe ηe ‖θo − θe‖ ‖φo − φe‖ ‖ηo − ηe‖

EW 5 50 55 6 49 55 1 1 0 99.44%
ES 55 40 95 57 42 99 2 2 4 96.67%
NS 95 50 145 99 47 146 4 3 1 97.22%
NE 145 40 185 149 37 186 4 3 1 97.22%
SN 95 50 145 100 49 149 5 1 4 95.00%
SW 145 40 185 146 40 186 1 0 1 98.89%
WE 5 50 55 6 49 55 1 1 0 99.44%
WN 55 40 95 55 42 97 0 2 2 98.89%

Average 2.25 1.625 1.625 97.85%

Table 5: Observed signal timing, estimated signal timing and the error analysis
for data during 7:00-9:00 in Intersection 2 (aacc = 1.44m/s), T = 180s.
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Mvt.
Observed Estimated Error Analysis

PCS
θo φo ηo θe φe ηe ‖θo − θe‖ ‖φo − φe‖ ‖ηo − ηe‖

EW 15 40 55 18 37 55 3 3 0 98.00%
ES 55 40 95 54 37 91 1 4 3 96.67%
NS 95 35 130 92 40 132 3 5 2 96.67%
NE 130 35 165 130 37 167 0 2 2 98.67%
SN 95 35 130 91 39 130 4 4 0 97.33%
SW 130 35 165 132 36 168 2 1 3 96.67%
WE 15 40 55 18 36 54 3 4 1 97.33%
WN 55 40 95 55 36 91 0 4 4 97.33%

Average 2 3.25 2 97.33%

Table 6: Observed signal timing, estimated signal timing and the error analysis
for data during 9:00-11:00 in Intersection 2 (aacc = 1.44m/s), T = 150s.

Mvt.
Observed Estimated Error Analysis

PCS
θo φo ηo θe φe ηe ‖θo − θe‖ ‖φo − φe‖ ‖ηo − ηe‖

EW 150 25 175 143 31 174 7 6 1 95.56%
ES 150 25 175 151 25 174 1 0 1 98.89%
NS 180 80 255 176 80 256 1 0 1 98.89%
NE 80 50 130 78 50 128 2 0 2 97.78%
SN 180 80 225 176 80 256 1 0 1 98.89%
SW 80 50 130 83 41 124 3 9 6 95.00%
WE 130 20 150 129 22 151 1 2 1 98.89%
WN 130 20 150 128 15 143 1 5 7 95.00%

Average 2.25 2.75 2.5 97.36%

Table 7: Observed signal timing, estimated signal timing and the error analysis
for data during 7:00-9:00 in Intersection 3 (aacc = 1.44m/s), T = 180s.

Mvt.
Observed Estimated Error Analysis

PCS
θo φo ηo θe φe ηe ‖θo − θe‖ ‖φo − φe‖ ‖ηo − ηe‖

EW 105 20 125 105 15 120 0 5 5 96.67%
ES 105 20 125 105 25 130 0 5 5 96.67%
NS 145 80 225 146 79 225 1 1 0 99.33%
NE 75 30 105 75 30 105 0 0 0 100.00%
SN 145 80 225 145 80 225 0 0 0 100.00%
SW 75 30 105 75 30 105 0 0 0 100.00%
WE 125 20 145 130 15 145 5 5 0 96.67%
WN 125 20 145 130 15 135 5 5 10 90.00%

Average 1.375 2.625 2.5 97.42%

Table 8: Observed signal timing, estimated signal timing and the error analysis
for data during 9:00-11:00 in Intersection 3 (aacc = 1.44m/s), T = 150s.
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