
1 
 

Spatial modelling of traffic volumes and mean speed values  
 
Georgios Sarlas* & Kay W. Axhausen 
Institute for Transport Planning and Systems (IVT), Swiss Federal Institute of Technology 
(ETH), Zurich, Switzerland 

 
*Email: georgios.sarlas@ivt.baug.ethz.ch 
 

1 Introduction 
Econometrics have found application in a plethora of transport problems, constituting a medium both 
for obtaining parameters values, and for prediction purposes. However, applications acknowledging and 
treating for endogeneity and interdependence issues are rather sporadic (e.g. [1]). Furthermore, the 
spatial nature of the employed data makes spatial autocorrelation issues in many instances very likely 
[2]. The aforementioned issues, if overlooked, can lead to inconsistent and biased estimates, and even 
mis-specified models. Authors previous work dealt with the problem of estimating traffic volume and 
mean speed values independently of each other ([3],[4]), highlighting the strong presence of spatial 
autocorrelation issues and concluding on the use of spatial autoregressive models (SAR) as a remedy. 
Building upon that, in the current conference contribution we center our focus on providing a 
methodological framework capable of making both speed and volume predictions for any location of a 
network, accounting both for underlying endogeneity and spatial autocorrelation issues. The developed 
framework is subsequently tested in a case study set-up.  

2 Methodology 
Conceptually, it can be argued that the interdependence between speed and volume is apparent. 
Looking closer at the mechanism governing their interaction, speed is essentially the outcome of the 
demand and supply interaction at a link level. The result of that interaction might as well have a spillback 
effect through propagation of the congestion to the preceding links. On the other hand, lower speed 
values have an impact on the travel costs and thus on demand. Therefore, it can be concluded that this 
mechanism should constitute a core element when trying to model those phenomena. In the context of 
simulation (e.g. four-step model, agent-based model), that interaction is achieved through an iterative 
way until an equilibrium point has been reached. On the other hand, in the context of statistical 
modelling, that mechanism needs to be typified in order to isolate the variables that exert impact on the 
dependent variables directly, and indirectly through the other variable.  

On the estimation front, we are making use of the two-step generalized method of moments (GMM) and 
instrumental variable (IV) estimation approach (denoted as 2SGM/IV), as proposed in [5] and [6]. This 
estimation approach allows both for endogenous regressor(s), heteroscedastic disturbances, and 
treatment of spatial effects while the estimation process entails four steps. In summary, at the outset a 
two-stage least squares (2SLS) estimator is applied, followed by a GMM estimator, then by a generalized 
spatial 2SLS estimator, and last by a GMM estimator to obtain the consistent and efficient estimates. The 
endogenous regressor(s) can be “replaced” either by an instrument variable, or can be estimated based 
on a set of exogenous regressors. Making use of the same estimation process the problem can be easily 
formulated as a structural equations model as well [7]. The general formula of the SAR model allowing 
for both spatial lagged dependent variables and error spatial dependence is:  

𝑌𝑌 = 𝜌𝜌𝑊𝑊𝑌𝑌 + 𝛽𝛽𝑖𝑖𝑋𝑋𝑖𝑖 + 𝑢𝑢,𝑤𝑤𝑤𝑤𝑤𝑤ℎ 𝑢𝑢 = 𝜆𝜆𝑊𝑊𝑊𝑊 + 𝜀𝜀  
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Where ρ is the spatial autocorrelation parameter, λ the spatial autoregressive coefficient, W the spatial 
weight matrix, Y the dependent variable, X the independent variables, u the disturbances and ε the error 
term. 

3 Case study 
Making use of the case study set-up as presented in [4] (briefly, the nationwide network of Switzerland 
with 416 count locations), we proceed to the estimation of the models. Using as a departure point the 
previously estimated SAR error model [4] for average daily traffic volume (AADT), we tested whether the 
inclusion of the speed variable in the specification is statistically significant, which was not the case. As 
mean speed values we took the estimated ones from the Swiss national transport model (NPVM), which 
will be updated with true values in the near future (Tom-Tom travel time estimates). Before proceeding 
it is useful to put into perspective the assumptions of that model. At first, that the network structure 
does not have an endogenous impact (meaning that for a given network we can apply the model to 
estimate the AADT). Nevertheless, speed is assumed to have an indirect impact on the volume through 
the route choice process employed for the construction of the so-called accessibility weighted centrality 
variable. However, that centrality variable was constructed as a proxy of interregional demand and 
hence it can be assumed that the influence of speed is negligible and not directly related with the traffic 
volume.  

Thereupon, only one endogeneity is considered (volume on the speed model).  Previous attempts to 
associate volume and speed values on a macroscopic level normally employ different BPR curves (e.g. 
[8]), including the volume and the capacity of the links. Plotting the various mean speed values versus 
the capacity-volume ratio for our case (Fig.1), it appears that a function is present but it remains a task to 
specify its exact form and test for spatial autocorrelation issues.  

 

Figure 1: Mean speed vs volume-capacity ratio plots for two speed limit categories 

To facilitate the estimation procedure, the following general form of travel time per link is defined. It 
should be noted that as Δtt we define the difference between the mean travel time and the free-flow 
travel time (based on the posted speed limits): 
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𝑡𝑡𝑡𝑡 = 𝑡𝑡𝑡𝑡 �1 +
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝛽𝛽

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝛾𝛾�
 

𝑡𝑡𝑡𝑡 − 𝑡𝑡0 = 𝑡𝑡0𝛼𝛼 ∗
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝛽𝛽

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝛾𝛾
 

log(Δ𝑡𝑡𝑡𝑡) = α ∗ log(𝑡𝑡0): 𝑙𝑙𝑙𝑙𝑙𝑙𝑘𝑘𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 + 𝛽𝛽 ∗ log(𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴) +  𝛿𝛿 ∗ log(𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶) + 𝜀𝜀,𝑤𝑤𝑤𝑤𝑤𝑤ℎ 𝛿𝛿 = −𝛾𝛾 

The model is estimated making use of the 2SGM/IV estimator, instrumenting the endogenous variable of 
volume with predictions made from a SAR volume model, which is estimated in terms of a GMM 
estimator. This way we allow for the treatment of spatial effects and heteroscedasticity on both models, 
and at the same time we account for the endogenous relationship between speed and volume.  

4 Results 
The model estimates are provided in the following table, along with the spatial autoregressive 
coefficient. Initially, the full spatial model was calculated, where the results supported the choice of a 
spatial model with error spatial dependence, which was also the case for the AADT model. This finding 
surfaces that spatial autocorrelation arises either due to missing variables, or due to shocks which 
cannot be captured in the model formulation. Especially, the latter is consistent with the kinematic wave 
theory that governs such fundamental relationships. A particular attention was given to the 
identification of the neighborhood extent (W), testing thoroughly both Euclidean and network distance-
based weighting schemes. We conclude on the use of a network distance-based W.  

Table 1: Model estimation results  

Depend: variable : log (ΔTT) Estimate Std. Error t-value Sign. 
log(capacity) -3.82 0.23 -16.81 *** 
log(free-flow travel time:) Freeway 1.19 0.13 9.38 *** 
log(free-flow travel time): Major 0.80 0.17 4.80 *** 
log(free-flow travel time:) Urban main 0.27 0.75 0.36  
log(free-flow travel time): Rural major 1.68 0.20 8.31 *** 
log(𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴� ): Freeway 3.60 0.24 14.95 *** 
log(𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴� ): Major 3.97 0.22 17.84 *** 
log�𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴� �: Urban 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 4.05 0.42 9.57 *** 
log�𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴� �: Rural major 3.44 0.24 14.54 *** 
Rho 0.86 0.40 2.14 * 
# of observations: 416; Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Last, the results will be updated by taking into account actual mean speed observations which will allows 
us to draw solid conclusions with respect to the predictive accuracy of such a model and also in 
comparison with the NPVM. 
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